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ABSTRACT
This paper provides an overview of the elements required for
high-fidelity simulations of the motion of landers deployed to
the surfaces of small bodies. Previous work on the motion
of spherical landers is expanded to the general case of arbi-
trary shapes, which is challenging due to the high restitution
of the necessary gravity, shape, and surface rock models. We
implement established techniques that reduce the numerical
burden of handling shape models by distinguishing between
models used for gravity field evaluations and surface interac-
tions. Significant attention is given to the implementation of
a robust collision model for the non-eccentric collisions of ar-
bitrary lander shapes. A C++ implementation of this software
enables quick verification of deployment and surface mobility
strategies in the presence of uncertainties in the lander release
conditions, lander properties, and surface properties.

Index Terms— Small body, lander, rover, simulation, de-
ployment, collision

1. INTRODUCTION

The small bodies of our Solar System have matured into com-
mon targets for large space missions. Specifically, the mis-
sions to these asteroids, comets, and small moons aim to ad-
dress three distinct goals: first, the pristine condition of most
small bodies provides insight into the early conditions of the
Solar System, shedding light on its formation. Secondly, mis-
sions to small bodies provide a way of validating planetary
defense strategies to deflect hazardous near-Earth objects. Fi-
nally, the analysis of small body (sub-)surfaces provides in-
sight into the feasibility of in-situ resource utilization tech-
niques.

Over the past two decades, the NEAR-Shoemaker, Haya-
busa, and Rosetta spacecraft have established a core under-
standing of the origins, characteristics, and dynamics of small
bodies. These mission mainly performed remote sensing op-
erations about their respective targets; Rosetta’s Philae lan-
der further demonstrated the feasibility of small body lan-

∗This research was supported by NASAs SSERVI program (Institute
for the Science of Exploration Targets) through institute grant number
NNA14AB03A.

ders [1]. In the coming decade, the Hayabusa-2, OSIRIS-
REx, and AIDA missions will continue to expand our knowl-
edge of small bodies and carry out remote sensing, sample
return, and orbit deflection operations at their respective tar-
gets. Hayabusa-2 also carries the MASCOT and MINERVA
lander/rover, which will carry out surface mobility operations
using momentum exchange mechanisms. This allows them
to return scientific measurements from multiple sites on their
target, asteroid Ryugu [2, 3]. Similar cubesat landers are pro-
posed to be included on the AIDA mission [4].

One important aspect in the design of lander/rover opera-
tions is the release and deployment strategy used to deliver the
craft to the surface of its target. This directly affects the lan-
der hardware (e.g. battery) and the inherent risk to the moth-
ership. Similarly, simulations of surface mobility operations
will provide insight into the dynamics and controllability of
a rover following deployment to the surface. Previous work
has showed successful, low-risk deployment to a target along
its unstable manifolds [5]. This strategy has been extensively
verified with numerical simulations for spherical landers, us-
ing a statistical model of the surface rock distribution [6, 7].
While this provides a tractable approximation to the motion of
landers with arbitrary shapes and establishes important sim-
ulation techniques, we must expand these simulations to be
able to handle such shapes and generate accurate rock distri-
butions.

In this work, we present an overview of the elements re-
quired to carry out high-fidelity simulations of these small
body landers with arbitrary shapes. In Sec. 2, we briefly re-
view the equations that express the lander motion. This mo-
tion is governed by gravitational forces, of which the evalua-
tion is detailed in Sec. 3, along with techniques to make this
evaluation computationally feasible. Similarly, we present
techniques to convert the high-resolution surface shape and
rock models into tractable subsets that allow for collision de-
tection in Sec. 4. Sec. 5 then reviews a robust strategy for
computing the impulsive forces that act in these collisions.
The applications of these high-fidelity simulations are dis-
cussed in Sec. 6, and Sec. 7 finally provides some conclusions
and future work directions for this research.



2. FRAMEWORK

Simulations of the motion of a lander in the neighborhood of
a targt small body first require set-up of the proper reference
frames and equations of motions. For simplicity, this is done
here for unitary bodies, though the expressions given are eas-
ily expanded to binary systems.

