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ABSTRACT

Third-body and gravitational perturbations can be modeled
with sufficient precision for most applications in low-Earth
orbit. However, owing to severe uncertainty sources and
modeling limitations, computational models of satellite aero-
dynamics and solar radiation pressure are bound to be bi-
ased. Aiming at orbital propagation consistent with observed
satellite orbital dynamics, real-time estimation of these per-
turbations is desired. The particle evolution is carried out
by means of an underlying orbital propagator, and the Bayes
rule is used to recursively update weights by comparing
propagated orbital elements with satellite observations. The
proposed formulation uses mean orbital elements as the only
available measurements. This feature makes the algorithm a
potentially-valuable resource for space situational awareness
applications, such as space debris trajectories prediction from
two-line elements, or for on-board force estimation from GPS
data. High-fidelity simulations show that non-gravitational
perturbations can be estimated with 20% accuracy.

Index Terms— Bayesian inference, particle filter, force
estimation, drag, SRP

1. INTRODUCTION

To date, satellite drag and solar radiation pressure (SRP) es-
timation is mostly carried out by means of high-sensitivity
accelerometers [1]. Nonetheless, force estimators using satel-
lite observations only were also proposed. The method of
dynamic model compensation (DMC) is arguably the most
popular example of this class [2]: first, an underlying para-
metric model of the unknown perturbation is adopted; then,
the parameters of the model are assumed to be first-order
Gauss-Markov processes, and are appended to the state vec-
tor of a recursive estimator (most often an extended Kalman
filter). Provided with sufficiently dense and accurate satellite
observations, i.e., standard deviations of 5 m for the position
and 1 mm/s for the velocity, DMC was successfully applied
to the estimation of the atmospheric force [3]. However, no
other process noise except the atmospheric force itself was
considered in [3], so this result is arguably not representative
of a real-life scenario. In [4], forces of the order of 10−3 N/kg
were accurately estimated by means of DMC. Dense mea-

surements and analogous noise to [3] were considered. Sim-
ilar accuracy was obtained when differentiation of global po-
sitioning system (GPS) data was implemented [5]. However,
this accuracy is far from being sufficient to estimate drag or
SRP which, in general, are 3 or more orders of magnitude
smaller.

Batch estimators were used for ground-based estimation
using observations [6]. In this case, measurement noise could
be largely relaxed, e.g., two-line elements (TLE) were used in
[7], but they were not suitable for recursive implementation.
An alternative approach based on optimal control policies was
recently developed in [8]. This technique was able to account
for both atmospheric drag and SRP, and could be naturally
extended to complex models of the force, but it is also unsuit-
able for recursive estimation.

In the broader context of Bayesian estimation of dy-
namical systems, sequential Monte Carlo (SMC) algorithms,
which include particle filters, are valuable tools for optimally
approximating the posterior distribution of hidden Markov
processes [9, 10]. Compared to Kalman filtering techniques,
particle filters do not require any assumption on neither the
linearity of the system nor the nature of the noise. Such
generality is obtained at the price of a greater computational
burden. Particle filters were used in several problems in astro-
dynamics, e.g., space object tracking [11], orbit determination
[12, 13], and relative state estimation [14, 15]. However, to
the best of our knowledge, there has not been an attempt of
non-gravitational force estimation using particle filters, which
is available in the literature.

In this paper, we develop an SMC algorithm for the recur-
sive inference of non-gravitational perturbations from satel-
lite observations with no supporting in-situ acceleration mea-
surements. Our approach is conceptually similar to DMC,
but in addition to the aforementioned advantages and draw-
backs of SMC, we show that the proposed algorithm pro-
vides good estimates of the non-gravitational perturbations
even when fairly inaccurate measurements and a modest un-
derlying propagator are used.

The filter developed herein works by updating the em-
pirical distribution of a finite number of weighted particles.
Each particle consists of one set of orbital elements and some
parameters, e.g., drag and reflectivity coefficients, used to
evaluate a prescribed parametric model for non-gravitational



forces. Particles are updated by means of an underlying or-
bital propagator, and are assigned weights based on the er-
ror between propagated orbital elements and satellite obser-
vations. Secular effects of the non-gravitational perturbations
allow ‘good’ particles to emerge when weights are recursively
updated.

Mean orbital elements are exploited as the only measure-
ments. They can be obtained either by converting GPS states
using a contact transformation or by using TLE. The first
option is pursued in this paper. Such a transformation is un-
doubtedly a noise source, so that one may argue that direct
GPS measurements should be used instead. Nonetheless, av-
eraged elements have two compelling features: first, their dy-
namics exhibit robustness for mis-modeling of high-degree
gravitational harmonics; second, they pave the way to the
exploitation of computationally-efficient analytical and semi-
analytical techniques, e.g., SGP4, to propagate particles.

