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ABSTRACT

Halo orbits and other periodic orbits in the restricted circular 
3 body problem has always been very well explained in the 
literature since their discovery by Farquhar in the 60's of last 
century. However for finding the numerical values of such 
orbits, the availability of the tools dedicated for such tasks is 
not obvious. Due to the fact that the differential equations 
are quite simple, these days most of the time tools used are 
based on some computer listings written within an US based 
mathematical framework, which is clearly dedicated for 
people highly involved in computer and computer language 
rather than for general purpose Engineers. 
Hence the approach chosen in the paper is to rely on a tool 
largely used by Engineers (and not computer guys) for 
taking advantage of the capabilities of solving dynamic 
problems: the tool used is a European tool which is an 
object oriented solver of differential equations which is the 
cornerstone of the Spacecraft Simulator (ESPSS -
EcosimPro® European Space Propulsion System 
Simulation) largely used by engineers.
The paper presents the mathematical problem in simple 
words and the method used to solve it.
The major advantages of the approach proposed and used 
successfully is to benefit of a real simulation framework 
based on models and on experiments where there are no 
mixing between the inputs\outputs needs and the real 
problem being to be solved. Hence the full model can be 
clearly and explicitly described while the results coming 
from the experiments can be extensively assessed and 
analysed with simple monitor outputs.

Index Terms— Solver, Halo, EcosimPro, ESPSS

1. INTRODUCTION
The use of an engineering simulation tool not dedicated to 
computer people neither to mathematicians or numerical 
analysts can be considered as a great improvement of the 
current engineering practices. The paper describes the 
integration of the equations into EcosimPro® which is a 
Physical Simulation Modelling tool that is an object-
oriented tool dedicated for system analysis. That is a visual 
simulation tool capable of solving various kinds of dynamic 
systems represented by writing equations and discrete 

events. It can be used to study both transients and steady 
states. The object oriented tool, with the propulsion libraries 
ESPSS (European Space Propulsion System Simulation) 
from ESA for example, allows the user to draw (and to 
design at the same time) the propulsion system with 
components of that specific library with tanks, lines, 
orifices, thrusters, tees. The user enhances the design with 
components from the thermal library (heaters, thermal 
conductance, radiators), from the control library 
(analogue/digital devices), from the electrical library, etc. 

Because this tool, developed for ESA is available freely 
for every of its engineers, and available too at all prime 
satellite corporations, and in many other companies, it has 
been found interesting to assess its use for deeper 
mathematical problems like finding halo orbits around 
Earth-Moon L2 point as it is needed to know for some 
preliminary projects. 
Most of the well known problems take as starting point the 
circular restricted three body problem, which models the 
motion of a massless particle under the gravitational 
attraction of two punctual primaries revolving in circular 
orbits around their centre of mass. In the rotating frame, the 
two bodies remain fixed, and the point L2 is also fixed (as 
well as 4 other well known points). It is rather easy to find 
the characteristic point L2, but orbits around such point 
must be solved with a so high accuracy that the problem is 
more to find initial condition with the same accuracy. This 
problem is thus presented below, first with the equations
which are not very complex, then the method used within 
EcosimPro to iterate to a good enough solution.

2. THE DIFFERENTIAL SYSTEM 
First, one presents directly the differential system needed to 
be solved for finding any trajectory (without thrust) in the 
circular restricted three body problem (CR3BP), one has: 

)(XfX  (1)
where the vector X is a 6 dimensions vector and the vector 
function f contains equations according to the following one 
column matrixes.
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This system of differential equations (1) comes from the fact 
that one considers the non dimensional rotating two main 
body system centered at the system center of mass. 
First, the relative position of the third body r having 
coordinates x,y,z is sketched in Figure 1.

