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ABSTRACT

This paper is aimed at presenting a new tool developed by
Dinamica, with the support of ESA, for the efficient non-
linear propagation of uncertainties in space dynamics. The
newly implemented software is based on Differential Alge-
bra, which provides a method to easily extend the existing
linearization techniques and allows the implementation of ef-
ficient arbitrary order methods. These theoretical concepts
represent the building blocks over which the Differential Al-
gebra Space Toolbox is implemented. The application areas
for the tool are plenty. To illustrate the power of the method
in general and to give the user a better understanding of the
various features, several different examples in the field of as-
trodynamics and space engineering are presented.

Index Terms— Nonlinear uncertainty propagation, Dif-
ferential Algebra.

1. INTRODUCTION

The problem of uncertainty propagation represents a cru-
cial issue in spaceflight dynamics since all practical systems
- from vehicle navigation to orbit determination or target
tracking - involve nonlinearities of one kind or another. In ad-
dition, within the space mission design process, uncertainty
propagation is a fundamental tool to assess the fulfillment
of mission requirements and constraints, to evaluate mission
performances, to perform sensitivity analyses, and to verify
the robustness of guidance and control laws. In light of the
above, the scientific community has started focusing on the
development of new tools, aiming at improving the approxi-
mation of standard linear methods available in the literature
or to reduce the computational effort required by standard
Monte-Carlo simulations. Dinamica Srl, with the support
of ESA, has recently completed the implementation of the
Differential Algebra Space Toolbox (DAST), a software tool
based on Differential Algebra (DA) for the efficient, nonlin-
ear propagation of uncertainties in space dynamics. Although

the general mathematical foundation suggests potential ap-
plications of the same approach to various fields, this work
focuses on the application of DAST to a set of test cases in
the field of astrodynamics and space engineering, with the
aim of illustrating the potentials with respect to classical ap-
proaches. Thanks to the use of DA techniques, indeed, DAST
has been shown to be orders of magnitude more efficient than
traditional methods. The manuscript is organized as follows.
First, a brief introduction to differential algebra is given, fo-
cusing in particular to the high-order expansion of the flow
of ODEs. Then, three different high-order methods for the
nonlinear propagation of uncertainties are described in detail,
highligthing for each the role played by differential algebra.
The following section is mainly aimed at presenting the archi-
tecture of the DAST, including a detailed description of each
module. Finally, the effectiveness of the tool is demonstrated
through several numerical examples.

2. DIFFERENTIAL ALGEBRA

Historically, the treatment of functions in numerics has been
based on the treatment of numbers, and the classical numeri-
cal algorithms are based on the mere evaluation of functions
at specific points. DA technique relies on the observation that
it is possible to extract more information on a function rather
than its mere values. The basic idea is to bring the treatment
of functions and the operations on them to the computer en-
vironment in a similar way as the treatment of real numbers.
In fact, the real numbers cannot be treated, in a strict sense,
in a computer environment, instead they are approximated by
floating point (FP) numbers with a finite number of digits.
With reference to Figure 1, let us consider two real numbers
a and b, and their floating point counterpart ā and b̄ respec-
tively; then, given any operation “∗” in the set of real num-
bers, an adjoint operation “⊗” is defined in the set of float-
ing point numbers such that the diagram in figure commutes.
Consequently, transforming the real numbers a and b in their
FP representation and operating on them in the set of FP num-
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Fig. 1. Analogy between the FP representation of real numbers in computer environment (left) and the algebra of Taylor
polynomials in DA framework (right)

bers returns the same result as carrying out the operation in
the set of real numbers and then transforming the achieved
result in its FP representation. In a similar way, suppose two
sufficiently regular functions f and g are given. In the frame-
work of differential algebra, the computer operates on them
using their Taylor series expansions, F and G respectively.
Therefore, the transformation of real numbers in their FP rep-
resentation is now substituted by the extraction of the Taylor
expansions of f and g. For each operation in the function
space, an adjoint operation in the space of Taylor polynomi-
als is defined such that the corresponding diagram commutes;
i.e., extracting the Taylor expansions of f and g and operat-
ing on them in the function space returns the same result as
operating on f and g in the original space and then extracting
the Taylor expansion of the resulting function.