The paper is organized as follows. Section 2 discusses
the mathematical background on SMC and outlines the algo-
rithm of the filter. Section 3 details the different ingredients
of the problem of non-gravitational force estimation. Insight
and caveats on the choice of the parameters of the filter are
discussed as well. Finally, numerical simulations in a high-
fidelity environment are carried out in Section 4.

2. SEQUENTIAL MONTE CARLO FOR
PARAMETER AND STATE ESTIMATION

LetP ∈ IP and {Xτ ∈ IX , τ ∈ N+} be an IP -valued vec-
tor of uncertain parameters and an IX -valued discrete-time
(m+1)-th order Markov process indexed by non-negative in-
tegers, namely τ ∈ N+, and provided with transitional prior
distribution

Xτ+1 | (xτ ,xτ−1, . . . ,xτ−m,p) ∼
f (xτ+1 | xτ , . . . ,xτ−m,p) ∀ t ≥ m

(1)

respectively; here, f (xτ+1 | xτ , . . . ,xτ−m,p) denotes the
probability density function (PDF) defining how the process
evolves given outcomes of the parameters’ vector and the
past m + 1 realizations of the state, i.e., P = p, Xτ−j =
xτ−j ∀ j = 0, . . . ,m. Some IY -valued observations,
{Yτ ∈ IY , τ ∈ N+}, conditionally independent in time, are
available,

Y τ | (xτ , . . . ,x0,p) ∼ g (yτ | xτ ,p) ∀ t ≥ 0 (2)

The PDF g (yτ | xτ ,p) is referred to as marginal likelihood
distribution. Equations (1) and (2) define a hidden Markov
model (HMM).

The filtering problem consists of estimating the marginal
posterior distribution of the process, which is the joint PDF of
P andXτ conditional to the observations Y 0, . . . ,Y τ [10]:

pdf(xτ ,p | y0, . . . ,yτ ) ∝
g(yτ | xτ ,p) pdf(xτ ,p | y0, . . . ,yτ−1)

(3)

The analogy with Kalman filtering is estabilished by con-
sidering f and g as non-linear and non-Gaussian generaliza-
tions of the predictor and innovation equations, respectively,
and the marginal of the posterior distribution as the updated
state and covariance estimates.

A closed-form solution of Eq. (3) is not generally avail-
able. Particle filters approximate the posterior by means
of SMC sampling of Eq. (3). If direct sampling from
pdf(xτ ,p|y0, . . . ,yτ−1) is not possible or inconvenient, a
proposal distribution, q

(
xτ+1,p|yτ+1,xτ , . . . ,xτ−m

)
, is

used, yielding the importance sampling approach. In theory,
any PDF can be used as importance distribution, provided
that its support covers IX and IP . However, the adequate
choice of the proposal distribution is crucial for achieving
good performance of the filter and avoiding degeneracy [16].

Several SMC formulations exist [9, 10], but most of
them do not consider parameter estimation. Our algorithm
is mainly inspired by the work of Liu et al. [17], which
combined state and parameter estimation by means of ar-
tificial evolution and kernel smoothing of parameters. The
filter works by propagating a set of n particles from τ to
τ + 1. Each particle consists of the last m+ 1 states, a set of
parameters, and a weight:

j-th particle :=
{
x(j)
τ , . . . ,x

(j)
τ−m; p(j)

τ ; w(j)
τ

}
j = 1, . . . , n

(4)

Weights are nonnegative and satisfy
∑1
j=0 w

(j)
τ = 1. The

notation p(j)
τ indicates the outcome of P for the j-th particle

at time τ .
A Monte Carlo approximation of the posterior at time t is

given by the empirical measure

pdf(xτ ,p | y0, . . . ,yτ ) ≈
n∑
j=1

w(j)
τ δ

(
xτ − x(j)

τ

)
δ
(
p− p(j)

τ

) (5)

where δ (·) is the multi-dimensional Dirac delta function. We
note that this measure is referred to as a PDF with an abuse
of notation, since the Dirac delta function is not absolutely
continuous with respect to the Lebesgue measure.

Figure 1 depicts the procedure for the recursive update of
the particles, which consists of three steps:

Prediction prediction of the states is provided by their ex-
pected value at time τ + 1:

x̃
(j)
τ+1 =

∫
IX
x q
(
x,p(j)

τ |yτ+1,x
(j)
τ , . . . ,x

(j)
τ−m

)
dx

j = 1, . . . , n

(6)

Artificial evolution of the parameters using kernel smooth-
ing consists of using a Gaussian mixture model (GMM) to



Fig. 1. Overview of the algorithm. At every time step, this
loop is repeated for the n particles.

update p(j)
τ [17]. Prior update is given by the location of

GMM’s kernels,

p̃
(j)
τ+1 = γ p(j)

τ +
1− γ
n

n∑
i=1

p(i)
τ , j = 1, . . . , n (7)

where γ ∈ [0, 1) is a discount factor for the dispersion of
the variance of the parameters. Section 3.2 provides with
further insight into this parameter.

