## 6<sup>th</sup> ICATT New Tool for Finding Periodic Halo Orbits: the Solver of a Spacecraft Simulator

(ESPSS - Ecosimpro® European Space Propulsion System Simulation)

Darmstadt, 14<sup>th</sup> to 17<sup>th</sup> March 2016



#### **Christophe R. Koppel**

KopooS Consulting Ind., 75008 Paris, France



## Summary

- **Introduction**
- **L** The differential system
- **Solution for periodic orbits**
- **Application to Halo orbits**
- 📥 Conclusions



## Introduction

The existing ESA developed tool EcosimPro® is a solver of differential algebraic equations

- But it can be used as well for solving some problem which are generally solved "only" with some US tools
- For engineers, it is sometime needed to assess some orbits
  - But the cost of a sub-contract to do this assessment can be simply out of the scope of normal engineering work
  - In addition time is needed by sub-contractors, and their answers may not be in line with the need (Very low cost)

Hence, its has been found appropriate to check if a simple EcosimPro model could be used for solving efficiently the question of periodic orbits

- ✤ Because Engineers use preferably EcosimPro, its is not out of the scope of their knowledge
- But the most difficult part is to get the right equations
- Unfortunately, this requires some efforts in order to clear the uncertainties in the set of equations
- In addition high accuracy needed for the numerical resolution can be considered as a showstopper
- The problem will be presneted in simple word
- And the presentation will show the successful Halo orbit solutions



## **The differential system**

### Acceleration in the rotating frame with μ=M<sub>earth</sub>/M<sub>total</sub>



$$\ddot{\vec{r}} + \vec{\omega} \times \left(\vec{\omega} \times \vec{r}\right) + 2\vec{\omega} \times \dot{\vec{r}} = -\frac{(1-\mu)}{r^3}\vec{r_1} - \frac{\mu}{r^3}\vec{r_2}$$

 Jead to write the system <sup>2</sup>
 straightforward when the nondimensional rotation rate ω = 1

 $\dot{X} = f(X)$ 





## **Solution for Periodic Orbits**

g(Y) = 0

#### Principles

- Without deep analysis, simple periodic orbits cannot be unsymmetrical
  - In the plane XZ for example →After half orbit some state variable are the same
- + Problem reformulated (  $x_0$  fixed)
  - Search problem of the 3 zeros with
  - Iteration by Newton Method

$$Y_{n+1} = Y_n - \left[\frac{\partial g}{\partial Y}\right]_{|Y=Y_n} = \frac{1}{2} g(Y_n)$$

But that Jacobian becomes the real problem to solve...

This document and the information contained are KopooS property and shall not be copied nor disclosed to any third party without KopooS prior written authorization



 $Y = \begin{vmatrix} z_0 \\ \dot{y}_0 \\ T_{1/} \end{vmatrix} \quad g(Y) = \begin{vmatrix} y(t) \\ \dot{x}(t) \\ \dot{z}(t) \end{vmatrix}_{t=T}$ 

### **Solution for Periodic Orbits**

#### **Principles**

- Frinciples
  ◆ Search problem of the 3 zeros with g(Y) = 0  $Y = \begin{bmatrix} z_0 \\ \dot{y}_0 \\ T_{1/2} \end{bmatrix}$   $g(Y) = \begin{bmatrix} y(t) \\ \dot{x}(t) \\ \dot{z}(t) \end{bmatrix}_{t=T_{1/2}}$

$$Y_{n+1} = Y_n - \left[\frac{\partial g}{\partial Y_{|Y=Y_n}}\right]^{-1} g(Y_n)$$

◆ For 
$$\begin{bmatrix} z_0 \\ \dot{y}_0 \end{bmatrix}$$
  $\xrightarrow{\partial g}_{\partial Y|_{Y=Y_n}}$  is given by  $\dot{M}(t,t_0) = \frac{d}{dt} \begin{bmatrix} \frac{\partial X_{|t=t}}{\partial X_{|t=t_0}} \end{bmatrix}$ ;  $M(t_0,t_0) = [Id]$  from  $\dot{X} = f(X)$ 
◆ For  $\begin{bmatrix} T_{1/2} \end{bmatrix}$  is given by  $\frac{dg}{dt}_{|Y=Y_n} = \dot{g}_{|Y=Y_n}$  i.e. the function  $f$  in  $\dot{X} = f(X)$ 