2.1. Reference Frames

In order to set up the state variables and equations of mo-
tion of the lander-target system, we first define three reference
frames:

1. The inertial frameN , with origin at the target center of
mass and axes fixed inertially.

2. The rotating target frame T , with origin at the target
center of mass and axes fixed to the target.

3. The rotating lander frame L, with origin at the lander
center of mass and axes aligned with the lander princi-
pal inertia axes.

We may now define the state variables that describe the
dynamical state of the spacecraft-target system. As surface
interactions between the two bodies are computed relative to
the target surface, the spacecraft motion is expressed primar-
ily in the T -frame. The system state consists of:

1. The spacecraft position r, expressed in the T -frame.
2. The spacecraft linear velocity ṙ, expressed in the T -

frame.
3. The spacecraft attitude quaternion q, expressed in the
T -frame.

4. The spacecraft angular velocity ω, expressed in the
L-frame.

5. The target attitude quaternion Q, expressed in the N -
frame.

6. The target angular velocity Ω, expressed in the T -
frame.

2.2. Equations of Motion

The equations of motion of the state elements, in their respec-
tive reference frames, are equal to:

dr

dt
= ṙ (1)

dṙ

dt
= g −Ω×Ω× r− 2Ω× ṙ + aE (2)

dq

dt
=

1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

[0
ω

]
(3)

dω
dt

= −[I]−1 (ω × [I]ω) (4)

dQ

dt
=

1

2


Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

[ 0
Ω

]
(5)

dΩ

dt
= 0 (6)

where [I] is the inertia matrix of the lander, and where the
target body is assumed to be in uniform rotation, as implied
by Eq. 5. In Eq. 2, g is the gravitational attraction of the target
body, and aE is the external acceleration, which may include
sources such as solar radiation pressure and accelerations dur-
ing continued contact with the surface. Here, we set aE = 0,
i.e. we ignore contact motion of a lander on the surface of its
target, and only consider impulsive forces that occur during
collisions.

These equations of motion are propagated numerically us-
ing a fifth-order Runge-Kutta method, with a fourth-order lo-
cal truncation error estimate, i.e. the RK5(4) method. The
integrator is further equipped with event detection capability
in order to detect collisions between the lander and its tar-
get body. We implement this integrator in C++ to enable fast
simulations of a large number of trajectories.

3. GRAVITY

As the time required for a lander to come to rest on the small
body surface following release from a mothership is on the
order of hours, the gravitational attraction of the target body
is the dominant force on the lander. We therefore ignoring
perturbing forces such as solar radiation pressure. In this sec-
tion, we review our modeling of the small body gravitational
field, and present techniques to mitigate numerical challenges
inherent in these models. These techniques were developed
with the specific purpose of lander/rover simulations by [6].

3.1. Polyhedron Model

The complex and irregular gravitational field of the target
small body is implemented using the constant-density polyhe-
dron model [8]. This model represents the small body shape
through a collection of vertices Pi, edges Eij , and facetsFijk.
In order to evaluate the gravitational field of such a polyhe-
dron, we first compute the outward-pointing normals N̂Fijk

of each facet and N̂Eij of each edge with a ray-tracing tech-
nique. Using these normals, we compute the dyad of every
edge and facet, as:

EEij = N̂Fijk
N̂T
Eij + N̂Fijl

N̂T
Eji (7)

FFijk
= N̂Fijk

N̂T
Fijk

(8)

As the normals and dyads are invariant, they are pre-
computed prior to simulations in order to reduce the compu-
tational overhead. When evaluating the gravitational field at



Fig. 1. Illustration of (left) a high-resolution shape model and (right) a low-resolution gravity model of asteroid Itokawa.

some position r, we first compute the per-edge factor LEij
and per-facet factor ωFijk

of all edges and facets of the target
polyhedron:

LEij = ln

(
ri + rj + eij
ri + rj − eij

)
(9)

ωFijk
= 2 arctan ($) (10)

with:

$ =
ri · (rj × rk)

rirjrk + ri (rj · rk) + rj (rk · ri) + rk (ri · rj)
(11)

where ri is the vector from vertex Pi to the position r,
i.e. ri = r − Pi, and ri = ‖ri‖. Using this, we may finally
evaluate the gravitational potential U , gravitational attraction
g, and gravity gradient matrix Γ at the position r as [8]:

U(r) =
1

2
Gρ
∑
Eij

rEij ·EEij · rEij · LEij

−1

2
Gρ
∑
Fijk

rFijk
· FFijk

· rFijk
· ωFijk

(12)

g(r) = −Gρ
∑
Eij

EEij · rEij · LEij

+Gρ
∑
Fijk

FFijk
· rFijk

· ωFijk

(13)

Γ(r) = Gρ
∑
Eij

EEij · LEij −Gρ
∑
Fijk

FFijk
· ωFijk

(14)

where rEij and rFijk
are the vectors from the position r

to respectively any vertex of edge Eij and facet Fijk. High-
resolution small body shape models consist of several hun-
dred thousand facets; evaluations of Eqs. 12 through 14 for
a these models are therefore computationally expensive and
significantly increase the runtime of simulations. Therefore,
we implement two techniques that were developed by [6] and
shown to be highly effective at reducing this computational
load. For a more detailed discussion, the reader is referred to
this work.

3.2. Linearization

The first technique applies a linearization of the gravity field.
When the lander velocity or integration step size are small,
the lander moves only a small distance between successive
integration steps. As a result, we may approximate the grav-
itational field at some r using a previous evaluation at some
r0, provided that the distance ∆r = ‖r− r0‖ is small. When
this is true, the gravitational potential and attraction at r are
approximately equal to:

U(r) ' U(r0) + (r− r0) · g(r0)

+ (r− r0) · Γ(r0) · (r− r0)
(15)

g(r) ' g(r0) + (r− r0) · Γ(r0) (16)

Through the selection of some ∆rmax, we control the al-
lowable error of this gravity field linearization. In verification
tests, we find that setting ∆rmax to 1/100th of the mean vol-
umetric radius of a target body yields a relative error in the
gravitational acceleration on the order of 10−5.

3.3. Gravity Model Resolution

The second technique involves the reduction of the shape
model used for gravity field evaluations. Indeed, the gravity
field of a high-resolution model can be approximated by a
reduced-resolution model of the same shape. In order to con-
struct these models, we first triangulate the largest ellipsoid
that fits entirely within the original shape model. The vertices
of this ellipsoid are then projected outwards until they inter-
sect the original shape model; these intersection points define
the vertices of the reduced model. This model is then trans-
lated such that its center of mass matches that of the original
model. Finally, as the volume of the new model differs from
that of the original model, we adjust its density such that its
total mass matches that of the original model. In Fig. 1, we
illustrate a high-resolution shape model and its corresponding
reduced gravity model. As we can see, the reduced model



maintains the general shape of the body, but has lost small
local variations.

By controlling the number of vertices in the initial ellip-
soid triangulation, we control the resolution of the final shape
model and the corresponding gravity field error. In verifi-
cation tests, we find that 162-vertex models yield a surface
gravity error of approximately 1% for relatively smooth small
body shapes. For more irregular models, a 642-vertex model
yields the same error. Using these two techniques, the com-
putational cost of gravity field evaluations is significatly re-
duced, while maintaining control over the associated error.

4. SURFACE

Lander/rover spacecraft operating on the surface of a small
body dissipate energy due to interactions with the surface, pri-
marily through collisions. As the shape and orientation of the
local surface strongly affects these interactions, it is necessary
to consider high-resolution shape models in computations of
the surface interaction; simplified models may not accurately
capture local topography that may serve as basins of attraction
or rejection for objects moving on/over the surface. Addition-
ally, it has been shown that rocks and boulders on the small
body surface play an important role in the dissipation process,
both from an energetic and a topographic point of view [6, 7].
A model of the surface rock distribution must therefore be
included in addition to a high-resolution shape model.

Once again, this introduces issues with regard to compu-
tational burden, which are most significant when performing
collision detection between a lander and the small body sur-
face, as this detection requires distance computations between
all features (vertices, edge, and facets) of both the lander and
the small body. Fortunately, the burden can be significantly
reduced using three techniques: the division of the ‘global’
small body surface into a number of smaller, ‘local worlds’,
the procedural generation of rocks on these local worlds, and
the use of bounding spheres.