The weights of the mixture’s kernels are computed with the
outcomes of Eqs. (6) and (7):

w̃
(j)
τ+1 ∝ w(j)

τ α
(
yτ+1, x̃

(j)
τ+1,x

(j)
τ , . . . ,x

(j)
τ−m, p̃

(j)
τ+1

)
(8)

Here, the function α is defined as

α
(
yτ+1,xτ+1,xτ , . . . ,xτ−m,p

)
=

f (xτ+1 | xτ , . . . ,xτ−m,p) g
(
yτ+1 | xτ+1,p

)
q
(
xτ+1,p|yτ+1,xτ , . . . ,xτ−m

) (9)

Re-sampling when multiple recursive updates are performed,
weights might become unevenly distributed, with most of
them approaching zero. When this happens, only one to
very few particles efficiently contribute to the measure
of Eq. (5), whose variance degenerates, and the posterior

distribution is not adequately approximated, whereas the
memory to store a particle and the computations involved
in its update are independent of the specific value of the
weight. In other words, a huge effort is devoted to propa-
gating particles with vanishing weights, whose contribution
to Eq. (5) is negligible. This issue is referred to as degener-
acy.

To prevent degeneracy from occurring, a new set of uni-
formly weighted particles is re-sampled from Eq. (5). This
is achieved by sampling n integer coefficients, k(j) j =
1, . . . , n, with values in In = {1, 2, . . . , n} and corre-
sponding probabilities

{
w̃

(1)
τ+1, w̃

(2)
τ+1, . . . , w̃

(2)
τ+1

}
:

k(j) ∼ mnpdf
(
k|In, w(1)

τ+1, . . . , w
(n)
t+1

)
j = 1, . . . , n

(10)

Here, mnpdf
(
·|In, w(1)

τ+1, . . . , w
(n)
τ+1

)
denotes the In-

valued multinomial distribution. After re-sampling, pre-
dicted weights are reset to w̃(j)

τ+1 = n−1, j = 1, . . . , n.

Several existing algorithms perform re-sampling at each
time step. Because secular effects of non-gravitational
forces need long observation windows to become apprecia-
ble, recursive updates are needed to identify good particles,
i.e., good particles have to collect multiple ’good marks’
before they can be distinguished from bad ones. For this
reason, we discourage systematic re-sampling in this prob-
lem. Hence, we re-sample only if both of the following
conditions are satisfied:

1. at least r time steps elapsed since the last re-sampling;

2. the degeneracy indicator,
[∑n

j=1

(
w̃

(j)
τ+1

)2
]−1

, is be-

low a prescribed threshold. We note that the indicator
is in the range [1, n] and it equals the two corner cases
1 and n either if all weights but one are equal to zero,
or if particles are uniformly weighted, respectively.

If re-sampling does not occur, weights w̃(j)
τ+1 are not modi-

fied and k(j) = j ∀j ∈ [1, n].

Update all kernels of the GMM used for artificial evolution
share the same variance,

V τ =
1− γ2

n− 1

n∑
j=1

(
p(j)
τ − p̄τ

)(
p(j)
τ − p̄τ

)T
(11)

where p̄τ =
1

n

∑n
i=1 p

(i)
τ . The coefficient

(
1− γ2

)
is

introduced so that the unweighted mixture preserves both
mean and variance of the sample

[
p

(1)
τ ,p

(2)
τ , . . . ,p

(n)
τ

]
.



Hence, states and parameters are updated by sampling from
the GMM and importance distribution, respectively,

p
(j)
τ+1 ∼ N

(
pτ+1|p̃

(k(j))
τ+1 ,V t

)
(12)

x
(j)
τ+1 ∼ q

(
xτ+1|yτ+1,x

(k(j))
τ , . . . ,p

(j)
τ+1

)
(13)

w
(j)
τ+1 ∝ w̃

(j)
τ+1

α

(
yτ+1,x

(j)
τ+1,x

(k(j))
τ , . . . ,p

(j)
τ+1

)
α

(
yτ+1, x̃

(k(j))
τ+1 , . . . , p̃

(k(j))
τ+1

) (14)

for j = 1, . . . , n.

3. NON-GRAVITATIONAL FORCE ESTIMATION

After detailing the general algorithm in Section 2, we now
apply it to non-gravitational force estimation: first, the vari-
ous constituents of the filter are defined; second, the transi-
tional, marginal likelihood, and proposal PDF are inferred by
means of maximum likelihood estimation; finally, an insight
into the choice of the filter parameters is provided. All forces
are taken to be per mass unit in what follows.