Figure 1: Non dimensional rotating frame considered

A very important simplification comes from the fact that the 
main body orbit is supposed here circular, so the angular 
rotation of the rotating system wrt inertial frame is 
constant. A standard convention for such problem in non 
inertial frame, is used: the total mass of the system is a unit 
mass (m1 + m2 = 1) and the constant separation between 
main body is a unit length. The normalized mass of both 
main body then follows as m1 = 1 - μ and m2 = μ. The time 
unit is 2 for one period of the system, leading to =1 as for 
the gravitation constant G=1.Velocity derivative equation 
(i.e. acceleration) of the third body is thus quite easy to 
derive because in the rotating system, the well known 
expression of the relative acceleration r for a constant 



under the two main body gravitational attractions stands as:
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With simply 


=1 along the z axis, the cross products are 
obvious, giving straightforward the system (1).

3. SOME PERIODIC ORBITS  
For some periodic orbit it is sufficient to find initial 
conditions of X (position and velocity) such that after half an 
orbit some values remain null as initially:  
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In clear, the starting point is in the x,z plane because y0=0 
with no velocity on x, z but with velocity on y: 0y ≠0. 
One notes that in the final condition there are 3 zeros. 

4. SOLUTIONS OF PERIODIC ORBITS
To find a periodic orbit, one supposes that a first starting 
point not too far from the solution is given. 
In order to reduce the number of guesses to do, one can fix 
the initial value 0x (and further make a loop on it) .The new 

problem of the 3 zeros is for a given 0x , to find Y such that:

0)( Yg   with 
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where the value T½ is the time at which y is for the first time 
null after the integration 0 to t; i.e. the trajectory is back to 
the x, z plane whatever the values of velocities along x or z. 
Those two last values have to be nullified: iterations by 
Newton method can be used for finding right guesses for 
nullified all the lines of )(Yg : 
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Note : This is like for a 1-D curve: finding a new 
guess u1 after u0 of a function h(u)=0, one follows 
the tangent of the curve h(u) at point u=u0 up 
crossing the line "0", 
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Here the tangent (or Jacobian differential) is a bit delicate 
because the definition of g is including integration 0 to T½. 

The derivative matrix 
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integration of a subset of the derivative of the general 
function f in (1) )(XfX  for which one has the STM 
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That is an impressive system of 36 differential 
equations to be integrated simultaneously from t=0 to t, 
but some of the equations are trivial... 

Note: because the time is not explicitly appearing 
in the equations f(X) as the system is autonomous, 
one has:
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Hence, it is obvious that (2) can better rely on the 
following differential equation  (3) involving f  :
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function itself in (1) )(XfX    which is to be 
integrated as well (6 additional differential equations). 

A. PRACTICAL APPROACH
By numbering the variables of the first problem (1) with 
index 1 to 6 and numbering the variable t to index 7, one 
gets straight forward successively that Y involves variables 
index 3 5 7 and g(Y) involves variables index 2 4 6. Hence 
the derivative matrix can be written symbolically in short as 
in equation (3):

nYYdY
dg


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B. FINAL RESOLUTION
Finally the solution of periodic orbits is performed by the 
integration of a system of 36 + 6= 42 differential equations 
and that within a second sub-loop for finding the solution 

0)( Yg with Newton, which leads to periodic orbit. 
A primary loop on the fixed variable allows plotting many 
halo orbits. 
With some tests, it was better to guess 0x while keeping 

fixed 0z so in the equations above it is just matter of 
replacing the index 3 by index 1.

Note: The model and experiment is a standalone model 
within EcosimPro "as-is" without real need of sophisticated 
libraries like ESPSS, even if for further applications this 
library would be highly recommended. In addition to the 
equations in EL (EcosimPro langage) shown below, a 
simple function so called "ODE113" has been implemented 
for the integration of the 6 and 42 differential equations 
(based on Runge-Kutta with possibility of error control and 
variable time steps) and also a matrix inversion routine with 
error quantification has been added. Such features could be 
as well added by the Ecosimpro team to EcosimPro "as-is"!