The straightforward implementation of differential alge-
bra in a computer allows computing the Taylor coefficients
of a function up to a specified order k, along with the func-
tion evaluation, with a fixed amount of effort. The Taylor
coefficients of order k for sums and product of functions,
as well as scalar products with real numbers, can be com-
puted from those of summands and factors; this means that
the set of equivalence classes of functions can be endowed
with well-defined operations, leading to the so called trun-
cated power series algebra (TPSA). In addition to sum and
product, other algebraic operations can be performed, as com-
position/inversion of functions or nonlinear systems solution.
Moreover, the analytic operations of differentiation and inte-
gration have been developed on these function spaces, defin-
ing a differential algebraic structure, [1].

2.1. High-order expansion of the flow

The high-order expansion of the flow can be obtained by con-
sidering the fact that any integration scheme, explicit or im-
plicit, is characterized by a finite number of algebraic oper-
ations, involving the evaluation of the ODEs right-hand side
at several integration points. Therefore, replacing the oper-
ations between real numbers with those on DA numbers, it
yields to the kth-order Taylor expansion of the flow of the

ODE, φ (t; δx0; t0) = Mφ (δx0), at each integration time,
assuming a perturbed initial condition x0 + δx0.

Without loss of generality, consider the scalar initial value
problem:

ẋ (t) = f (t, x) , x (t0) = x0 (1)

and the associated flow φ (t; δx0; t0). For the sake of sim-
plicity, consider uncertain initial conditions only. Starting
from the kth-order DA representation of the initial condition,
[x0] = x0 + δx0, which is a (k + 1)-tuple of Taylor coef-
ficients, and performing all the operations in the DA frame-
work, allows us to propagate the Taylor expansion of the flow
in x0 forward in time, up to the final time tf .

For the sake of clarity, consider the forward Euler’s
scheme:

xi = xi−1 + f (xi−1) ∆t (2)

and substitute the initial value with the DA identity [x0] =
x0 + δx0. At the first time step one has

[x1] = [x0] + f ([x0]) ∆t (3)

If the function f is evaluated in the DA framework, the out-
put of the first step, [x1], is the kth-order Taylor expansion of
the flow φ (t; δx0; t0) in x0 for t = t1. Note that, as a re-
sult of the DA evaluation of f ([x0]), the (k + 1)-tuple [x1]
may include several non zeros coefficients corresponding to
high order terms in δx0. The previous procedure can be in-
ferred through the subsequent steps. The result of the final
step is the kth-order Taylor expansion of φ (t; δx0; t0) in x0
at the final time tf . Thus, the flow of a dynamical system can
be approximated, at each time step ti, as a kth-order Taylor
expansion in a fixed amount of effort.

3. NONLINEAR UNCERTAINTY PROPAGATION

The use of DA and the consequent availability of a high or-
der expansion of the flow, paves the way to the nonlinear un-
certainty propagation through the implementation of new ad-
vanced methods, referred to as high order methods. They rep-
resent a trade-off between the efficiency of linearized models



and the accuracy of classical Monte Carlo simulations using
high order information:

1. DA-based Monte Carlo, Monte Carlo simulations
based on the repeated evaluation of one single flow
expansion rather than on multiple pointwise integra-
tions [2, 3, 4];

2. Covariance propagation, analytically mapping PDF [5],
or computing high order moments of the mapped PDF
[6, 7, 8];

3. Bounding-box propagation, range estimation using
polynomial bounder [9].

3.1. DA-based Monte Carlo

A DA-based Monte Carlo (DAMC) requires the following
steps:

1. Perform a single DA integration with given expansion
order;

2. Generate random samples based on the statistical dis-
tribution of the uncertainty to be propagated;

3. Evaluate the flow expansion map for all the samples;

4. Perform the statistical analysis of the results.

With respect to classical Monte Carlo approach, this method
allows avoiding multiple numerical integration of the ODE
system, replacing it with fast polynomial evaluations, thus re-
ducing the computational burden typically associated to clas-
sical Monte Carlo simulation.