Let ∆t and torb be the (dimensional) time step of the filter
and the orbital period, respectively. Denote by Eτ ≡ E(τ∆t)
the 6-dimensional set of orbital elements at time τ∆t. Its
averaged counterpart, Eτ , is defined as

Eτ =
1

torb

torb/2∫
−torb/2

E (τ∆t+ t) dt (15)

Noisy observations of the averaged orbital elements are
available. Although advanced models for the measurement
noise can be exploited, additive noise, Ξτ , is used in this work
because it facilitates the inference of the PDF g. Thus, the
measurement equation reads

Y τ = Eτ + Ξτ (16)

where the noise is such that Ξτ |Eτ ∼ gE
(
ξτ | Eτ

)
and

gE
(
ξτ | Eτ

)
≡ g

(
Eτ + ξτ | xτ

)
. Typical means to gather

measurements of averaged elements include either convert-
ing GPS data with a contact transformation or using TLE,
which are available for most low-Earth orbit (LEO) objects.
The former option is pursued in this paper, and a first-order
Brouwer-Lyddane model is used [18]. Although the con-
tact transformation is a noise source, exploiting averaged
elements enhances the robustness for mis-modeling of high-
degree gravitational harmonics. In addition, analytical and
semi-analytical techniques can be naturally integrated into
the algorithm to propagate particles.

Averaged elements constitute part of the state variables.
In addition, the desired non-gravitational force, f (ng), is also

included, so that

Xτ =

{
Eτ
f (ng)
τ

}
(17)

Let Ė (E,f) be the right-hand terms of the Gauss variational
equations (GVE) for a prescribed set of osculating elements,
E , and a perturbing force, f(E, t). In this work, we use
equinoctial elements, whose definition and corresponding
GVE are given in Appendix A. Averaging the GVE and in-
tegrating from time τ∆t to (τ + 1)∆t yields the averaged
increment from Eτ to Eτ+1,

∆Eτ =

(τ+1)∆t∫
τ∆t

 1

torb

t+torb/2∫
t−torb/2

Ė (E(s),f(E, s)) ds

 dt

(18)
Because the GVE are linear in the perturbing force, the prop-
agation of averaged elements can be recast as

Eτ+1 = Eτ + ∆E(g)

τ + ∆E(ng)

τ + ∆E(noise)

τ (19)

where ∆E(g)

τ , ∆E(ng)

τ denote the contributions to ∆Eτ due
to gravitational and non-gravitational perturbations, respec-
tively; ∆E(noise)

τ includes effects of all remaining non-
modeled forces, e.g., truncated gravitational harmonics, tides,
and relativistic effects. The aforementioned underlying prop-
agator defines which perturbations are included in ∆E(g)

τ

and it approximates
(

∆E(g)

τ + ∆E(ng)

τ

)
. For the sake of

conciseness, integration errors are not eplicitly mentioned in
Eq. (19), but they are automatically accounted for while es-
timating the HMM according to Section 3.1. The remaining
perturbation ∆E(noise)

τ is modeled as an IE -valued stochastic
process distributed according to

∆E(noise)

τ |
(
Eτ , . . . ,Eτ−m

)
∼ fE

(
ξτ |Eτ , . . . ,Eτ−m

)
(20)

Parametric models of the aerodynamic and SRP perturba-
tions are used to propagate f (ng)

τ :

f
(ng)
τ+1 = ΛT

τ

{
f (drag)

(
Eτ + ∆Eτ ,pτ , (τ + 1)∆t

)
f (srp)

(
Eτ + ∆Eτ ,pτ , (τ + 1)∆t

) }
(21)

Λτ |
(
f (ng)
τ , . . . ,f

(ng)
τ−m,p

)
∼ fΛ

(
λτ |f (ng)

τ , . . . ,f
(ng)
τ−m,p

)
(22)

Here,
{
Λτ ∈ (R+)

2
, τ ∈ N+

}
is an (R+)

2-valued multi-
plicative noise modeling aleatory uncertainties, e.g., due to
solar and geomagnetic activity or attitude of a tumbling de-



bris. In this work, f (drag) and f (srp) read

f (drag)
(
E,p, t

)
= −1

2
ρ
(
E,p

)
Cb (p, t) vtasvtas (23)

f (srp)
(
E,p, t

)
= −P� Cr(p)