Finally, a system of 42 variables to integrate into an iterative loop for finding one periodic orbit



## **Solution Periodic Orbits: EcosimPro practical approach**

**Numbering the variables of the problem**  $\dot{X} = f(X)$  with index 1 to 6

# and numbering the variable t to index 7

- $\frac{\partial g}{\partial Y}_{|Y=Y_n} = \left[ Col.35 \text{ of rows } 246 \text{ of } M(t,t_0) \right] \left[ rows 246 \text{ of } f(X) \right]$
- $\rightarrow$  It was found that it was better to iterate on  $x_0$  instead of  $z_0$
- just replace index 3 by 1 in above

| Loop on z <sub>0</sub> given values of each Halo            | $x_0 = 1.12$                                       |
|-------------------------------------------------------------|----------------------------------------------------|
| Loop on the 3 init conditions: solve the problem of 3 zeros | $z_0 = 0.01$                                       |
|                                                             | U U                                                |
| Iterate until zeros are found                               | $\dot{y}_0 = 0.17$<br>0<br>$T_{\frac{1}{2}} = 1.7$ |
| Further plots on the monitor the current Halo               | $I_{\frac{1}{2}} = 1.7$                            |



### **Application to Halo orbits**

#### Powerful plots under Monitor of EcosimPro





## **Application to Halo orbits**

### **And even better in 3D**





## Conclusions

- The paper has presented in simple words the mathematical problem of finding some Halo orbits
  - and the method implemented to solve it within the EcosimPro environment.
- The major advantages of the EcosimPro approach used successfully is to benefit of a real simulation framework based on models and on experiments
  - no mixing between the inputs\outputs needs and the real problem being to be solved.
- Hence the full model can be clearly and explicitly described
  - while the results coming from the experiments can be extensively assessed and analysed with simple EcosimPro monitor outputs.