Moreover, the DA-based approach delivers a map expan-
sion, whose accuracy can be controlled by changing the ex-
pansion order. Furthermore, as the flow expansion is analyt-
ical, an analytic framework is delivered, which can be used
for additional analyses. For instance, in case new statistics
(different number of samples and/or different initial distribu-
tions) need to be propagated, it is not necessary to perform an
additional DA integration, as only steps 2-4 are required.

The ratio between the computational time of a DA-based
Monte Carlo simulation and its pointwise counterpart is

τ =
tn + nste
nst0

(4)

where tn, te, and t0 are the computational times of a k-th
order DA integration, a flow map evaluation, and a pointwise
integration, respectively; and ns is the number of samples of
the Monte Carlo simulation. The computational cost of a Tay-
lor map evaluation depends on the expansion order, but it is
negligible with respect to that of a pointwise integration. For
this reason, the expression above can be approximated with
Rτ/ns, in which Rτ is the ratio between the computational

time of a k-th order DA integration and a pointwise integra-
tion. The value of Rτ strongly depends on the expansion or-
der and the dynamical model, but in any case is orders of
magnitude smaller than the number of samples required for
a good representation of the statistics (e.g. > 104 for NEO
case).

In the rest of this work, whenever a DA-based Monte
Carlo approach is used, it is referred to as DAMC-k, where
k indicates the Taylor series expansion order.

3.2. Covariance propagation

A Gaussian pdf remains Guassian under a transformation
when the transformation is linear. Thus, for small value of
uncertainties, weakly nonlinear dynamical systems or short-
term propagation, the approach based on the linearization of
the dynamics can deliver enough accurate result in a very effi-
cient way. An initial covariance matrix P (t0) can be mapped
forward in time by

P (t) = Φ(x0, t)P (t0)Φ(x0, t)
T (5)

where Φ(x0, t) is the state transition matrix (STM).
Through the use of DA, the computation of STM is straight-
forward and allows avoiding the drawbacks related with the
use of variational equations or finite differences. In the first
case, the equations are problem dependent, thus need to be
analytically derived and numerically integrated for each set
of ODEs. Moreover, when coordinate transformations are
needed, a linearized version of this transformations must also
be derived. Finite differences on the other side, are more
suitable for automation, but a careful selection of the size of
the perturbation required to approximate the derivatives is
necessary. The steps required for the DA-based approach are:

1. Perform a single DA integration (and coordinate trans-
formation when necessary) with expansion order 1.
The propagated mean is the constant part of the ob-
tained polynomial map;

2. Extract the STM from the Taylor polynomial map (lin-
ear part of the polynomial);

Since the use of relation (5), throughout this work we will
refer to this method as Covariance Propagation or Linearized
Dynamics (LD).

3.3. Bounding-box propagation

In some applications (e.g. to verify the satisfaction of con-
straints) it is not necessary to map a statistical distribution, but
it is sufficient to estimate the range of the propagated uncer-
tainties. Once the high order expansion of the flow is obtained
via DA integration, the range can be estimated by bounding
the range of the resulting Taylor polynomials. The implemen-
tation of this method can be summarized as follows:
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Fig. 2. Overview of the DACE architecture.

1. Scale the uncertain variables by the initial range pro-
vided by the user such that the domain of each variable
is [-1,1];

2. Perform a single DA integration with expansion order
selected by the user.

3. Compute the range of the polynomial representing the
Taylor expansion of the flow, by assessing the bounds
of each monomial.

In the following sections, we will use both Bounding-box
propagation or Polynomial Bounder (PB) to refer to this class
of high-order methods.