Ssrp(t)

m

r�
r3
�
δeclipse (24)

where vtas(E), r(E), m, Ssrp, P�(t) = 4.56 · 10−6 N/m2,
r�(t), δeclipse, and req are the satellite’s velocity with respect
to the atmosphere, its position, mass, and cross-sectional area
with respect to the Sun direction, the radiation pressure, the
Sun position vector in astronomical units, a switch function
which equals 1 if the satellite is in sunlight and 0 otherwise,
and the mean equatorial radius, respectively; atmospheric
density, ρ, ballistic coefficient, Cb, and reflectivity coeffi-
cient, Cr, are prescribed parametric models, e.g., exponential
atmosphere or harmonic expansion as illustrated in the case
study detailed in Section 4.2; temporal variations of Cb and
Ssrp are due to available information on attitude dynamics.
Indeed, more advanced models can be used but the specific
underlying propagator may limit their choice. This is fur-
ther discussed in Section 4, where the performance of two
propagators is compared.

Finally, the process noise due to ∆Eτ and Λτ can reason-
ably be assumed as statistically independent, yielding

f (xτ+1 (ξτ ,λτ ) | xτ , . . . ,xτ−m,p) ≡

fE
(
ξτ | Eτ , . . . ,Eτ−m

)
fΛ

(
λτ |f (ng)

τ , . . . ,f
(ng)
τ−m,p

)
(25)

where xτ+1 (ξτ ,λτ ) denotes the outcome ofXτ+1 given the
realizations ξτ and λτ of the processes defined in Eqs. (20)
and (22), respectively.

3.1. Inference of the HMM via maximum likelihood esti-
mation

Targeting practical implementation of the filter, a model of
the importance distrubution, q, and of the various PDF of
the HMM, namely gE , fE , and fΛ, is required. This can be
achieved by means of maximum likelihood estimation, which
involves selecting an adequate ‘labeled’ PDF, e.g., multivari-
ate Gaussian or mixture model, followed by inferring suitable
values to its parameters from available data.

Consider a set of n samples s1, . . . , sn of a random vari-
able S and a PDF pS(s;ϑ), where ϑ is the set of parameters
defining the distribution, e.g., the mean and variance for a
Gaussian distribution. According to the maximum likelihood
method, these parameters are chosen such that they are con-
sistent, e.g., positive definite covariance, and maximize the
log-likelihood function

L(ϑ) =

n∑
j=1

log (pS(sj |ϑ)) (26)

In this work, we use GMMs as labeled distributions.
Hence, ϑ consist of the weights, means and variances of
the kernels. GMMs provide flexibility in the representation
of both marginal distributions and correlations. In addition,
samples can be easily drawn from GMMs and their evaluation
is straightforward.

The uncertainty characterization proposed in [19] is used
to generate samples of the ‘true’ averaged elements. For this
purpose, the outer and inner integrals of Eq. (18) are accu-
rately evaluated by means of the Dormand-Prince method
based on a 7-th order Runge-Kutta method followed by high-
order Gauss quadrature, respectively.

3.2. Considerations for the choice of the filter parameters

A satisfactory trade-off between accurate and rapid conver-
gence is achieved by carefully setting up the parameters of
the filter. The first parameter to consider is the number of
particles, n. Increasing n nearly-linearly increases the overall
computational burden. However, there must be enough parti-
cles to adequately represent the posterior distribution and to
delay degeneracy. This is particularly true during the early
phase of the estimation, when uncertainty in the parameters p
is still very large. Adaptive choice of n is encouraged. This
can be achieved during the re-sampling step.

Because of the aforementioned secular effects of non-
gravitational perturbations, and because measurement are
statistically independent of time, increasing the filter’s time
step, ∆t, and re-sampling rate, r, enhances signal-to-noise
ratio and, as such, improves the convergence of the estima-
tion. Augmenting r is preferred when high-fidelity models
of the non-gravitational force are used, because large time
steps would reduce sensitivity to short-period variations.
Nonetheless, degeneracy may occur for large r. Based on
our experience, the product r ∆t should be of the order of
one-to-few orbital periods.

Neglected gravitational harmonics are the major source of
process noise for averaged orbital elements. The order of the
HMM, (m + 1), is a crucial parameter for mitigating their
impact. Specifically, Earth’s rotation causes relevant correla-
tions in the time series of the noise after about one day. For
example, Figure 2 depicts the autocorrelation of the process
noise of the averaged orbital elements for the case study de-
tailed in Section 4. Ideally, the order of the HMM should be
large enough to cover this interval, but this may dramaticaly
increase the required memory to store particles and augument
the complexity of the importance and marginal prior distribu-
tion. Figure 2 also shows that all autocorrelations are close
to one when the time step is below 10 minutes, so that we
suggest using m = 1 if the filter’s time step is of this or-
der of magnitude. In this case, using m = 0 would result in
extremely severe process noise, while larger m would be an
unnecessary waste of computational resources.

