# $6^{\text {th }}$ ICATT <br> New Tool for Finding Periodic Halo Orbits: the Solver of a Spacecraft Simulator (ESPSS -Ecosimpro® European Space Propulsion System Simulation) 

Darmstadt, 14 $^{\text {th }}$ to $17^{\text {th }}$ March 2016

## Christophe R. Koppel

KopooS Consulting Ind., 75008 Paris, France

[^0]
## Summary

2. Introduction

- The differential system
\& Solution for periodic orbits
\& Application to Halo orbits

4. Conclusions

## Introduction

*. The existing ESA developed tool EcosimPro® is a solver of differential algebraic equations

- It is oriented for system simulations, not for mathematicians, nor for numerical analysts
- But it can be used as well for solving some problem which are generally solved "only" with some US tools
\&. For engineers, it is sometime needed to assess some orbits
- But the cost of a sub-contract to do this assessment can be simply out of the scope of normal engineering work
- In addition time is needed by sub-contractors, and their answers may not be in line with the need (Very low cost)
* Hence, its has been found appropriate to check if a simple EcosimPro model could be used for solving efficiently the question of periodic orbits
- Because Engineers use preferably EcosimPro, its is not out of the scope of their knowledge
- But the most difficult part is to get the right equations
- Unfortunately, this requires some efforts in order to clear the uncertainties in the set of equations
- In addition high accuracy needed for the numerical resolution can be considered as a showstopper

4. The problem will be presneted in simple word

* And the presentation will show the successful Halo orbit solutions

This document and the information contained are KopooS property and shall not be copied nor disclosed to any third party without KopooS prior written authorization

## The differential system

$\therefore$ Acceleration in the rotating frame with $\mu=M_{\text {earth }} / M_{\text {total }}$

$$
\dot{X}=f(X)
$$



$$
\ddot{\vec{r}}+\vec{\omega} \times(\vec{\omega} \times \vec{r})+2 \vec{\omega} \times \dot{\vec{r}}=-\frac{(1-\mu)}{r_{1}^{3}} \vec{r}_{1}-\frac{\mu}{r_{2}^{3}} \vec{r}_{2}
$$

$$
X=\left[\begin{array}{c}
\dot{x} \\
y \\
z \\
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right] f(X)=\left[\begin{array}{c}
\dot{y} \\
\dot{z} \\
x+2 \dot{y}-\frac{(1-\mu)(x+\mu)}{r_{1}^{3}}-\mu \frac{(x-(1-\mu))}{r_{2}^{3}} \\
y-2 \dot{x}-\frac{(1-\mu) y}{r_{1}^{3}} \\
-\frac{(1-\mu) z}{r_{1}^{3}}
\end{array}-\mu \frac{y}{r_{2}^{3}},-\mu \frac{z}{r_{2}^{3}} .\right]
$$

$\rightarrow \rightarrow$ lead to write the system straightforward when the nondimensional rotation rate $\omega=1$

* System surprisingly so simple

$$
\begin{array}{ll}
r_{1}=\left[\begin{array}{c}
x-(-\mu) \\
y \\
z
\end{array}\right] & \left\|r_{1}\right\|=\sqrt{(x-(-\mu))^{2}+y^{2}+z^{2}} \\
r_{2}=\left[\begin{array}{c}
x-(1-\mu) \\
y \\
z
\end{array}\right] & \left\|r_{2}\right\|=\sqrt{(x-(1-\mu))^{2}+y^{2}+z^{2}}
\end{array}
$$

## Solution for Periodic Orbits

*. Principles

* Without deep analysis, simple periodic orbits $\quad X(0)=$ cannot be unsymmetrical
- In the plane XZ for example $\rightarrow$ After half orbit some state variable are the same
- Problem reformulated ( $x_{0}$ fixed)
- Search problem of the 3 zeros with

$$
g(Y)=0
$$

- Iteration by Newton Method

$$
Y_{n+1}=Y_{n}-\left[\frac{\partial g}{\partial Y}{ }_{\mid Y=Y_{n}}\right]^{-1} \cdot g\left(Y_{n}\right)
$$

$$
Y=\left[\begin{array}{c}
z_{0} \\
\dot{y}_{0} \\
T_{1 / 2}
\end{array}\right] g(Y)=\left[\begin{array}{c}
y(t) \\
\dot{x}(t) \\
\dot{z}(t)
\end{array}\right]_{t=T_{1 / 2}}
$$

- But that Jacobian becomes the real problem to solve...