4.1. Atlas

Prior to performing simulations, we follow the technique of
[6] and construct the atlas of the target small body. This is
done by creating a latitude-longitude grid, where individual
cells contain those target surface features that fall within the
cells’ latitude-longitude span. In order to establish a consis-
tent grid size across the surface, we create one atlas relative
to the rotation axis of the target (‘Z-atlas’), and a second atlas
relative to an axis in its equatorial plane (‘X-atlas’), as illus-
trated in Fig. 2. Each of the two atlases spans ±45◦ of lati-
tude, thus covering the entire small body surface with similar
cell sizes.

When propagating the lander motion, the simulation con-
tinuously updates the ‘active’ local world based on the cur-
rent lander latitude and longitude. This technique ensures the

Fig. 2. Illustration of the grids that comprise (left) the Z-atlas
and (right) the X-atlas [7].

correct surface features are active when the lander closely ap-
proaches the target surface, and enables collision detection
with a high-resolution surface at low computational costs, as
we only ever perform distance computations to a small subset
of the total number of surface features.

4.2. Rock Distribution

This division of the small body surface into local worlds can
be further exploited when generating rocks on the small body
surface. The inclusion of such rock distributions is not a novel
technique and has been shown in previous work to be an im-
portant factor in lander dissipation. In this work, the presence
of rocks is accounted for through a stochastic model that im-
poses a degree of randomness of collisions between a lander
and the small body surface [6]. While this strategy is nu-
merically very effective and performs well at modeling the
first few impacts of a lander trajectory, it has a number of
drawbacks. Specifically, a stochastic model limits the surface
slopes at which a lander can come to rest, and cannot produce
repeatable collisions of a lander at the same surface location.
These limitations are most prominent when the range of mo-
tion of the lander, i.e. its velocity, is small. In order to re-
move these limitations, we must include a ‘full’ rock model
in which rocks are shaped and placed on the surface, and con-
sidered as surface features in collision detection. Depending
on the minimum considered radius of a rock, the total num-
ber of rocks on a small body may well exceed the millions,
making it infeasible to both generate and store these rocks in
memory.

Instead, a single local world will contain only a manage-
able few hundred rocks; the exact number follows directly
from the surface area of the local world and the statistical dis-
tribution of the rocks. Similarly, we can invert the rock size
distribution and apply a random number generator to shape
and place the rocks on the local world. By controlling the
seed of the random number generator, we ensure that this pro-
cedural generation is consistent, i.e. that the same rocks are
always created on the same facet. This holds for any arbitrary



Fig. 3. Illustration of a small body surface with an active local world marked in red, with procedurally generated rocks.

rock model, as long as the rocks on a given facet are generated
independently of the geometry surrounding that facet. Fig. 3
illustrates an arbitrary active world with generated rocks. The
visualization software used to generate this and subsequent
figures was developed in [6] and expanded in [7]. In this par-
ticular model shown, rocks are created as regular icosahedra
with a superimposed random variation on their vertices, that
are then partially sunk into the surface. This method of creat-
ing and shaping rocks is consistent with those used to generate
the a priori stochastic model in [6], but has not been applied
for procedural generation before.

4.3. Bounding Spheres

The efficiency of collision detection can be increased even
further through the use of bounding spheres. Specifically, we
define bounding spheres around each local world, as well as
around the lander, each sphere encompassing its entire con-
tents. Following this definition, collisions between the lander
and the active local world are possible only when their bound-
ing spheres intersect. Therefore, it is sufficient to compute the
distance between the centers of the bounding spheres in most
cases; the ‘full’ distance computation between all features of
the lander and the local world is only carried out when the
bounding spheres are found to intersect or contain one an-
other. This process is illustrated in Fig. 4. In a similar process,
we create bounding spheres for the surface rocks to enable ef-
ficient collision detection between an arbitrarily-shaped lan-
der and several hundred rocks.