Finally, the parameter γ regulates the memory of the par-



Table 1. Influence of the filter’s parameters on the quality of the estimation.

Parameter Benefits when increased Drawbacks when increased
n Enhanced representation of the posterior Computational cost increases

Convergence when p has large variance
∆t Improved signal-to-noise ratio Low sensitivity to short-period variations
r Improved signal-to-noise ratio Degeneracy might occur
m Reduced sensitivity to process noise Increased memory to store particles

Enhanced convergence Increased complexity PDFs
γ Enhanced identification of good particles Diversity particles after multiple updates

Fig. 2. Autocorrelation of the process noise of averaged ele-
ments using the analytical propagator. Here, a, P1, P2, Q1,
Q2, and L denote the equinoctial elements defined in Ap-
pendix A.

ticles: according to Eqs. (7) and (11), the parameters p are
nearly unchanged after being updated if γ ' 1; on the con-
trary, they lose most memory of their previous value if γ ' 0.
According to [17], values between 0.96 and 0.99 are rea-
sonable for this parameter. We sustain this recommendation
herein, owing to the need for multiple updates to identify
‘good’ particles.

Table 1 summarizes all these caveats.

4. NUMERICAL SIMULATIONS

Numerical simulations are carried out to assess the perfor-
mance of the filter in a realistic scenario. The simulated en-
vironment includes gravitational harmonics up to order and
degree 10, third-body perturbations of Sun and Moon, aero-
dynamic force, and SRP. The Sentman model is used to com-
pute the aerodynamic force as a function of the geometric and
ballistic properties of the satellite as described in [20]. Vari-
able accommodation of the energy and thermal flow are as-
sumed and the NRLMSISE-00 atmospheric model is used. A
parallelepiped-shaped satellite is considered, and attitude is
such that one geometrical axis points toward the orbital angu-
lar momentum vector whereas the pitch angle, which is de-
fined as the angle between the orbital velocity and the normal
to the smallest face of the parallelepiped, is imposed. Histor-

ical data of the solar activity are exploited to model the space
weather.

Most of these perturbations are neglected by the underly-
ing orbital propagator of the filter and are part of the process
noise. Two different implementations of the filter’s propaga-
tor are considered herein:

Analytical this propagator is based on the analytical model
proposed in [21], which assumes an oblate planet and uni-
form atmosphere, i.e., vertical rarefaction, day-night bulge
and all other temporal and spatial variations of the atmo-
spheric density are neglected. The low computational cost
comes to the price of restrictions on the non-gravitational
force model, which needs to be consistent with the afore-
mentioned assumptions. Specifically, SRP is neglected, and
only the averaged drag can be estimated. The ballistic coef-
ficient is computed as

Cb(t) =
Cd
m

(Sd(t) + Sd,0) (27)

where Sd andm are the cross sectional area and the mass of
the satellite, respectively. The vector of parameters is p =
[Cd, Sd,0]

T , where Cd is the drag coefficient, and Sd,0 is a
constant area aimed at approximating the effects of thermal
flow, which are such that long-shaped satellites flying as an
arrow experience larger drag than compact-shaped satellites
for a given cross sectional area to mass ratio.

Numerical this propagator lies on the other side of the spec-
trum and consists of brute force integration of Eq. (6),
which enables extreme flexibility. Hence, 20-th order
Gauss quadrature and trapezoidal rule are used to compute
the inner and outer integrals, respectively. The term ∆E(g)

τ

includes gravitational harmonics up to order and degree 4
and third-body perturbations of Sun and Moon. Both SRP
and instantaneous atmospheric force are estimated. For this
purpose, the atmospheric density is expanded in Fourier
series to account for near-periodic variations due to orbital
eccentricity, atmospheric bulge, and Earth’s oblateness:

ρ = ρ0

1 +

nexp∑
j=1

(cj cos(j L) + sj sin(j L))

 (28)



Table 2. Parameters of the simulations. The acronyms (AP)
and (NP) are used when different values of the parameters are
used for the filter using the analytical and numerical propaga-
tor, respectively.

Value
Initial orbital elements

Semi-major axis 6828.137 km
Eccentricity 10−3

Inclination 98 deg
Argument of perigee 120 deg
Right ascension of the ascending node 30 deg
True anomaly 15 deg
Epoch 1/4/2012

Ballistic properties
Mass 3 kg
Size 0.3 m× 0.1 m× 0.1 m

Pitch 0.35π
t

torb
Filter parameters

Number of particles, n ∈ [100, 3000]
Filter’s time step, ∆t 60 min (AP)

3 min (NP)

Re-sampling rate, r ceil
(
torb

∆t

)
HMM order, m 3 (AP)

1 (NP)
Discount factor, γ 0.99
Number of kernels of the GMM 5

where cj , sj , nexp, and L denote the coefficients and or-
der of the expansion, and the true longitude defined in Ap-
pendix A, respectively. The vector of parameters is thus
p =

[
Cd, Sd,0, c1, s1, . . . , cnexp

, snexp
, Cr

]T
.