## Solution for Periodic Orbits

\& Principles

- Search problem of the 3 zeros with

$$
g(Y)=0 \quad Y=\left[\begin{array}{c}
z_{0} \\
\dot{y}_{0} \\
T_{1} / 2
\end{array}\right]
$$

$$
g(Y)=\left[\begin{array}{c}
y(t) \\
\dot{x}(t) \\
\dot{z}(t)
\end{array}\right]_{t=T_{1 / 2}}
$$

$$
Y_{n+1}=Y_{n}-\left[\frac{\partial g}{\partial Y_{\mid Y=Y_{n}}}\right]^{-1} \cdot g\left(Y_{n}\right)
$$

- For $\left[\begin{array}{l}z_{0} \\ \dot{y}_{0}\end{array}\right] \frac{\partial g}{\partial Y}$ is given by $\quad \dot{M}\left(t, t_{0}\right)=\frac{d}{d t}\left[\frac{\partial X_{l \mid=t}}{\partial X_{\mid=t_{0}}}\right] ; M\left(t_{0}, t_{0}\right)=[I d]$ from $\dot{X}=f(X)$
$\rightarrow$ For $\left[T_{1 / 2}\right] \quad$ is given by $\frac{d g}{d t}{ }_{\mid Y=Y_{n}}=\dot{g}_{Y=Y_{n}}$ i.e. the function $f$ in $\dot{X}=f(X)$
- Finally, a system of 42 variables to integrate into an iterative loop for finding one periodic orbit


## Solution Periodic Orbits: EcosimPro practical approach

*. Numbering the variables of the problem $\dot{X}=f(X)$ with index 1 to 6 and numbering the variable $t$ to index 7
$\therefore \frac{\partial g}{\partial Y \mid Y=Y_{n}}$ $=\left[\right.$ Col. 35 of rows 246 of $\left.M\left(t, t_{0}\right)\right]$ [rows 246 of $\left.f(X)\right]$

- It was found that it was better to iterate on $x_{0}$ instead of $z_{0}$
$\rightarrow$ just replace index 3 by 1 in above

4. Loop on $z_{0}$ given values of each Halo
$\rightarrow$ Loop on the 3 init conditions: solve the problem of 3 zeros

- Integrate the 42 equation system
- Iterate until zeros are found

4. Further plots on the monitor the current Halo
$\left[\begin{array}{c}x_{0}=1.12 \\ 0 \\ z_{0}=0.01 \ldots \\ 0 \\ \dot{y}_{0}=0.17 \\ 0 \\ T_{1 / 2}=1.7\end{array}\right]$

This document and the information contained are KopooS property and shall not be copied nor disclosed to any third party without KopooS prior written authorization

## Application to Halo orbits

## \& Powerful plots under Monitor of EcosimPro



This document and the information contained are KopooS property and shall not be copied nor disclosed to any third party without KopooS prior written authorization

## Application to Halo orbits

\& And even better in 3D


## Conclusions

- The paper has presented in simple words the mathematical problem of finding some Halo orbits
- and the method implemented to solve it within the EcosimPro environment.
- The major advantages of the EcosimPro approach used successfully is to benefit of a real simulation framework based on models and on experiments
- no mixing between the inputsloutputs needs and the real problem being to be solved.
* Hence the full model can be clearly and explicitly described
- while the results coming from the experiments can be extensively assessed and analysed with simple EcosimPro monitor outputs.


## Thanks for your attention

## Questions?

4. Ackowledgments
$\rightarrow$ The research leading to these results is a KopooS funding

#  <br> <br> DATA <br> <br> DATA <br> REAL Xo1=0.99197555537727 UNITS "DU" "xo" REAL Xo3=-0.00191718187218 UNITS "DU" <br> REAL Xo3=-0.00191718187218 UNITS "DU" "Z" REAL Xo5=-0.01102950210737 UNITS "DUTU" " <br> Xo[7]= Thalfperiod --variable added <br> -end for the new Xo_n, ready to go for iterations <br> - PRINTa1 (3, XSo_star, "new guess") -convergencoandorimo 

REAL Thalfperiod_o=1.52776735363559 UNITS "TU
INTEGER N NIoopNewtonHalo=O UNITS
Invergennce"
INTEGER GuessZ3notX1_o=3 UNITS "-" "ffag=3 for xo fixed and zo guess ==>find a