5. APPLICATION TO HALO ORBITS LAGRANGE 
POINT L2 OF THE SYSTEM EARTH+MOON

The system of equations (1) representing the CRTBP is used 
for the Earth+Moon system with µ = 0.0121506038.
For the following set of initial values:

x0= 1.12 
z0=0.01 (fixed for each Halo)

0y = 0.17
T½= 1.7 

we get the following Figure 2 of simulation plots of 20 Halo 
orbits with run time around of half second for each Halo 
orbit. After each halo the fixed value z0 is increased by 1% 
each time.
Of course, the above plot is very useful for analysts, but for 
a first view showing the complexity of the periodic  
solution, using a 3D visualisation tool fed by the data from 
EcosimPro we can get a cubic view with projections of the 
orbits on the three reference planes as in Figure 3.

(3)



Figure 2: simulation plots of 20 Halo orbits around Earth+Moon L2

Figure 3: 3D visualisation of 20 Halo orbits around Earth+Moon L2 (3D cubic view)



6. CONCLUSIONS
The paper has presented in simple words the mathematical 
problem of finding some Halo orbits and the method 
implemented to solve it within the EcosimPro environment.
The major advantages of the approach and used successfully 
is to benefit of a real simulation framework based on models 
and on experiments where there are no mixing between the 
inputs\outputs needs and the real problem being to be 
solved. 
Hence the full model can be clearly and explicitly described 
while the results coming from the experiments can be 
extensively assessed and analysed with simple EcosimPro 
monitor outputs.
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8. ANNEX: TRACEABILITY
For readers interested to run similar cases, the full listing of 
the experiment and the model in the EcosimPro environment 
is given below.
A. LISTING OF THE EXPERIMENT

/*-----------------------------------------------------------------------------------------
LIBRARY: MY_SAT
COMPONENT: Halo
PARTITION: default
EXPERIMENT: exp1
TEMPLATE: TRANSIENT
-----------------------------------------------------------------------------------------*/

EXPERIMENT exp1 ON Halo.default
DECLS
   REAL T_Halo
   STRING Filnam="Rep"

   INTEGER nbHalo=1
OBJECTS
INIT
BOUNDS
   MY_SAT.AbsTolM12 = 1e-012
   MY_SAT.NbSteps2000 = 50
   MY_SAT.NorderRK85 =4 -- 5

BODY 
   GuessZ3notX1_o=1 
   Xo1= 1.12 -- x_o

   Xo3=0.01 -- zo FIXED NOW

   Xo5= 0.17--ydot_o

   Thalfperiod_o=1.7-- t

   NloopNewtonHalo=15

   T_Halo=2*Thalfperiod_o 
   nbHalo=20 
   Filnam="Halo20.rpt"
   -- creates an ASCII file with the results in table format

   REPORT_TABLE(Filnam, " *X[*] *XX[*] *PHI* Cj* A* G* Halo* *12 *00 *85 *U *RK Om* 

R* T_* Teco* V* conv* mu* per* r* wrot*] dE* L* ") 
   DEBUG_LEVEL= 1
   IMETHOD= DASSL
   setStopWhenBadOperation(FALSE)
   REL_ERROR = MY_SAT.AbsTolM12
   ABS_ERROR = REL_ERROR
   TOLERANCE =REL_ERROR    REPORT_MODE=IS_STEP
   TIME = 0
   FOR (i IN 1, nbHalo)
      FlagSearchPeriodicOrbit=TRUE
      INTEG_TO(TIME+T_Halo,1)
      -- Case of series of Halo orbits (evolution of z)

      IF i!=nbHalo THEN --change but not for the last one to keep all results of the last case

            Xo[3]=Xo[3]+i*Xo[3]*0.01 
      END IF
   END FOR
END EXPERIMENT

B. LISTING OF THE MODEL
COMPONENT Halo
DATA

   REAL Xo1=0.99197555537727 UNITS "DU" "xo"
   REAL Xo3=-0.00191718187218 UNITS "DU" "zo"
   REAL Xo5=-0.01102950210737 UNITS "DU/TU" "vyo"
   REAL Thalfperiod_o=1.52776735363559 UNITS "TU" "half period for 
periodic orbit, initial guess"
   INTEGER NloopNewtonHalo=0 UNITS "-" " 0 --no convergence-- else up to 14 is 
enough for convergennce"
   INTEGER GuessZ3notX1_o=3 UNITS "-" " flag=3 for xo fixed and zo guess 
==>find a Lyapunov plan; flag=1 for zo fixed and xo guess ==>find Halo from a Lyapunov plan 
with some small zo "
   --REAL RunCode=2 UNITS "-" "code=0: J.D. Mireles James 1 Nick Truesdale 2: Earth Moon 
L2, 10: J.D. Mireles James L2 from Lyapunov, etc..."