Appending ρ0 to p is useless because ρ0 is systematically
multiplied by Cd. Choosing an arbitrary ρ0 in the filter may
shift the values of Cd, but it does not affect the error in the
atmospheric force. For long-term scenarios, an exponential
term has to be introduced in Eq. (28) to account for the verti-
cal rarefaction due to orbital decay.

The simulation setup is detailed in Table 2. The number of
samples is adapted during the re-sampling step. Specifically,
n is reduced by 1% whenever at least 100 distinct coefficients
k(j) are extracted from the multinomial distribution. On the
contrary, n is increased by 5% when this condition is not sat-
isfied. When the numerical propagator is used, the expansion
of the Fourier series of the atmospheric density is truncated at
the second term, i.e., nexp = 2.

Measurement noise is mainly due to the first-order Brouwer-
Lyddane contact transformation [18]. In addition, GPS noise
is modeled as non-correlated white noise with standard devi-
ation equal to 5 m and 2 cm/s for the position and velocity
components, respectively. This modeling of the GPS noise is
not realistic and colored noise should be considered instead.
Nonetheless, the contribution of GPS noise is negligible com-
pared to the noise introduced by the contact transformation.
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Fig. 3. Filter based on the analytical propagator. Convergence
of the parameters, P , and error in the averaged aerodynamic
force. Shades of grey in the bottom figure denote the confi-
dence level.

4.1. Filter with analytical propagator

Figure 3 depicts the convergence of the parameters and the
error in the averaged drag when the filter based on the analyt-
ical propagator is used. Very broad and biased initial PDFs
of the parameters are deliberately exploited to emphasize the
robustness of the algorithm. Specifically, we used

p0 ∼ U

([
0.8C

(true)
d

0.1S
(true)
d,0

]
,

[
1.6C

(true)
d

1.7S
(true)
d,0

])
(29)

where C(true)
d ' 2.3 and S(true)

d,0 ' 13 cm2 are the true av-
eraged values of the parameters Cd and Sd,0, and U(a, b) de-
notes the multivariate uniform distribution with lower and up-
per bounds a and b, respectively. Dotted curves denote the en-
velope of the particles, while shaded regions outline 99% con-
fidence bounds deduced by the empirical measure of Eq. (5).
After re-sampling, the envelope is narrowed down to gather
particles close to the high-confidence region.

The median of the relative residual bias of Sd,0 is signifi-
cantly greater than the one of Cd, because its contribution to
the ballistic coefficient is less important compared to Cd.

Regardless the aforementioned broad initial PDF of the
parameters and the low frequency rate of the measurements,
i.e., ∆t = 1 hour, the estimation of the averaged aerodynamic
force converges below 20% error in about three days. We
believe that this is a significant result given the modest data
used by the filter.

The error is unsteady because of solar activity, which is
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Fig. 4. Filter based on the analytical propagator. Dotted and
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erage, respectively. The solid line and the shaded region are
the median and 99% confidence bounds of the estimation of
Λτ,1, respectively.

a stochastic process in nature. For this reason, its impact
on the uncertainty in the aerodynamic force cannot be mit-
igated without using other data than satellite state observa-
tions. Figure 4 shows the evolution of the averaged drag,
which variates up to 50% during the simulation. The trend
is captured within the 99% confidence bounds of the estima-
tion, but these bounds remain relatively large in time. En-
hanced performance can be achieved by providing informa-
tion on some space weather proxies to the filter and by corre-
lating them with Λ.

The current scenario uses the least computationally de-
manding filter among the proposed ones, so that we wish to
briefly comment on the possibility to implement the algorithm
on-board. Because the filter’s time step can be rather large,
the computational time to accomplish one iteration is not crit-
ical even for low-end micro-controllers. Available memory is
the main issue. On top of the memory required to store and
evaluate the PDFs of the model and to perform basic algebraic
operations, two sets of particles need to be held in memory.
Recalling that one particle is defined according to Eq. (4) and
assuming double-precision variables, the memory required to
store two particle sets is

2 n [m dim(X) + dim(P ) + 1] 8 B (30)

where 8 B is the size of one double-precision variable. This
number can be reduced by noting that m − 1 past states
are shared by the two sets, but we consider the conserva-
tive value of Eq. (30) in the context of this gross estimation.
Figure 5 illustrates the number of samples used during the
simulation. Once the estimation is sufficiently converged,
the filter uses less that 500 samples in average, which corre-
spond to 192 kB according to Eq. (30). With these caveats in
mind, the algorithm should be reasonably implementable on
micro-controllers with 512kB memory.

time [day]

n
u
m
b
er

of
p
a
rt
ic
le
s
[
]

0 7.5 15 22.5 30
0

1000

2000

3000

4000
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4.2. Filter with numerical propagator

The filter of this case study uses numerical integration to
propagate particles, which enables the possibility to compute
both the instantaneous aerodynamic and SRP forces. Uni-
form uncertainty of ±20% on all coefficients of the series
expansion of Eq. (28) is used at the initial step, whereas the
same distribution of Eq. (29) is used for Cd and Sd,0.