5. COLLISIONS

As discussed before, we propagate the motion of a lander in
the small body environment using an integrator with event ca-
pability. Indeed, at every time step, the integrator computes

the minimum distance between the lander and the active lo-
cal world, and examines whether the surface penetration con-
straint has been violated. If it has, the integrator converges on
the instant just before the collision, and then handles the col-
lision event before continuing with a successive integration
arc.

Here, we review the methodology applied to handle these
collisions. Although simple algebraic collision laws can ro-
bustly capture the impulsive forces present in collisions of
a spherical body, these laws cannot be applied in the non-
eccentric collisions of a body with an abritrary shape where
the contact point, body center of mass, and normal force, are
not aligned. When this is the case, algebraic laws often re-
sult in energy increases or spin reversals in such collisions
[9]. Instead, we follow the approach of [10], where a numer-
ical integration is performed over the span of a collision to
correctly compute the impulsive forces.

5.1. Geometry

Using the converged, pre-collision lander state, we define the
collision frame C, with the origin at the contact point H be-
tween the lander and the small body surface, and orthonormal
axes {t̂1, t̂2, n̂}. The n̂ axis is normal to the tangent plane of
collision; the two tangential axes t̂1 and t̂2 (arbitrarily) span
this plane. We further define the collision vector c = H − r.
In order to handle the collision, the quantities ṙ, ω, and c are
transformed into the C-frame. Assuming that the rigid body
and surface are mutually impenetrable at the point of contact,
the lander will be subject to a contact impulse P, which af-
fects its linear and angular velocity as:

Mdṙ = dP (17)

[I]dω = c× dP (18)



Fig. 4. Illustration of the lander-target minimum-distance computation when the bounding spheres (left) do not intersect and
(right) do intersect.

where M is the mass of the lander and [I] is its inertia
matrix, expressed in the C-frame. The contact point velocity
v is determined by both the linear and angular velocity of the
lander:

v = ṙ + ω × c (19)

which is again expressed in the C-frame, such that the
third component of v represents the normal contact point ve-
locity, v3 which must always be negative at the start of a col-
lision. We will make use of the lander inverse inertia matrix,
m∗, a symmetric matrix whose elements are defined as:

m∗ij = M−1δij +

3∑
k=1

3∑
l=1

3∑
m=1

3∑
n=1

εikmεjlnI
−1
kl cmcn (20)

where δij is the Kronecker delta, εijk is the permutation
tensor, and I−1kl are the elements of the inverse of the inertia
matrix1 [I]. Using this definition, we find for the elements of
m∗:



m∗11 = M−1 + c23I
−1
22 + c22I

−1
33 − 2c2c3I

−1
23

m∗12 = c2c3I
−1
13 − c23I

−1
12 + c1c3I

−1
23 − c1c2I

−1
33

m∗13 = c2c3I
−1
12 − c22I

−1
13 − c1c3I

−1
22 + c1c2I

−1
23

m∗22 = M−1 + c23I
−1
11 + c21I

−1
33 − 2c1c3I

−1
13

m∗23 = c1c3I
−1
12 − c2c3I

−1
11 − c21I

−1
23 + c1c2I

−1
13

m∗33 = M−1 + c22I
−1
11 + c21I

−1
22 − 2c1c2I

−1
12

(21)

The remaining elements are found by symmetry, i.e.
m∗21 = m∗12, m∗31 = m∗13, and m∗32 = m∗23.

1Not to be confused with the inverse of the elements of the inertia matrix.

5.2. Normal Force

During the collision, the lander is subject to a normal impulse
that enforces the non-penetration constraint. Assuming that
the contact region is infinitesimally small and nondeformable,
it can be shown that the normal impulse must always be com-
pressive and monotonously increases during the (infinitesi-
mally short) contact period. As such, we may resolve the
collision in terms of the normal impulse p, by using it as a
time-like variable for integration. It is noted that, due to the
definition of the collision frame, the normal impulse p = P3.