4. SOFTWARE ARCHITECTURE

The theoretical concepts presented in sections 2-3 have been
implemented by Dinamica Srl in the Differential Algebra
Space Toolbox (DAST), a DA-based software tool for the
efficient, nonlinear propagation of uncertainties in space dy-
namics (ESA contract: “ITT AO/1-7570/13/NL/MH Nonlin-
ear Propagation of Uncertainties in Space Dynamics based
on Taylor Differential Algebra”). DAST is divided in three
main layers: the Differential Algebra Computational Engine
(DACE), the Software Framework (SF), and the Uncertainty
Propagation Tool (UPT).

4.1. Differential Algebra Computational Engine (DACE)

This module provides a set of basic DA routines with the aim
to approximate the result of an operation by its Taylor expan-
sion around zero. After each operation an approximation is
obtained, yielding eventually to the Taylor expansion of arbi-
trarily complex expressions.

As shown in Figure 2, DACE module is composed by
three different sub-modules:

• the DACE Fortran core;

• the C++ interface;

• the Matlab interface;

4.1.1. DACE Fortran core

This sub-module contains the most basic and time-critical op-
erations since they form the foundation of all the higher-level
algorithms. To maximize the performance, it is implemented
in Fortran 95, an efficient procedural language, with some
modern features for what concerns memory management and
exception handling. These routines are not intended to be
used directly by the user or developer, and their exact For-
tran interface is considered private. A convenient access to
them is provided through two interface modules.

4.1.2. DACE C++ interface

The C++ interface, based on a mature and wide spread ob-
ject oriented language, blends in with some useful features
(e.g. strict typing, operator overloading for intuitive coding,
namespaces to avoid naming collisions, templates (STL), I/O
streams for seamless input and output, etc.). Furthermore, it is
characterized by a very little overhead, which perfectly suits
with high performance requirements.

The design of C++ interface makes use of advanced object
oriented techniques and the programming APIs are mainly in-
tended for the inclusion of the DACE in the development of
custom code. To this aim, a new DA data type is defined,
and all the associated mathematical functions are designed
to mimic the calling conventions of the Standard C++ math
functions. More in detail, the DA arithmetic data type en-
capsulates DA routines, handles all aspects of the DACE core
routines (calling to the DACE Fortran library, DA allocation)
and integrates a modern error management based on C++ ex-
ception handling.

Thanks to the powerful template features of C++, the
transition from traditional to DA enabled code is simple and
straight forward. However, it is worth clarifying that for
non-trivial code some changes due to conceptual differences
between DA and other arithmetic data types might still be
required.

The C++ interface and the DACE Fortran core are inte-
grated in a single DACE Shared Library.

4.1.3. DACE Matlab interface

The second interface is the DACE Matlab interface, based on
a procedural language, whose main advantages are the large
user base, the interactivity, the automatic memory manage-
ment, and the availability of built-in functions.

The design is almost similar to the one used in C++ in-
terface, but with the aim to define a new DA type that can
be used to perform DA operations directly and interactively
from within Matlab. Thus, a Matlab class is implemented to
mimic the calling conventions of a subset of the Matlab intrin-
sic functions. This class encapsulates the calling to the DACE
Fortran library, through the loading of the DACE shared li-
brary.
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Anyway, due to a limited support for C and Fortran rou-
tines, an incomplete object-oriented framework, and a huge
overhead for object and memory handling, the current Matlab
interface has shown to be much slower, thus is not recom-
mended for serious applications.

4.2. Software Framework (SF)

The second main module includes the implementation of
more advanced features, like algorithms to properly handle
vectors and matrices of DA, propagation schemes (RK78),
etc. These functions, which are grouped in the SF Core
Routine sub-module (see Figure 3), have a general purpose
and can be used for the application of DA to any dynamical
system.

