

An Interactive Trajectory Design Environment Leveraging Dynamical Structures in Multi-Body Regimes

Andrew Cox, Natasha Bosanac, Davide Guzzetti, Kathleen Howell Purdue University

> David Folta, Cassandra Webster NASA Goddard Space Flight Center

Sun

Sample Design Tools

and many more...

- Provide full suite of capabilities for mission planning and operational support
- Increasingly complex environments present design challenges
 - Point solutions can be designed
 - Process to leverage complex dynamical structures may not be intuitive

- Purdue University NASA Goddard Space Flight Center collaboration: Adaptive Trajectory Design (ATD)
- Identify and manipulate dynamical structures within simplified Circular Restricted 3-Body Problem
- Prototype interactive graphical interface in Matlab

Circular Restricted 3-Body Problem

Circular Restricted 3-Body Problem

Circular Restricted 3-Body Problem

Energy-like constant: $C = 2\Omega - v^2$

Equilibrium Points

PURDUE ENGINEERING

- Multi-purpose formation to service cislunar and interplanetary space
- In parking orbit, require constant communications with Earth

Design Constraints

- Formation of service satellites
 - Constraint #1: Use quasi-periodic orbit
- Service interplanetary destinations
 - Constraint #2: Located at the L2 gateway
- Service L1 destinations
 - Constraint #3: Energy level comparable to L1
- Continuous comm. to Earth, no occultation w/ Moon
 - **Constraint #4:** Angular deviation from x-axis > 0.26 deg

Catalog of Periodic Solutions

	Figure 3: CR3BP Dynamic	Design Catalog	
		Switch Mode	
		<< Click on the orbits sample to explore a LPO = Libration Point Orbits P2 = Moon Centred Orbits RES = Resonant Orbits	category:
• •	• P2	List of selected families of orbits:	
KES		Delete	Process
HINT: Click on the HINT bu	tton to start getting hints.		Explore System

PURDUE ENGINEERING

Families of Periodic Orbits

PURDUE ENGINEERING

16/03/2016

Cox A., Bosanac, N., Guzzetti, D., Howell, K., Folta, D., and Webster, C.

• Module available to explore existence and characteristics of quasi-periodic solutions, selection of segments

Explore Trade Space

Cox A., Bosanac, N., Guzzetti, D., Howell, K., Folta, D., and Webster, C.

Explore Trade Space

- ✓ Use quasi-periodic orbit
- ✓ Located at the L2 gateway
- ✓ Energy level comparable to L1 ($C \approx 3.14$)
- \Box Angular deviation from x-axis > 0.26°

Select L₂ Quasi-Halo

- ✓ Use quasi-periodic orbit
- ✓ Located at the L2 gateway
- ✓ Energy level comparable to L1 ($C \approx 3.14$)
- ✓ Angular deviation from x-axis > 0.26°

- Service a malfunctioning spacecraft or restock depot
- Design transfer in ATD CR3BP Design Module

16/03/2016

16/03/2016

Initial Guess Construction

27

Transfer to Earth-Moon L₁

Constrained Design

Cox A., Bosanac, N., Guzzetti, D., Howell, K., Folta, D., and Webster, C.

31

Transfer to Earth-Moon L₁

Corrected Trajectory

Cox A., Bosanac, N., Guzzetti, D., Howell, K., Folta, D., and Webster, C.

16/03/2016

PURDUE ENGINEERING

PURDUE ENGINEERING

Transfer to Earth-Moon L₁

Continuous Trajectory in Ephemeris

Transfer to Earth-Moon L₁

Continuous Trajectory in Ephemeris

Sun-Earth-Moon Ephemeris

GMAT Ephemeris

Point Masses: Sun, Earth Harmonics: Moon

- Service a space observatory at Sun-Earth L₂
- Leverage dynamical structures from Sun-Earth and Earth-Moon systems
- Design transfer in ATD System Blending Module

System Blending Module

- 2. Include additional arcs in arc lists
- 3. Sort arc list segments
- 4. Save design and determine epoch

Clip Selected

Unselect Current Arc

System Blending Module

System Blending Module

Transfer to Sun-Earth L₂

System-to-System Manifold Connection

- Manifold arcs from Earth-Moon L₂ to Sun-Earth L₂
- Next step: Identify connection between manifolds

16/03/2016

Transfer to Sun-Earth L₂

Locate System Connections

• Employ higher-dimensional Poincaré mapping

Transfer to Sun-Earth L₂

Locate System Connections

Transfer to Sun-Earth L₂

System-to-System Transfer Design

Summary

- ATD offers framework to explore natural dynamical structures in CR3BP
- Interactive design environment to construct transfers leveraging natural structures
- Multiple shooting corrections available in CR3BP, Ephemeris
- Output to operational-level software, e.g., GMAT

An Interactive Trajectory Design Environment Leveraging Dynamical Structures in Multi-Body Regimes

Thank You!

Acknowledgements:

Purdue College of Engineering and School of Aeronautics and Astronautics

NASA Goddard Space Flight Center