### **Thanks for your attention**

## **Questions?**

#### **Ackowledgments**

The research leading to these results is a KopooS funding



|                                                                                                       | ·LISTING OF THE MODEL A taste                                                                                                                            | of the EcosimPro                                                                                                                                                          | model                                                                                                                             |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                       |                                                                                                                                                          | FOR (i IN 1,6)                                                                                                                                                            |                                                                                                                                   |
|                                                                                                       | DATA<br>REAL X01=0.99197555537727 UNITS "DU" "xo"                                                                                                        | X[i]=Xo[i]                                                                                                                                                                | end for the new Xo_n, ready to go for iterations                                                                                  |
|                                                                                                       | REAL X03=-0.00191718187218 UNITS "DU" "zo"                                                                                                               | END FOR                                                                                                                                                                   | PRINTa1 (3, XSo_star , "new guess")                                                                                               |
| •LISTING OF THE EXPERIMENT                                                                            | REAL X05=-0.01102950210737 UNITS "DU/TU" "vyo"                                                                                                           | Xo[7]= Thalfperiodvariable added                                                                                                                                          | convergence and for info                                                                                                          |
| /*                                                                                                    | REAL Thalfperiod_o=1.52776735363559 UNITS "TU" "half period for periodic orbit,<br>guess"                                                                |                                                                                                                                                                           | convergence_tfo=XSo_star[3]-XSo[3]<br>Xo n[8]= convergence tfofor info only and printing                                          |
| COMPONENT: Halo                                                                                       | INTEGER NloopNewtonHalo=0 UNITS "-" " 0 no convergence else up to 14 is enough                                                                           |                                                                                                                                                                           | Xo_n[9]= NorderRKfor info only and printing                                                                                       |
| PARTITION: default<br>EXPERIMENT: exp1                                                                | convergennce"<br>INTEGER GuessZ3notX1 o=3 UNITS "-" " flag=3 for xo fixed and zo guess ==>find a                                                         | WHEN FlagSearchPeriodicOrbit THEN this is like a program to be run before starting<br>integrations by EcosimPro depending on the directive FlagSearchPeriodicOrbit.       | Xo_n[10]= RKsteps6 for info only and printing                                                                                     |
| TEMPLATE: TRANSIENT                                                                                   | Lyapunov plan: flag=1 for zo fixed and xo guess ==>find Halo from a Lyapunov plan with some small zo                                                     | -Inputs : Xo[]] (including Xo[7]= Thalfperiod), NloopNewtonHalo , mu OUT: X[i] initialized by Xo which is                                                                 | Xo_n[11]= RKsteps42for info only and printing<br>Xo n[12]= ErrCumulfor info only and printing                                     |
| EXPERIMENT exp1 ON Halo.default                                                                       | REAL RunCode=2 UNITS "-" "code=0: J.D. Mireles James 1 Nick Truesdale 2: Earth Moon L2, 10: J<br>Mireles James L2 from Lyapunov. etc"                    | I.D. set to the last converged Xo_n[i] (for a good starting guess for other periodic orbits)<br>Iteration on the suited IVP fulfilling the goal (with xo fixed (index 1)) | $XO_n[13] = mu$ for info only and printing                                                                                        |
|                                                                                                       | DECLS                                                                                                                                                    | goal: after a half_period vx,vz and y shall be all null (index 4,6,2) with free variables to guess: initial                                                               |                                                                                                                                   |
| REAL T_Halo                                                                                           | BOOLEAN FlagSearchPeriodicOrbit=TRUEdirective for new search of periodic orbit                                                                           | values of zo, vyo, half_period (index 3,5 and variable tf_n)<br>ts FlagSearchPeriodicOrbit=FALSEclear the condition for running this routine                              | -00000000000000000000000000000000000000                                                                                           |
| STRING Filnam="Rep"                                                                                   | CONST INTEGER LDIM=6                                                                                                                                     | to n=0never modified here                                                                                                                                                 | PRINTa1 (13, Xo_n, "final_xo_ntf_n_converg_RKerrmu")<br>FOR (i IN 1,7)-Update Xo from last converged Xo n, and also memorized for |
| INTEGER nbHalo=1 OBJECTS                                                                              | INTEGER NorderRK,NbSteps, RKsteps42,RKsteps6,<br>GuessZ3notX1,Function ODE IVPinfo                                                                       | <b>FOR</b> (i IN 1,7)                                                                                                                                                     | starting other periodic orbit search if any                                                                                       |