Moreover, SF provides all the required routines to per-
form DA-based propagations in astrodynamics, including co-
ordinate and time transformations, ephemeris evaluation, as
well as the implementation of various dynamical systems and
specific astrodynamics routines (DA Lambert problem solver,
DA Kepler solver etc.). All these routines form the Astrody-
namics block in Figure 3. In order to standardize the evalua-
tion of astrodynamics routines, the SF is linked to the SPICE
library. This freely available library already provides most of
the astrodynamics routines implemented in the SF for double
precision numbers ([10]). Its use allows the SF to only focus
on the DA evaluation of these routines.

4.3. Uncertainty Propagation Toolbox (UPT)

The purpose of the UPT is to allow users to perform un-
certainty propagations and statistical analyses from Matlab,
without the need for writing or compiling their own code.
Differently from the DACE Matlab interface described in Sec-
tion 4.1.3, the UPT is a small component that provides access
to the SF routines by using Matlab Mex-files. It allows the
user to provide inputs for uncertainty propagation in Matlab,
and then interfaces those inputs with the SF, where the actual
uncertainty propagation is performed. The results are finally

returned back to Matlab, where they can be analyzed and/or
used for statistical assessments. Figure 4 shows the logical
components structure of the UPT. As can be seen, it is com-
posed by:

• Interface routines, for the declaration of dynamical
model and propagation method;

• Mex core routines, for the interaction with the SF;

• Analysis routines, for the evaluation of final DA map
and computation of statistical quantities;

• Output routines, for the export and plot of the results;

Uncertainty Propagation Tool (UPT)

UPT Interface Function

UPT MEX core routine Software Framework (SF)

UPT Analysis Function

UPT Output function

Fig. 4. Overview of the UPT structure.

5. ASTRODYNAMICS APPLICATIONS

To properly illustrate the power of the method and give a bet-
ter understanding of the various features, two main test cases



in the field of astrodynamics and space engineering are pre-
sented: the simple two-body problem and a more advanced
re-entry problem.

5.1. Two-body problem

In the two-body problem, the dynamics of an uncontrolled ar-
tificial satellite orbiting the Earth is described by the second-
order differential equations

r̈ = − µ

r3
r, (6)

where r is the position vector of the spacecraft, and µ is the
Earth’s gravitational parameter. The initial states assumed for
the analysis is reported in Table 1 both in terms of cartesian
coordinates and orbital elements.

Table 1. Initial state in the 2-body problem.
Element Value Units Coord. Value Units

a 1.5e4 km rx 7.5e3 km
e 0.5 - ry 0.0 km
i 0.0 rad rz 0.0 km
Ω 0.0 rad vx 0.0 km/s
ω 0.0 rad vy 8.9286 km/s
θ 0.0 rad vz 0.0 km/s

For the test, only the rx and ry components of the position
vector are affected by uncertainty δx and δy, with a variance
of 5e-02 km2. The propagation is performed for 30.8 orbital
periods, thus computing the statistics in the proximity of the
pericenter of the orbit (the initial condition). The analysis is
split into two separate phases with the goal of assessing:

1. The consistency of the results coming from different
propagation methods;

2. The performance and accuracy with respect to the ex-
pansion order.

5.1.1. Consistency with respect to different propagation
methods

The first part of the test includes the use of the propagation
methods presented in Section 3, followed by a comparison of
the associated results.

Firstly, the consistency between DAMC and LD methods
is analyzed. The initial conditions, reported in Table 1, are ini-
tialized as first order DA variables and propagated forward to
get the Taylor expansion of the final state [x̃f ] =M1

xf
(δx0).

The obtained map is then used to perform two different analy-
ses. The first one consists in the evaluation of the polynomial
with an initial set of samples, generated from a Guassian dis-
tribution. This approach is generally referred to as DA-based

Monte Carlo analysis (see Section 3.1). The resulting distri-
bution can be used to compute statistical information, such as
the final covariance CovDAMC

f . In the second analysis, the
LD method (see Section 3.2) is exploited. The state transition
matrix is extracted from the linear part of the mapM1

xf
and

used to evaluate the final covariance CovLDf , following rela-
tion (5). Finally, the compatibility between the two covari-
ance estimations is checked by computing the relative differ-
ence component-wise

εf,LD =
|CovDAMC

f − CovLDf |
|CovLDf |

, (7)

and the ratio

τf,LD =
|CovDAMC

f |
|CovLDf |

. (8)

Table 2 shows the maximum relative error and the max-
imum ratio found among all the covariance components. As
can be seen, the distance between the two estimations tends
to decrease as the number of considered samples increases.
Roughly speaking, the LD method provides the values to-
wards which the DAMC-1 would converge if an infinite num-
ber of samples is used.