## yapunov plan; flag=1 for zo fixed and $x$ xo guess $==>$ find $H$ Halo from a Lyapunov plan with some small $z 0$

## DECLS

BOOLEAN FlagSearchPeriodicOrbit=TRUE
ONST INTEGER LDIM=6
INTEGER NorderRK, NbSteps, RKsteps42,RKsteps6,
GuessZ3notX1,Function_ODE_IVP -info
INTEGER i462[3]=\{4,6,2\}
REAL X[LDIM] UNITS ".."
REAL theta UNITS "-
REAL T_ECI,period UNITS "s"
REAL periodDay UNITS "day"
REAL r1,r2, Omega, Cjacobi UNITS "
EXPL REAL wrotEM $3 \mathrm{D}[3]$, wrotEMCrossXXrot[3] UNITS " $n$ "- -dim
EXPL REAL XX[6], XXrot/3] UNITS "sI" -dim
EXPL REAL Rnorm UNITS "m"
EXPL REAL Vnorm UNITS "m/s
DISCR REAL Xf n[LDIM] UNITS ""- -point then velocity in barycentric rotating frame addim
DISCR REAL $d \bar{X} 6$ dtILDIM] UNITS "- - -evecoity then
DISCR REAL dX6_dtLLDIM] UNITS "-"--velocity then acceleration in barycentric rotating frame
DISCR REAL Xo_n[7+10], Xo[7] UNITS "-'
DISCR REAL PHI[6,7] UNITS "-
DISCR REAL DF[3,3],D[3,3],XSo[3], XSo_star[3],Xf[[3],ErrCumul UNITS ",

DISCR REAL DEM,AU,DU UNITS "m"
DISCR REAL MassU UNITS "kg"
DISCR REAL wrotEM UNITS "-
DISCR REAL MU UNITS

DISCR REAL convergence_tfo UNITS "-"
DISCR REAL AbsTol UNITS "-"
DISCR REAL L1, L2, L3 UNITS "DU" -for info
INIT
FOR (i iN 1,6)
XOR $[1]=0$
ENDD $F \mathbf{F R}^{\text {the last case }}$
GuessZ3notX1=GuessZ3notX1 o
muE $=1 * 3.986005 \mathrm{E} 14$
muS $=328902.82113001 * 3.986005 E 14-; \%$ was Relative to earth
muM $=0.0123000569113856 * 3.986005 E 14$
$m u=m u M /(m u E+m u M)$
$d E M=384400 \mathrm{e} 3$
Xo[1]=X01 -GuessZ3notX1=3 -guess Z User to choose or default =3
$X_{0}[3]=X \circ 3$
$X 0[5]=X 05$
Thalfperiod=Thalfperiod
$D U=d E M$
i357[1]=GuessZ3notX1

## DISCRETE

WHEN FlagSearchPeriodicOrbit THEN

```
```

-this is like a progra

```
```

```
```

-this is like a progra

```
```

Inputs : XoIII (includina Xoll] That( ineriod). NooopNe ewtonHalo, mu OUT: X


- -lteration on the suited IVP fulfiling the goal ( with xo fixed (index 1))

FlagSearchPeriodicOrbit=FALSE -clear the condition for running this routine
to_n=0 -never modified here
FOR (iIN 1,7)
Xo_n[i] $=$ XO[i] -here we work with IVP Xo_n (including Thalfperiod) because Xo is never modified


## END FOR

--@@@@@@@@@@@@@@@@@@@@@@@@@@
FOR (k IN 1,NloopNewtonHalo)
-caro
NbSteps=NbSteps 2000
NorderRK=NorderRK85
Function_ODE_IVP=LDIM
If_ $n=X 0$ _ $n[7]$ - tfis a condition final for the ODE but it is as Thalfperiod an initial condition for the
ODE113 (LDIM, to_n, tt_n, Xo_n, Xf_n, NorderRK, AbsTol, NbSteps, mu, Function_ODE_IVP, RKsteps6)-out XI_n

FOR (i IN 1,3 )
XSo[i]=Xo_n[i357[i] ]
END FOR
FOR (i IN 1,3)-Array with the 3 components results of ODE integration to be nullified by

## 

END FOR

STMatrixCR3BP ( to_n, tf_n , Xo_n, PHI, mu , RKsteps42)-out PHI =

- derivative of $X 6$ wr time at final point, needed for getting the time derivatives to fill the matrix DF
DF
${ }^{\text {(dFFIdx) }}$ Function ODE IVP 6(6, Xf_n,dX6_dt, mu)
FOR (i IN 1, $\overline{6}$ )-extended PHIl last column added with time derivatives $d$ FF $/ d t=d \times x d$ _t $i / d t$
in column 7 PH [ [i, $]=d \times 6$ dt [i]


## END FOR


FOR (i in 1,3 )
FOR $(j \in 1,3)$

END FOR
InvMatrix( $3, D F, D$, ErCumul $^{2}$

convergence_tfo=XSo_star[3]-XSo[3] Xo_n $[8]=$ convergence_tfo -for info only and printing Xo_n[9]= NorderRK -for info only and printing Xo_n[10] $=R K$ steps 6 -for info only and printing Xo_n[11]= RKsteps 42 --for info only and printing Xo_n[12]=ErrCumul --for info only and printing END FOR -k
-@@@@@@@@@@@@@@@@@@@@@@@@@@@
PRINTa1 (13, Xo_n, "final_Xo_n--tt_n_converg_RK...-err-_mu")
FOR ( i IN 1,7)--Update Xo from last converged $X_{0}$ _ $n$, and also memorized for
sarting other periodic orbit search if any
Xo[i] $=$ Xo nill -including the time tt