DECLS
   BOOLEAN FlagSearchPeriodicOrbit=TRUE --directive for new search of 
periodic orbits
   CONST INTEGER LDIM=6
   INTEGER NorderRK,NbSteps, RKsteps42,RKsteps6, 
GuessZ3notX1,Function_ODE_IVP --info
   INTEGER i462[3]={4,6,2}
   INTEGER i357[3]={3,5,7}
   REAL X[LDIM] UNITS "-" --position then velocity in barycentric rotating frame addim
   REAL theta UNITS "-"
   REAL T_ECI,period UNITS "s"
   REAL periodDay UNITS "day"
   REAL r1,r2,Omega,Cjacobi UNITS "-"
   EXPL REAL wrotEM3D[3] , wrotEMCrossXXrot[3] UNITS "-" --dim
   EXPL REAL XX[6], XXrot[3] UNITS "SI" --dim
   EXPL REAL Rnorm UNITS "m"
   EXPL REAL Vnorm UNITS "m/s"
   DISCR REAL Xf_n[LDIM] UNITS "-" --point then velocity in barycentric rotating frame 
addim
   DISCR REAL dX6_dt[LDIM] UNITS "-" --velocity then acceleration in barycentric 
rotating frame addim 
   DISCR REAL Xo_n[7+10], Xo[7] UNITS "-" -- 6+added more rowse for compact 
information data
   DISCR REAL PHI[6,7] UNITS "-"
   DISCR REAL DF[3,3],D[3,3],XSo[3], XSo_star[3] ,Xff[3],ErrCumul 
UNITS "-"
   DISCR REAL muE,muS,muM UNITS "m^3/s^2"
   DISCR REAL dEM,AU,DU UNITS "m"
   DISCR REAL MassU UNITS "kg"
   DISCR REAL wrotEM UNITS "-"
   DISCR REAL mu UNITS "-"
   DISCR REAL G = 6.67384E-11 UNITS "m^3/(kg.s^2)"--+- 0.00080 m^3.kg^-1.s^-2 
   DISCR REAL convergence_tfo UNITS "-"
   DISCR REAL to_n,tf_n,Thalfperiod UNITS "-"
   DISCR REAL AbsTol UNITS "-"
   DISCR REAL L1, L2, L3 UNITS "DU" --for info 



INIT
   FOR (i IN 1,6)
      Xo[i] = 0
   END FOR
   GuessZ3notX1=GuessZ3notX1_o
   muE = 1*3.986005E14
   muS = 328902.82113001*3.986005E14--; % was Relative to earth
   muM = 0.0123000569113856 *3.986005E14
   mu=muM/(muE+muM)
   dEM=384400e3
   Xo[1]=Xo1 --GuessZ3notX1=3 --guess Z User to choose or default =3
   Xo[3]=Xo3
   Xo[5]=Xo5
   Thalfperiod=Thalfperiod_o
   DU=dEM
   MassU=(muE+muM)/G
   wrotEM=sqrt(G*MassU/DU**3) 
   --for info here only because mu in known and allow computation of L1 L2 L2
   L1=findLagrangePoints(0.83, mu)-- init value not too far from the wanted roots 
   L2=findLagrangePoints(1.15 , mu)
   L3=findLagrangePoints(-1.0, mu)
   PRINT (" for_information:_L1,L2,L3_in DistanceUnitsEarthMoon= $L1 $L2 $L3 ") 
   --Eco Normal Init of the derivatives 