Table 2. Maximum relative error εf,LD and maximum ratio
τf,LD for the 2-body example with respect to the number of
variables.

# samples max(εf,LD) max(τf,LD)
101 1.148 2.148
102 0.2967 1.297
103 0.02243 1.022
104 0.009701 1.01
105 0.006454 0.9935
106 0.002108 1.002

In the second part of the test, a DAMC method is exploited
again to obtain an estimation of the distribution range. This
time the obtained results are compared against the PB method
(see Section 3.3). More specifically, the first step involves the
propagation of the given initial conditions in the DA frame-
work. Even in this case, a first order approximation is con-
sidered. The computed map M1

xf
is firstly used to perform

a DAMC analysis, using an initial uniform distribution. The
range of the provided final distribution is evaluated as

[xDAMC
f,min ,xDAMC

f,max ] = [mini(x̃
i
f ),maxi(x̃

i
f )]. (9)

The range of the propagated uncertainties can also be esti-
mated by using the PB algorithm, which provides upper and
lower bounds, xPBf,UB and xPBf,LB , without the need to generate
samples and evaluate polynomials, but simply using interval



algebra [11]. The consistency of the results is checked by
computing the relative error

εf,LB =
|xDAMC
f,min − xPBf,LB |

xPBf,LB
(10)

εf,UB =
|xDAMC
f,max − xPBf,UB |

xPBf,UB
, (11)

and the ratio

τLB =
|xDAMC
f,min |
xPBf,LB

(12)

τUB =
|xDAMC
f,max |
xPBf,UB

. (13)

Table 3 shows the distance between bounds obtained with
DAMC and those given by PB. In particular note how the dif-
ference becomes smaller as the number of samples increases.

Table 3. Maximum relative error on bounds with respect to
the number of variables for the 2-body example.

# samples max(εf,LB) max(εf,UB)
101 0.003894 0.09002
102 0.001408 0.006865
103 2.961e-4 0.004459
104 3.433e-5 6.987e-4
105 2.37e-6 3.81e-4
106 1.749e-6 1.293e-4

5.1.2. Performance and accuracy with respect to the expan-
sion order

The second part of the test is mainly aimed at assessing the
performance and the accuracy of the numerical technique
with respect to the expansion order. To obtain more apprecia-
ble results, the variance on the x and y position component is
increased up to 5e-01 km2. Figure 5 illustrates the maximum
error on position and velocity between the DAMC and the
pointwise propagation of the same initial set of 104 samples.
As can be seen, the influence of the order on the accuracy of
the map is quite clear, since the error tends to decrease when
higher orders are selected. This point can be easily explained
by considering that the additional terms of the Taylor expan-
sion allow a better approximation of nonlinear effects, thus
producing better results.

The effects of the order can also be appreciated in Figure
6, where the final distributions and the 3-σ covariance ellip-
soids obtained using a DAMC propagation method for various
orders are depicted.

Although the benefits in the approximation accuracy, the
use of higher orders affects also the computational burden re-
quired to compute the Taylor expansions. Figure 5 shows the
ratio Rτ between the computational time required for a kth-
order DA propagation and for its pointwise counterpart. It is
evident that higher expansion orders entail higher computa-
tional times. Nonetheless, for the present test case, a second
order approximation is only one and half times slower than
a pointwise propagation. Known this, it is worth clarifying
that the computational time, and consequently also the ratio
shown in Figure 5, is mainly related with the number of oper-
ations required. Thus, not only the order, but also the number
of variables considered, the model complexity or, whenever
the integration of an ODE is involved, the different numerical
integration scheme and demanded accuracy, may have large
effects.