| INIT                                                                                                  | INTEGER i462[3]={4,6,2}                                                                                                                                  | XO_n[i]=XO[i]here we work with IVP Xo_n (including Thalfperiod) because Xo is never modified<br>inside the next loop                                                      | $Xo[i]=Xo_n[i]$ including the time tf_n                                                                                           |
| BOUNDS                                                                                                | INTEGER i357[3]={3,5,7}                                                                                                                                  | END FOR                                                                                                                                                                   | END FOR                                                                                                                           |
| MY_SAT.AbsTolM12 = 1e-012                                                                             | REAL X[LDIM] UNITS "-"position then velocity in barycentric rotating frame addim<br>REAL theta UNITS "-"                                                 |                                                                                                                                                                           | Update wrt Init: New init conditions for derivative variables for EcosimPro integration: th<br>right one for a periodic orbit     |
| MY_SAT.NbSteps2000 = 50                                                                               | REAL T ECI.period UNITS "s"                                                                                                                              | FOR (k IN 1,NloopNewtonHalo)                                                                                                                                              | FOR (i IN 1,6)only 6 for X                                                                                                        |
| MY_SAT.NorderRK85=4 5<br>BODY                                                                         | REAL periodDay UNITS "day"                                                                                                                               | call ODE integration for the final state Xf_n from the given IVP Xo_n to see how good are the<br>quesses and process the iterations                                       | X[i]=X0[i]                                                                                                                        |
| GuessZ3notX1 o=1                                                                                      | REAL r1,r2,Omega,Cjacobi UNITS "-"                                                                                                                       | AbsTol=AbsTolM12-1E-12                                                                                                                                                    | END FOR<br>END WHEN                                                                                                               |
| Xo1= 1.12 - x_o                                                                                       | EXPL REAL wrotEM3D[3], wrotEMCrossXXrot[3] UNITS "dim<br>EXPL REAL XX[6], XXrot[3] UNITS "SI"dim                                                         | NbSteps=NbSteps2000                                                                                                                                                       | CONTINUOUS                                                                                                                        |
| X03=0.01 zo FIXED NOW                                                                                 | EXPL REAL RACIO, XATOLOJ ONTO SIUMI                                                                                                                      | NorderRK=NorderRK85<br>Function ODE IVP=LDIM                                                                                                                              | r1=((mu+X[1])**2+X[2]**2+X[3]**2)**(1/2)-distance point to body1                                                                  |
| Xo5= 0.17ydot_o<br>Thalfperiod o=1.7t                                                                 | EXPL REAL Vnorm UNITS "m/s"                                                                                                                              | tf n=X0 n[7] - tf is a condition final for the ODE but it is as Thalfperiod an initial condition for the                                                                  | r2=((mu+X[1]-1)**2+X[2]**2+X[3]**2)**(1/2)-distance point to body2)                                                               |
| NloopNewtonHalo=15                                                                                    | DISCR REAL Xf_n[LDIM] UNITS "-"point then velocity in barycentric rotating frame addim                                                                   | process of finding a periodic solution by convergence Newton                                                                                                              | <b>EXPAND</b> ( <i>i</i> IN 1,3) $X[i+3] = X[i]'$                                                                                 |
| T_Halo=2*Thalfperiod_o                                                                                | DISCR REAL dX6_dt[LDIM] UNITS "-"velocity then acceleration in barycentric rotating frai<br>addim                                                        |                                                                                                                                                                           | dynamic f=ma in barycentric rotating frame, see for example J.D. Mireles James and many<br>others                                 |
| nbHalo=20<br>Filnam="Halo20.rpt"                                                                      | addim<br>DISCR REAL Xo_n[7+10], Xo[7] UNITS "-" 6+added more rowse for compact information                                                               | ndata<br>-Zero search by Newton method iterations                                                                                                                         | X[4]'=+X[1]+2*X[5]-(X[1]+mu)*(1-mu)/r1**3-(X[1]+mu-1)*mu/r2**3                                                                    |
| creates an ASCII file with the results in table format                                                | DISCR REAL PHI[6,7] UNITS<br>DISCR REAL DF[3,3],D[3,3],XSo[3], XSo star[3],Xff[3],ErrCumul UNITS                                                         | FOR (i IN 1.3)                                                                                                                                                            | X[5]'=+X[2]-2*X[4]-X[2]*(1-mu)/r1**3-X[2]*mu/r2**3                                                                                |