Convergence of the error in the aerodynamic force is il-
lustrated in Figure 6. Similarly to the previous case study,
the error is confined to ±20% after about 5 days. However,
this result outperforms the previous one, because the instanta-
neous force is now estimated, which exhibits variations of one
order of magnitude due to orbital eccentricity, day-night at-
mospheric variations, and Earth’s oblateness. Figure 7 shows
that these variations are adequately captured by the filter.

Finally, the convergence of the reflectivity coefficient is
depicted in Figure 8. Compared to the aerodynamic force, the
estimation of this parameter is less striking because of the low
altitude, so that the SRP has minor impact on the evolution
of the averaged elements and, consequently, on the particles



time [day]

∣ ∣ ∣

∣ ∣ ∣
f
(a
e
r
o
)∣ ∣ ∣

∣ ∣ ∣
[µ
N

k
g−

1
]

3 3.1 3.2 3.3 3.4
0

0.5

1

1.5

2

0

50

100

Fig. 7. Filter based on the numerical propagator. True and
estimated aerodynamic force. The white-dashed line repre-
sents the norm of the true aerodynamic force. Shades of grey
denote the confidence level of the estimation.

C
r
[
]

time [day]
0 2.5 5 7.5 10

−0.2

0.5

1.2

1.9

2.6
99% confidence bounds
Median
Extreme particles
True value

Fig. 8. Filter based on the numerical propagator. True and
estimated reflectivity coefficient.

weights. Nonetheless, the reflectivity coefficient is estimated
with less then a 20% precision, which is not completely de-
spicable considering that the algorithm ignores the physical
bounds of Cr.

5. CONCLUSIONS

The filter proposed herein does not require in-situ accelerom-
eters. Sequential measurements of mean orbital elements are
processed instead. Secular effects of non-gravitational pertur-
bations allow good particles to be identified after a sufficient
training period even when coarse and arguably sporadic mea-
surements are used.

High-fidelity numerical simulations show that both the
aerodynamic force and the SRP can be estimated within 20%
error using a first-order contact transformation and no infor-
mation on the actual solar activity. This result is strongly de-
pendent on the specific underlying orbital propagator, which
has to be chosen according to the available computational re-
sources. However, the methodology is presented in a general
framework, which can be straightforwardly adapted to any de-

sired propagator ranging from numerical brute-force integra-
tion to semi-analytical or analytical techniques.

A. GVE FOR EQUINOCTIAL ELEMENTS

Let a, e, i, ω, Ω, f , be the classical orbital elements, namely
the semi-major axis, the eccentricity, the orbital inclination,
the argument of perigee, the right ascension of the ascending
node and the true anomaly, respectively. Equinoctial elements
are defined as [22]

E = (a, P1, P2, Q1, Q2, L)
T

where L = ω + Ω + f is referred to as true longitude, and

P1 = e sin (ω + Ω) P2 = e cos (ω + Ω)

Q1 = tan
i

2
sin Ω Q2 = tan

i

2
cos Ω

The GVE for the equinoctial elements are [22]

ȧ =
2a2

h

[
(P2 sinL− P1 cosL) fp,r +

p

r
fp,t

]
Ṗ1 =

r

h

[
−p
r

cosLfp,r +
(
P1 +

(
1 +

p

r

)
sinL

)
fp,t

− P2 (Q1 cosL−Q2 sinL) fp,h

]
Ṗ2 =

r

h

[p
r

sinLfp,r +
(
P2 +

(
1 +

p

r

)
cosL

)
fp,t

+ P1 (Q1 cosL−Q2 sinL) fp,h

]
Q̇1 =

r

2h

(
1 +Q2

1 +Q2
2

)
sinL fp,h

Q̇2 =
r

2h

(
1 +Q2

1 +Q2
2

)
cosL fp,h

L̇ =
h

r2
− r

h
(Q1 cosL−Q2 sinL) fp,h

where p, r, h, fp,r, fp,t, and fp,h are the semi-latus rectum,
the magnitude of the position vector and angular momentum,
and the components of the specific perturbing force in the
local-vertical-local-horizontal frame, respectively.
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