A collision consists of two phases: compression and resti-
tution. During compression, the normal impulse reduces the
normal contact point velocity v3 to zero. In this phase, some
of the lander’s energy is removed by the workWc done by the
normal force, and stored in the lander. The resitution phase
begins when the contact point reaches v3 = 0, during which
the normal force continues to act and returns part of the stored
energy through the work Wr. The ‘duration’ of a collision in
terms of the total normal impulse provided is determined by
the energetic coefficient of restitution, 0 ≤ e ≤ 1, which is
defined as:

e2 =
Wr

Wc
(22)

We note that this definition is different from the more
commonly used kinetic coefficient of restitution, which is de-
fined in terms of the contact point normal velocity.

When resolving a collision, we thus first propagate the
respective equations of motion until v3 = 0 and compute the
work done by the normal force during compression, as the
area under the v3(p) curve. Using the energetic coefficient
of restitution, we can then determine the work done by the
normal force during restitution, which determines when the
collision will terminate.



5.3. Presence of Sliding

In addition to the normal force, a lander will also be subject
to a Coulomb friction force that attempts to drive the tangen-
tial contact point velocity to zero. In order to determine the
magnitude of this friction force and related impulse, we make
use of the slip velocity, s:

s =
√
v21 + v22 (23)

where v1 and v2 are the tangential contact point velocity
components in respectively the directions of t̂1 and t̂2. When
s 6= 0, we say that the contact point is in slip; when s = 0, we
say that it is in stick. When slip occurs, the direction of slip
can be defined by the angle φ measured in the tangent plane,
from t̂1, as:

φ = arctan

(
v2
v1

)
(24)

where, numerically, we make use of the atan2 function
to determine the proper quadrant of φ. Respectively, the two
tangential velocities can be expressed in terms of the slip ve-
locity and angle as:

v1 = s cosφ

v2 = s sinφ
(25)

5.4. Collision Equations of Motion

The state of the lander during collision is described by the
contact impulse P, the contact point velocity v, and the lander
velocities ṙ and ω. The latter two can be integrated following
Eqs. 17 and 18; the equations of motion that govern P and
v must be selected depending on the slip/stick state of the
contact point, and are described here.

5.4.1. Slip

When the contact point is in slip, the contact impulse can be
propagated with the following equations of motion:

dP :


dP1

dp = −µ cosφ = − µv1√
v21+v

2
2

dP2

dp = −µ sinφ = − µv2√
v21+v

2
2

dP3

dp = 1

(26)

where 0 ≤ µ ≤ 1 is the coefficient of friction. Corre-
spondingly, the contact point velocity varies as:

dv :


dv1
dp = −µm∗11 cosφ− µm∗12 sinφ+m∗13

dv2
dp = −µm∗21 cosφ− µm∗22 sinφ+m∗23

dv3
dp = −µm∗31 cosφ− µm∗32 sinφ+m∗33

(27)

Eqs. 26 and 27 must be integrated simultaneously to cor-
rectly resolve the collision. When the coefficient of friction is

sufficiently large, slip may halt during either compression or
restitution, i.e. s→ 0.

When this happens, the contact point will either stick for
the remainder of the collision, or immediately resume slip in
some direction φ̂. To determine which of the two cases oc-
curs, we compute the critical coefficient of friction, µ̄, which
provides the minimum value of µ required for permanent
stick:

µ̄ =

√
α2 + β2

γ
(28)

where: 
α = m∗11m

∗
23 −m∗12m∗13

β = m∗22m
∗
13 −m∗12m∗23

γ = m∗11m
∗
22 −m∗12m∗12

(29)

5.4.2. Continued stick

If µ ≥ µ̄, the contact point will remain in stick under the
influence of a friction impulse µ̄ ·dp in a direction φ̄−π, such
that the contact point velocity equations of motion become:

dv :


dv1
dp = 0

dv2
dp = 0

dv3
dp = −µm∗31 cos φ̄− µm∗32 sin φ̄+m∗33

(30)

where the angle φ̄ can be computed as:

φ̄ = arctan

(
α

β

)
(31)

which is only a function of the collision geometry and the
mass properties of the rigid body.