| REPORT_TABLE(Filnam, " *X[*] *XX[*] *PHI* Cj* A* G*                                                   | USCR REAL DF[3,3],D[3,3],入S0[3],入S0_S(ar[3],入II[3],EITCUITUI UNITS *-*                                                                                   | XSo[i]=Xo_n[i357[i]]                                                                                                                                                      | X[6]'=-X[3]*(1-mu)/r1**3-X[3]*mu/r2**3<br>for info                                                                                |
| Teco* V* conv* mu* per* r* wrot*] dE* L* ")                                                           | DISCR REAL dEM,AU,DU UNITS "m"                                                                                                                           | END FOR                                                                                                                                                                   | Omega=0.5*(X[1]**2+X[2]**2)+(1-mu)/r1+mu/r2                                                                                       |
| DEBUG_LEVEL= 1<br>IMETHOD= DASSL                                                                      | DISCR REAL MassU UNITS "kg"                                                                                                                              | FOR (i IN 1,3)Array with the 3 components results of ODE integration to be nullified by<br>converging the IVP XSo to XSo_star                                             | Cjacobi=2*Omega-(X[4]**2+X[5]**2+X[6]**2)                                                                                         |
| setStopWhenBadOperation(FALSE)                                                                        | DISCR REAL WROTEM UNITS "-"<br>DISCR REAL MU UNITS "-"                                                                                                   | Xff[i]=Xf n[i462[i]] i462[3]={4,6,2} i357[3]={3,5,7}                                                                                                                      | Geocentric results in ECI with vector XX                                                                                          |
| REL_ERROR = MY_SAT.AbsTolM12                                                                          | DISCR REAL G = 6.67384E-11 UNITS "m^3/(kg.s^2)"-+- 0.00080 m^3.kg^-1.s^-2                                                                                | END FOR                                                                                                                                                                   | T_ECI=TIME/wrotEMTIME is addim = 6.28 for 1 period                                                                                |
| ABS_ERROR = REL_ERROR                                                                                 | DISCR REAL convergence_tfo UNITS "-"                                                                                                                     | Jacobian at current final point tf_n=Xo_n[7] wrt IVP initial Xo_n given for to_n IT INCLUDES THE<br>ODE113 SIZE 42                                                        | period=2*3.1415926535897932384626433832795 /wrotEM                                                                                |
| TOLERANCE =REL_ERROR REPORT_MOD                                                                       |                                                                                                                                                          | STMatrixCR3BP (to_n, tf_n, Xo_n, PHI, mu, RKsteps42)out PHI =                                                                                                             | periodDay=period/86400<br>EXPAND (i IN 1,2) wrotEM3D[i]=0 only 2 first coordinates                                                |
| FOR (i IN 1, nbHalo)                                                                                  | DISCR REAL AbsTol UNITS "-"<br>DISCR REAL L1, L2, L3 UNITS "DU"for info                                                                                  | d FF / d xx = d xxdot_i / d xx_j                                                                                                                                          | wrotEM3D[3]=wrotEM the 3rd coordinate                                                                                             |
|                                                                                                       | INIT                                                                                                                                                     | derivative of X6 wrt time at final point, needed for getting the time derivatives to fill the matrix DF<br>(dFF/dxx)                                                      | cross product                                                                                                                     |
| INTEG_TO(TIME+T_Halo,1)                                                                               | FOR (i IN 1,6)                                                                                                                                           | <b>Function_ODE_IVP_6</b> (6, Xf_n, dX6_dt, mu)                                                                                                                           | wrotEMCrossXXrot[3]=wrotEM3D[1]*XXrot[2]-wrotEM3D[2]*XXrot[<br>wrotEMCrossXXrot[1]=wrotEM3D[2]*XXrot[3]-wrotEM3D[3]*XXrot[        |
| Case of series of Halo orbits (evolution of z)<br>IF i!=nbHalo THENchange but not for the last one to | Xo[i] = 0                                                                                                                                                | FOR (i IN 1,6)extended PHI last column added with time derivatives d FF / d t = d xxdot_i / d t                                                                           | wrotEMCrossXXrot[2]=wrotEM3D[2] XXrot[3]=wrotEM3D[1]*XXrot[<br>wrotEMCrossXXrot[2]=wrotEM3D[3]*XXrot[1]-wrotEM3D[1]*XXrot[        |
| Xo[3]=Xo[3]+i*Xo[3]*0.01                                                                              |                                                                                                                                                          | in column 7                                                                                                                                                               | EXPAND_BLOCK (i IN 1,3)                                                                                                           |
| END IF                                                                                                | GuessZ3notX1=GuessZ3notX1_o<br>muE = 1*3.986005E14                                                                                                       | PHI[i,7] = dX6_dt[i]<br>END FOR                                                                                                                                           | XXrot[i] = X[i]*DU                                                                                                                |
| END FOR                                                                                               | muS = 328902.82113001*3.986005E14-; % was Relative to earth                                                                                              | dFF/dxx Full derivative of XXf (to be nullified) wrt XXo (selected state variables and time)                                                                              | XX[i+3] = X[i+3]*DU*wrotEM+wrotEMCrossXXrot[i]<br>END EXPAND BLOCK                                                                |