## END FOR

-Update wrt Init New init conditions for derivative variables for EcosimPro integration: the
Int one or a periodic orbbit
FOR ( i IN 1,6) -only 6 for $X$
$X_{[]}=$Xori] $^{2}$
END FOR
END FOR

## END WHEN

## CONTINUOUS

$r 1=\left(\left(m u+X_{[1]) * * 2}+X_{\left.[2] * * 2+X[3]^{* *} 2\right)^{* *}(1 / 2) \text {-distance point to body } 1 ~}^{\text {and }}\right.\right.$ $\left.r 2=((m u+X[1]-1) * * 2+X[2] * * 2+X[3]]^{*} 2\right) * *(1 / 2)-$ distance point to body 2 EXPAND ( i IN 1,3 ) $X_{[i+3]}=x_{[i]}$

- dynnamic $f$-ma in barycentric rotating frame, see for example J.D. Mireles James and many
thers
$X_{[4]^{\prime}}=+X_{[1]+2 *} X_{[5]-\left(X_{[1]}+m u\right)^{*}(1-m u) / r 1^{* *} 3-\left(X_{[1]}+m u-1\right)^{*} m u / r 2^{* *} 3}$ $X_{\left.[5]^{\prime}=+X_{[2]}\right]-2^{*} X[4]-X[2]^{*}(1-m u) / r 1^{* *} 3-X[2]^{*} m u / r 2^{* *} 3}$ $X[6]^{*}=-X[3]^{*}(1-m u) / r 1^{* *} 3-X[3]^{*} m u / r 2^{\star *} 3$
-for info
Omega $=0.5^{*}\left(X[1]^{* *} 2+X[2]^{* *} 2\right)+(1-m u) / r 1+m u / r 2$ Cjacobi=2*Omega- $\left(X[4]^{* *} 2+X\left[55 * * 2+X[6]^{* *} 2\right)\right.$
--Geocentric results in ECI with vector $X X$
T ECI=TME/WrotEM TME
TeECIO $=$ TIME $=2^{*} 3.1415926535897932384626433832795 /$ wrotEM periodDay=period/86400
EXPAND (i in 1,2) wrotEM3D[i] $=0$ - only 2 first coordinates
wrotEM $3 D[3]=$ wrotEM - the 3rd coordinate
--cross product
wrotEMCross $X X$ rot $[3]=$ wrotEM $3 D[1]^{*} X X$ rot $[2]-w r o t E M 3 D[2] * X X$ rot $[1]$ wrotEMCross $X$ Xrot $[1]=$ wrotEM $3 D[2]^{*} X X$ rot $[3]$-wrotEM $3 D[3]^{*} X X$ rot $[2]$ wrotEMCross $X X$ rot $[2]=$ wrotEM3D[3] ${ }^{*} X X$ rot $[1]$-wrotEM $3 D[1]^{*} X X$ rot $[3]$ EXPAND_BLOCK (iIN 1,3)
$X X_{\text {rot }}[]=X[[]]^{*} D U$
$X X[i+3]=X[i+3]^{*} D U^{*}$ wrotEM + wrotEMCross $X X$ roti[ $]$ END EXPAND_BLOCK
$X X_{[1]}=X X$ rot $[1]^{*} \cos \left(\right.$ theta) $-X X$ rot $[2]^{*} \sin$ (theta) $X X_{[2]}=X X \operatorname{rot}[1]^{*} \sin ($ theta $)+X X \operatorname{rot}[2]^{*} \cos ($ theta $X X[3]=X X$ rot $[3]$
- useful

Rnorm=sqrt(SUM(i IN 1,3; $X_{[i] * * 2))}$
Vnorm=sqrt(SUM(i in 4,6; XX[i]**2))
END COMPONENT

```
This docupasilk
```

$L 1=$ findL agrangePoints $(0.83, \mathrm{mu})$ - init value not too far from the wanted roots
L2=findLagrangePoints(1.15, mu)
$L 3=$ find LagrangePoints( $-1.0, \mathrm{mu}$ )

$-N e n O_{0} n=X_{0} n+1$ for ierations
FOR
-Eco Normal nit of the derivatives
Xo $n[i]=$ Xoil
END
FOR
FOR (iln 1,3)


[^0]:    This document and the information contained are KopooS property and shall not be copied nor disclosed to any third party without KopooS prior written authorization