Correspondingly, the impulse equations become:

dP :


dP1

dp = µ̄ cos (φ̄− π)
dP2

dp = µ̄ sin (φ̄− π)
dP3

dp = 1

(32)

5.4.3. Slip reversal

If instead µ > µ̄, slip will resume immediately after reaching
the s = 0 point. In this second phase of slip, the direction
of slip φ̂ will be constant, and can be found as the root of
h(µ, φ) = 0 for which g(µ, φ) > 0. The two functions are
defined as:

g(µ, φ) = m∗13cφ+m∗23sφ− µm∗11c2φ

−2µm∗12sφcφ− µm∗22s2φ
(33)

h(µ, φ) = −m∗13sφ+m∗23cφ

+µ (m∗11 −m∗22) sφcφ+ µm∗12
(
s2φ− c2φ

) (34)



where sφ = sinφ and cφ = cosφ. If it has been de-
termined that slip reversal occurs, the collision can be prop-
agated using the equations of motion for slip, as given by
Eqs. 26 and 27, by simply substituting φ = φ̂.

5.5. Numerical Issues

Inspection of Eq. 26 reveals a singularity that occurs when
s → 0, that is, when the contact point approaches stick. In-
deed, when s → 0, also v1 → 0 and v2 → 0, such that the
quantities φ, dP1/dp, and dP2/dp become ill-defined. A nu-
merical integrator will therefore be unable to properly reach
the point of stick where s = 0.

To resolve this issue, we use the method by [11] and intro-
duce the ’stretching’ variable τ , which is related to the normal
impulse through:

dτ =
µ√

v21 + v2x
dp =

µ

s
dp ⇒ dp

dτ
=
s

µ
(35)

This blow-up transformation effectively rescales the nor-
mal impulse such that the singularity at s → 0 is shifted to
τ → ∞, allowing for a stable integration. To avoid further
numerical issues that occur with the computation of s from
v1 and v2, we also perform a change of variables from the
Cartesian (v1, v2) to the polar (s, φ) coordinates. The equa-
tions of motion for the contact point velocity thus become:



ds
dτ = s

(
−m∗11c2φ− (m∗12 +m∗21)cφsφ

−m∗12s2φ+
m∗

13

µ cφ− m∗
23

µ sφ
)

dφ
dτ = −m∗21c2φ+m∗12s2φ+ (m∗11 −m∗22)cφsφ

+
m∗

23

µ cφ− m∗
13

µ sφ
dv3
dτ = dv3

dp ·
dp
dτ = s

(
−m∗31cφ−m∗32sφ+

m∗
33

µ

)
(36)

The corresponding impulse equations, using τ as time-
like variable, are found with the chain rule as:

dp1
dτ = dp1

dp ·
dp
dτ = −s cosφ

dp2
dτ = dp2

dp ·
dp
dτ = −s sinφ

dp3
dτ = dp3

dp ·
dp
dτ = s

µ

(37)

While this technique was introduced by [11] in order to
study the behavior of colliding objects near the point of stick,
we find that it is highly efficient at dealing with the singular-
ity at s → 0. As it is impossible to integrate until τ → ∞,
we must select some limiting value at which to terminate the
integration. This is most easily done by selecting some small
ε, such that the onset of stick occurs when s ≤ ε. The choice
of a particular value for ε will affect the computational bur-
den of carrying out the collision, but also the accuracy of the
impulse P that is required to drive the slip velocity to zero. In
practice, we find that a value of ε ∼ 10−10 produces accurate

results at low computational effort, when this methodology is
implemented numerically in C++.

While the use of τ as a time-like variable is highly effec-
tive in increasing the accuracy with which the point of stick is
reached, it can no longer be used once the contact point is in
stick. This is easily understood by inspecting Eq. 35, which
becomes undefined when s = 0, as in that case dp/dτ = 0
and dτ/dp. As such, we must continue integration of the col-
lision with p as time-like variable, once stick has indeed been
achieved. This requires changing back from polar to Carte-
sian coordinates.

Using this model, we can robustly handle collisions be-
tween a lander with an arbitrary shape and the surface of a
small body. While collisions make up the bulk of surface in-
teractions between a lander and a small body, it is also possi-
ble for the lander to be in continuous contact with the surface,
which occurs when the normal contact point velocity is zero.
This regime of motion has not yet been implemented, in other
words, simulations are terminated when the normal contact
velocity drops below some v3,min following a collision. It is
noted that for arbitrary lander shapes, this regime only occurs
for a very brief time at the very end of a deployment sequency,
and therefore does not notably affect the final settling position
and time of a lander.