| END EXPERIMENT                                                                                        | muM = 0.0123000569113856 *3.986005E14                                                                                                                    | i462[3]={4,6,2} i357[3]={3,5,7}                                                                                                                                           | theta=TIMEwrotEM*T_ECI                                                                                                            |
|                                                                                                       | mu=muM/(muE+muM)<br>dEM=384400e3                                                                                                                         | FOR (i IN 1,3)<br>FOR (i IN 1,3)                                                                                                                                          | XX[1] = XXrot[1]*cos(theta)-XXrot[2]*sin(theta)                                                                                   |
|                                                                                                       | X0[1]=X01GuessZ3notX1=3guess Z User to choose or default =3                                                                                              | DF[i,j] =PHI[i462[i],i357[j]] 1462[3]={4,6,2} 1357[3]={3,5,7}                                                                                                             | XX[2] = XXrot[1]*sin(theta)+XXrot[2]*cos(theta)<br>XX[3] = XXrot[3]                                                               |
|                                                                                                       | X0[3]=Xo3                                                                                                                                                | END FOR                                                                                                                                                                   | useful                                                                                                                            |
|                                                                                                       | X0[5]=X05                                                                                                                                                | END FOR<br>InvMatrix( 3,DF, D , ErrCumul)                                                                                                                                 | Rnorm=sqrt(SUM(i IN 1,3; XX[i]**2))                                                                                               |
|                                                                                                       | Thalfperiod=Thalfperiod_o<br>DU=dEM                                                                                                                      | XSo_star The next solution guess : XSo_star = XSo-inv(dFF/dxx)*Xff                                                                                                        | Vnorm=sqrt(SUM(i IN 4,6; XX[i]**2))                                                                                               |
|                                                                                                       | MassU=(muE+muM)/G                                                                                                                                        | FOR (i IN 1,3)-extended PHI with time derivatives                                                                                                                         | END COMPONENT                                                                                                                     |
| This do                                                                                               | cunnetivesditlesingsungtion contained are KopooS property an                                                                                             | d shall X89 bergs X800 SHUM (tiscles Edino X11m) third party without KopooS pr                                                                                            | tior written authorization                                                                                                        |
|                                                                                                       | for info here only because mu in known and allow computation of L1 L2 L2<br>L1=findLagrangePoints(0.83, mu) init value not too far from the wanted roots |                                                                                                                                                                           |                                                                                                                                   |
|                                                                                                       | L1=findLagrangePoints(0.83, mu) init value not too far from the wanted roots<br>L2=findLagrangePoints(1.15, mu)                                          | -New X <sub>0</sub> $n = X_0 n+1$ for iterations<br><b>FOR</b> (i IN 1,7)                                                                                                 |                                                                                                                                   |
|                                                                                                       | L3=findLagrangePoints(-1.0, mu)                                                                                                                          | X0_n[i]=X0[i] -come back to the first init conditions before update of the selected ones                                                                                  | <mark>≜!_</mark> KopooS                                                                                                           |
| 11. New tool periodic Halo, IC                                                                        | CAPRING (" 1.4. + 1.5 March 2016 in Daumatadat Grannany 1 sl2 sl3 ")                                                                                     | END FOR                                                                                                                                                                   | X VIII VIII VIII VIII VIII VIII VIII VI                                                                                           |
|                                                                                                       | Eco Normal Init of the derivatives                                                                                                                       | FOR (i IN 1,3)<br>Xo_n[i357[i]]=XSo_star[i]-update the selected ones with better guesses                                                                                  |                                                                                                                                   |
|                                                                                                       |                                                                                                                                                          | END FOR                                                                                                                                                                   |                                                                                                                                   |

END FOR