   FOR (i IN 1,6)
      X[i]=Xo[i]
   END FOR
   Xo[7]= Thalfperiod --variable added
   i357[1]=GuessZ3notX1

DISCRETE
   WHEN FlagSearchPeriodicOrbit THEN -- this is like a program to be run 
before starting integratons by EcosimPro depending on the directive FlagSearchPeriodicOrbit . 
      --Inputs : Xo[i] (including Xo[7]= Thalfperiod), NloopNewtonHalo , mu OUT: X[i] initialized by 
Xo which is set to the last converged Xo_n[i] (for a good starting guess for other periodic orbits)
      --Iteration on the suited IVP fulfilling the goal (with xo fixed (index 1) )
      -- goal: after a half_period vx,vz and y shall be all null (index 4,6,2) with free variables to 
guess: initial values of zo, vyo, half_period (index 3,5 and variable tf_n)
      FlagSearchPeriodicOrbit=FALSE --clear the condition for running this routine
      to_n=0 --never modified here

      FOR (i IN 1,7)
         Xo_n[i]=Xo[i] --here we work with IVP Xo_n (including Thalfperiod) because Xo is 
never modified inside the next loop 

      END FOR
      --@@@@@@@@@@@@@@@@@@@@@@@@@@@

      FOR (k IN 1,NloopNewtonHalo)
         --call ODE integration for the final state Xf_n from the given IVP Xo_n to see how good 
are the guesses and process the iterations
         AbsTol=AbsTolM12--1E-12
         NbSteps=NbSteps2000
         NorderRK=NorderRK85
         Function_ODE_IVP=LDIM 
         tf_n=Xo_n[7] -- tf is a condition final for the ODE but it is as Thalfperiod an initial 
condition for the process of finding a periodic solution by convergence Newton 

         ODE113 (LDIM, to_n, tf_n, Xo_n, Xf_n, NorderRK, AbsTol, 
NbSteps, mu, Function_ODE_IVP, RKsteps6 )--out Xf_n
         --Zero search by Newton method iterations 

         FOR (i IN 1,3)
            XSo[i]=Xo_n[i357[i]]
         END FOR
         FOR (i IN 1,3)--Array with the 3 components results of ODE integration to be 
nullified by converging the IVP XSo to XSo_star 
            Xff[i]=Xf_n[i462[i]] -- i462[3]={4,6,2} i357[3]={3,5,7}

         END FOR
         --Jacobian at current final point tf_n=Xo_n[7] wrt IVP initial Xo_n given for to_n -- IT 
INCLUDES THE ODE113 SIZE 42

         STMatrixCR3BP ( to_n, tf_n , Xo_n, PHI, mu , 
RKsteps42)-- out PHI = d FF / d xx = d xxdot_i / d xx_j
         --derivative of X6 wrt time at final point, needed for getting the time derivatives to fill the 
matrix DF (dFF/dxx)

         Function_ODE_IVP_6( 6, Xf_n, dX6_dt, mu ) 
         FOR (i IN 1,6)--extended PHI last column added with time derivatives d FF / d t = d 
xxdot_i / d t in column 7
            PHI[i,7] = dX6_dt[i]
         END FOR
         -- dFF/dxx Full derivative of XXf (to be nullified) wrt XXo (selected state variables and 
time) i462[3]={4,6,2} i357[3]={3,5,7}

         FOR (i IN 1,3)
            FOR (j IN 1,3)
               DF[i,j] =PHI[i462[i],i357[j]] -- i462[3]={4,6,2} i357[3]={3,5,7}

            END FOR

         END FOR
         InvMatrix( 3,DF, D , ErrCumul)
         --XSo_star The next solution guess : XSo_star = XSo-inv(dFF/dxx)*Xff

         FOR (i IN 1,3)--extended PHI with time derivatives

            XSo_star[i]=XSo[i]-SUM (m IN 1,3; D[i,m]*Xff[m]) 
         END FOR
         --New Xo_n = Xo_n+1 for iterations