5.2. Re-entry problem

For this second example, the Hayabusa re-entry scenario is
considered. The set of ODEs used to describe the motion of
the vehicle’s center of mass is:

ṙ = v sin γ,

α̇ = v cos γ cosψ
r cos δ ,

δ̇ = v cos γ sinψ
r ,

v̇ = −D
m − g sin γ,

vγ̇ = L cosσ
m − g cos γ + v2 cos γ

r ,

vψ̇ = L sinσ
m cos γ −

v2 tan δ cos γ cosψ
r ,

(14)

where r and v are vehicle’s speed and radius, σ is the bank
angle, defined as the angle between the lift vector and the
plane described by the local vertical and the velocity vector,
and g is the planetary gravitational acceleration. Finally, L
and D are the lift and the drag force respectively computed
as:

L = 0.5ρSCLv
2, (15)

D = 0.5ρSCDv
2, (16)

in whichCL andCD are the lift and drag coefficients, ρ, is the
atmosphere density, and S is the base area of the capsule. This
set of ODEs is written in a local non-inertial reference frame,
attached to the vehicle with x axis aligned with the local verti-
cal, y pointing towards east and z to complete the right handed
triad. An inertial planetocentric ecliptic reference frame X ,
Y , Z is assumed; in particular, in the fundamental plane the
X axis is collinear to the vernal equinox direction. The rela-
tive orientation between the two frames is defined by the right
ascension α and the declination δ, whereas the flight path an-
gle γ and the heading angle ψ are introduced to identify the
vehicle velocity vector in the local reference frame.
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For the sake of simplicity, an exponential atmospheric
model is assumed:

ρ = ρ0 exp(−h
β

), (17)

where ρ0 is the atmosphere’s density at sea level, h is the
object’s altitude and β is the scaling altitude.

The initial states, parameters and corresponding uncer-
tainties assumed for the analysis are reported in Tables 4-5.

Table 4. Initial state and uncertainties.
Element Value Std. Dev. Units

h 201.992 0.1085 km
α -124.28 0.0074 deg
δ -27.33 0.008 deg
v 12.035 0.002 km/s
γ -12.35 0.0044 deg/s
ψ -22.06 0.0119 deg/s

Table 5. Re-entry parameters and uncertainties.
Element Value Std. Dev. Units
CD 1.30 3.3% -
CL 0 - -
m 18 - kg
S 0.126 - m2

ρ0 1.217 6.6% kg/m3

β 8.5 - km

Firstly, the Hayabusa nominal trajectory is computed (see
Figure 7). The latitude and longitude of the parachute deploy-
ment (at 25 km altitude) found with DAST, and listed in Table
6, are close to the values available in literature (see [12]-[13]),
where the parachute deployment latitude is included between
-30.75 deg and -30.0 deg and the longitude between 135.5 deg
E and 136.5 deg E. The small difference in longitude is mainly
due to the atmospheric model used in DAST simulations.



Table 6. Re-entry coordinates for Hayabusa at 25 km altitude.
Epoch 2010-Jun-13, 13:53:56.108 UTC

Altitude 25.00000865 km
Longitude 134.3776058 deg
Latitude -30.12555199 deg

130.0°E 135.0°E 140.0°E

35.0°S 

32.5°S 

30.0°S 

27.5°S 

300 km0 100 200100

Adelaide

AUSTRALIA

Fig. 7. Reentry site for Hayabusa at 25 km altitude.

