

DESIGN OF OPTIMAL OBSERVATION STRATEGY FOR RE-ENTRY PREDICTION IMPROVEMENT OF GTOs UPPER STAGES

6th International Conference on Astrodynamics Tools and Techniques (ICATT) Darmstadt, Germany

G. Di Mauro, M. Rasotto, M. Massari, P. Di Lizia, R. Armellin, Q. Funke and T. Flohrer

March 16th, 2016

• From 2004 to now, more than 200 satellites placed in GEO!

- From 2004 to now, more than 200 satellites placed in GEO!
- Each successful launch leaves one or more pieces of debris in GTO, typically large spent upper stages
 - Casualty risk larger than 1/10000
 - Interaction with highly populated regions LEO and GEO regions

- From 2004 to now, more than 200 satellites placed in GEO!
- Each successful launch leaves one or more pieces of debris in GTO, typically large spent upper stages
 - Casualty risk larger than 1/10000
 - Interaction with highly populated regions LEO and GEO regions

Improvement of their re-entry prediction is a key issue

- From 2004 to now, more than 200 satellites placed in GEO!
- Each successful launch leaves one or more pieces of debris in GTO, typically large spent upper stages
 - Casualty risk larger than 1/10000
 - Interaction with highly populated regions LEO and GEO regions

Improvement of their re-entry prediction is a key issue

"ITT AO/1-8155/15/D/SR Technology for Improving Re-Entry Predictions of European Upper Stages through Dedicated Observations"

POTENTIAL APPROACHES

Improvement based on Two Line Elements (TLE)

POTENTIAL APPROACHES

Improvement through dedicated observations

POTENTIAL APPROACHES

Improvement through dedicated observations

Goals:

- Accurate simulation of observation campaigns through existing and ideal sensors
- Computation of visibility windows, observables, ground track coverage etc.
- Design of observation strategies for the improvement of re-entry predictions

Fully implemented in Matlab

Observatory class

OBSERVATORY CLASS

 Active systems such as the radar and LADAR (Lidar radar) illuminate space objects with radio (VHF/UHF) or laser beams: d⁻⁴ dependency

 Passive systems such as optical sensors which use the SUN as source of illumination: d⁻² dependency

OBSERVATORY CLASS

• Active systems such as the radar and LADAR (Lidar radar)

Ideal observatories can also be defined:

Laser sensors

. . .

Infrared sensors

source of illumination: d^{-2} dependency

Object class

High fidelity propagator (AIDA) module

SPICE module

03/16/2016

esa

IRIS ARCHITECTURE

Visibility module

Optical Observatory

- o Geometrical Constraints
 - The object has to be detectable from sensor location

Illumination Constraints

- Object must be illuminated by the Sun
- Object brightness must exceed that of the background sky by a certain margin
- Dark background during observations
- Observation must occur during the night
- Cloud Coverage Constraint
 - The sky has to be clear to perform the measurement
- o Angular Velocity Constraints
 - > Object velocity doesn't exceed a maximum value

Sensor module

Output

OUTPUT

 Observational data represent the inputs for the design of optimal observation strategies

Optimization Approach

Observational data represent the inputs for the design of optimal observation strategies

Optimization Approach

Automatic method for observation strategy design

 Observational data represent the inputs for the design of optimal observation strategies

Optimization Approach

- Automatic method for observation strategy design
- Strategy design problem as a multi-objective optimization problem:

$$\begin{aligned} X_{opt} &= [1,0,0,1,\dots,0,0,1] \quad X_{opt} \in \Re^{N_{Obs}} \\ f(X_{opt}) &= [f_1(X_{opt}) \quad f_2(X_{opt})] = [N_{Obs} \quad max(\lambda_i)] \end{aligned}$$

$$Cov = (H^T W H)^{-1}$$

 $Cov = (H^T W H)$

Jacobian matrix

$$Cov = (H^T W H)^{-1}$$

Jacobian matrix

Jacobian matrix can be computed through Differential Algebra (DA)

DIFFERENTIAL ALGEBRA

 Substitution of classical real algebra with a new algebra of Taylor polynomials

- Any function of n variables is expanded into its Taylor polynomial up to an arbitrary order k
- Unlike standard automatic differentiation tools, the analytic operations of differentiation and antiderivation are introduced

DIFFERENTIAL ALGEBRA

Pros

- Jacobian computed at machine precision
- Efficient computation of J for any dynamical and sensor models
- No finite differences or variational equations used
- Reduction of computational efforts

	CPU Time	
	MATLAB (finite differences)	~200 s
	DA	~15 s
)NS Need of a DA fra	amework:	AST

Cons

RESULTS

OGS

TIRA

ZIMLAT

OGS and ZIMLAT produce the most of measurements when the object moves

CZ-3A Third Stage (37949)

CONCLUSIONS

- A high accuracy observation simulator (IRIS) has been developed
 - Accurate simulation of observation campaigns through existing and ideal sensors
 - Computation of visibility windows, observables, ground track coverage etc.

CONCLUSIONS

- A high accuracy observation simulator (IRIS) has been developed
 - Accurate simulation of observation campaigns through existing and ideal sensors
 - Computation of visibility windows, observables, ground track coverage etc.
- An optimization approach can be used to obtain the optimal observation strategy for given object and sensors network

CONCLUSIONS

- A high accuracy observation simulator (IRIS) has been developed
 - Accurate simulation of observation campaigns through existing and ideal sensors
 - Computation of visibility windows, observables, ground track coverage etc.
- An optimization approach can be used to obtain the optimal observation strategy for given object and sensors network
- Study not yet completed...
 - No evidence of common patterns that can be used as guidelines for the definition of a general optimal strategy
 - Other approaches are currently under investigation
 - Covariance analyses

DESIGN OF OPTIMAL OBSERVATION STRATEGY FOR RE-ENTRY PREDICTION IMPROVEMENT OF GTOs UPPER STAGES

6th International Conference on Astrodynamics Tools and Techniques (ICATT) Darmstadt, Germany

G. Di Mauro, M. Rasotto, M. Massari, P. Di Lizia, R. Armellin, Q. Funke and T. Flohrer

March 16th, 2016