         FOR (i IN 1,7)
            Xo_n[i]=Xo[i] --come back to the first init conditions before update of the selected 
ones

         END FOR
         FOR (i IN 1,3)
            Xo_n[i357[i]]=XSo_star[i]--update the selected ones with better guesses

         END FOR
         -- end for the new Xo_n, ready to go for iterations
         --PRINTa1 (3, XSo_star , "new guess")
         --convergence and for info
         convergence_tfo=XSo_star[3]-XSo[3]
         Xo_n[8]= convergence_tfo --for info only and printing
         Xo_n[9]= NorderRK --for info only and printing
         Xo_n[10]= RKsteps6 --for info only and printing
         Xo_n[11]= RKsteps42 --for info only and printing
         Xo_n[12]= ErrCumul --for info only and printing
         Xo_n[13]= mu --for info only and printing

      END FOR --k
      --@@@@@@@@@@@@@@@@@@@@@@@@@@@
      PRINTa1 (13, Xo_n, "final_Xo_n--_tf_n_converg_RK..._err--_mu ")

      FOR (i IN 1,7)--Update Xo from last converged Xo_n, and also memorized for starting 
other periodic orbit search if any
         Xo[i]=Xo_n[i] --including the time tf_n

      END FOR
      --Update wrt Init: New init conditions for derivative variables for EcosimPro integration: the 
right one for a periodic orbit

      FOR (i IN 1,6) --only 6 for X

         X[i]=Xo[i]
      END FOR
   END WHEN

CONTINUOUS
   r1=((mu+X[1])**2+X[2]**2+X[3]**2)**(1/2)--distance point to body1
   r2=((mu+X[1]-1)**2+X[2]**2+X[3]**2)**(1/2)--distance point to body2
   EXPAND (i IN 1,3) X[i+3] = X[i]'
   --dynamic f=ma in barycentric rotating frame, see for example J.D. Mireles James and many 
others
   X[4]'=+X[1]+2*X[5]-(X[1]+mu)*(1-mu)/r1**3-(X[1]+mu-1)*mu/r2**3 
   X[5]'=+X[2]-2*X[4]-X[2]*(1-mu)/r1**3-X[2]*mu/r2**3
   X[6]'=-X[3]*(1-mu)/r1**3-X[3]*mu/r2**3
   --for info

   Omega=0.5*(X[1]**2+X[2]**2)+(1-mu)/r1+mu/r2
   Cjacobi=2*Omega-(X[4]**2+X[5]**2+X[6]**2)
   --Geocentric results in ECI with vector XX
   T_ECI=TIME/wrotEM --TIME is addim = 6.28 for 1 period
   period=2*3.1415926535897932384626433832795 /wrotEM
   periodDay=period/86400
   EXPAND (i IN 1,2) wrotEM3D[i]=0 -- only 2 first coordinates
   wrotEM3D[3]=wrotEM -- the 3rd coordinate
   --cross product
   wrotEMCrossXXrot[3]=wrotEM3D[1]*XXrot[2]-wrotEM3D[2]*XXrot[1]
   wrotEMCrossXXrot[1]=wrotEM3D[2]*XXrot[3]-wrotEM3D[3]*XXrot[2]
   wrotEMCrossXXrot[2]=wrotEM3D[3]*XXrot[1]-wrotEM3D[1]*XXrot[3]
   EXPAND_BLOCK (i IN 1,3) 
         XXrot[i] = X[i]*DU 
         XX[i+3] = X[i+3]*DU*wrotEM+wrotEMCrossXXrot[i]
   END EXPAND_BLOCK
   theta=TIME --wrotEM*T_ECI
   XX[1] = XXrot[1]*cos(theta)-XXrot[2]*sin(theta)
   XX[2] = XXrot[1]*sin(theta)+XXrot[2]*cos(theta)
   XX[3] = XXrot[3]
   -- useful
   Rnorm=sqrt(SUM(i IN 1,3; XX[i]**2))
   Vnorm=sqrt(SUM(i IN 4,6; XX[i]**2))

END COMPONENT