Similarly to the two-body example, Figure 9 illustrates
the maximum error on position and velocity between the
DAMC and the pointwise propagation of the same initial set
of samples. As expected both errors decrease as the order
increases. However, higher orders mean also higher compu-
tational costs, as clearly shown on the right side of the same
figure. Ratio τ defined in Eq. (4) is here reported for differ-
ent orders and different number of samples. Note how the
DAMC approach quickly becomes more convenient when the
number of samples increases, whereas the computational gain
decreases with the expansion order. Furthermore, fixing the
number of samples, e.g 103, the computational time required
by DAMC is orders of magnitude smaller with respect to a
classical MC approach.

The DAMC results can be used as a reference to check
other high-order propagation methods, i.e. PB and LD. For
instance, Figure 8 compares the parachute deployment dis-
persions obtained with DAMC and PB approaches. In par-
ticular, note how the bounds estimation is quite accurate and
provides a good approximation of the range for the propa-
gated uncertainties. Table 7 summarizes relative errors and
ratios on lower and upper bounds (see Eq. (10)) for different
number of samples.

Finally, DAMC and LD methods are compared. The max-
imum relative errors obtained using Eq. (7) are reported in
Table 8:

Fig. 8. Comparison between DAMC and PB range estima-
tions at parachute deployment.

Table 7. Maximum relative error on bounds with respect to
the number of variables for the re-entry example.

# samples max(εf,LB) max(εf,UB)
101 8.457e-03 4.104e-03
102 3.215e-03 1.979e-03
103 1.338e-03 8.025e-04
104 7.859e-04 4.434e-04
105 3.355e-04 4.657e-04

Table 8. Maximum relative error εf,LD for the re-entry ex-
ample with respect to the number of variables.

# samples max(εf,LD)
101 6.613e-01
102 3.904e-02
103 3.756e-02
104 2.025e-02
105 5.297e-03

In particular note that the error among the two methods
becomes smaller for increasing number of samples, which
means a progressive convergence of the DAMC-1 approach
to the LD results. The goodness of the results can also be ap-
preciated by looking at Figure 10, where graphical representa-
tions of covariance ellipsoids (obtained through LD method)
and final distributions (provided by DAMC-1 simulations) are
depicted. At the same time it is to be noted that Figure 10 is
also aimed to highlight the effects of parameters uncertainty.
At this purpose, the final distributions and the covariance el-
lipsoids of two different simulations are illustrated. In the first
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Fig. 9. Position and velocity error (left) and ratio τ (right) obtained using DAMC-k (k = 1,2,4) for the reentry dynamics.

Fig. 10. Uncertainties effects on parachute deployment dispersion in α-δ plane (left) and in h-δ plane (right).

one uncertainty is applied only on the initial state, whereas in
the second one also drag coefficient, CD, and reference den-
sity, ρ0, are perturbed. As shown, when uncertainties on the
atmospheric model are considered, the dispersion over right
ascension α and declination δ is much larger. Analogous ef-
fects are found also in altitude, with a parachute deployment
range that goes from 23 km to 27 km, significantly wider than
the one obtained in the first simulation.

6. CONCLUSIONS

The main objective of this work concerns the description
of the new tool DAST for the nonlinear propagation of un-
certainties in space dynamics. Differently from existing
linearized models or Monte Carlo techniques, DAST is based
on Taylor Differential Algebra, giving access to a wide new
class of high-order methods. The architecture of the software
is brefly described, with a particular attention to the logical
decomposition in three modules: DACE, SF and UPT. The
tool is here tested in two different astrodynamics applications.
The obtained results show that final accuracy may depend on
the size of the considered uncertainty set and on the order

of the polynomials. Computational time typically increases
for higher orders and larger numbers of uncertain variables.
Nonetheless, for typical number of samples, the proposed
tool is order of magnitudes more efficient than classical ap-
proaches. In addition, it provides an analytical representation
of the expansion of the flow, that can be used in ways that
are not possible with classical methods. Finally, the modular
design used for the implementation of the software greatly
simplifies its extension, allowing not only the introduction of
new specific space dynamical models, but also the definition
of a completely new class of ODEs, thus allowing the applica-
tion of DAST and relative DA-based uncertainty propagation
methods to any field (e.g., biology, finance, etc.).
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