6. RESULTS

By combining all of the elements described in the previous
sections, we obtain the capability of performing simulations
of lander/rover spacecraft in the small body environment and
account for all its intricacies. This simulation capability has
a wide range of applications, the most important of which is
the verification of a release strategy.

Due to the challenges in spacecraft navigation around
small bodies, as well as variations in any release mechanisms,
the position and velocity of a lander/rover at the moment of
release from its mothership is inherently uncertain. As our
simulation software is capable of generating large numbers of
simulations at moderate computational cost, it is possible to
carry our sets of Monte Carlo simulations in which the release
conditions are randomly distributed in agreement with the ex-
pected uncertainties. Analysis of the resulting deployment
trajectories will then reveal whether the selected strategy (e.g.
nominal release altitude and velocity) results in successful
deployments. Additionally, we can obtain statistics about tra-
jectory characteristics such as the duration of deployment, the
reachable landing zone, and the magnitude of the impulsive
forces acting on the lander; elements that may in turn affect
hardware selection of the lander/rover.

In addition to uncertainties in the release conditions, these
simulations also allow for uncertainties in the surface and lan-
der properties. For example, it is possible to study the effect
of variations in the coefficients of restitution and friction on
the resulting surface spread and deployment time. Addition-



Fig. 5. Sample deployment of a cube-shaped lander to asteroid Itokawa.

Fig. 6. Sample deployment of various lander shapes.



ally, we can study the effect of variations in the applied rock
model. All these variations can be applied to the small body
in both a global sense and a local sense. For example, the co-
efficient of resitution could be assumed to constant across the
entire small body surface, or certain latitudes may be given a
higher coefficient than others. These techniques enable mis-
sion designers to take into account all available information
on a target body when designing a deployment strategy, and
predict the effects of other parameters that are inherently dif-
ficult to estimate on ground without prior observations from
spacecraft. As an illustration, Fig. 5 shows a sample deploy-
ment of a cube-shaped lander to asteroid Itokawa.

A similar but different application is the shape optimiza-
tion of a lander/rover spacecraft with respect to certain mis-
sion goals. This can be done by varying this shape within cer-
tain constraints, such as maintaining a constant total volume,
and investigating the resulting deployment trajectories. As
an example, this allows us to choose a lander shape that will
guarantee the fastest energy dissipation rate, i.e. that guar-
antees the lander comes to rest on the small body surface as
quickly as possible. To illustrate, Fig. 6 illustrates sample de-
ployments of landers with the same total mass and volume,
but different shapes.

Finally, a similar approach can be used to design and ver-
ify control strategies for surface mobility operations where
a rover uses momentum exchange mechanisms to perform
hopping arcs across the small body surface. Once again, we
can design both the hopping strategy and the spacecraft shape
with respect to given mission goals.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have reviewed established methodologies to
perform simulations of the deployment of lander/rover space-
craft, and expanded them with the capability to handle space-
craft with arbitrary shapes and procedurally generate surface
rock distributions. The numerical burden of evaluating high-
resolution gravity, surface, and rock models is reduced to ac-
ceptable levels using a variety of strategies, all of which grant
the user direct control of the error (if any) inherent in these
approaches. Significant attention has been given to the im-
plementation of a robust collision model capable of handling
the non-eccentric impacts between an arbitrary rigid lander
and the small body surface. These simulations allow for the
design and verification of deployment and surface mobility
strategies, as well as the optimization of lander shapes with
regard to given mission goals.

In future work, we plan to carry out such optimization, in
particular with the goal of minimizing the settling time and
surface displacement of lander spacecraft. Additionally, we
hope to carry out analyses for the landers that are planned on
future missions to small bodies, such as the ones listed at the
start of this paper. With regards to further software devel-
opment, we plan to include handling of the aforementioned

contact motion; the brief period of motion at the very end of a
deployment in which the lander dissipates its final velocities
and comes to a full stop on the small body surface.
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