
NEW TOOL FOR FINDING PERIODIC HALO ORBITS: THE SOLVER OF A SPACECRAFT
SIMULATOR (ESPSS -ECOSIMPRO® EUROPEAN SPACE PROPULSION SYSTEM

SIMULATION)

Christophe R. Koppel

KopooS Consulting Ind., 57 rue d'Amsterdam-75008 Paris

ABSTRACT

Halo orbits and other periodic orbits in the restricted circular
3 body problem has always been very well explained in the
literature since their discovery by Farquhar in the 60's of last
century. However for finding the numerical values of such
orbits, the availability of the tools dedicated for such tasks is
not obvious. Due to the fact that the differential equations
are quite simple, these days most of the time tools used are
based on some computer listings written within an US based
mathematical framework, which is clearly dedicated for
people highly involved in computer and computer language
rather than for general purpose Engineers.
Hence the approach chosen in the paper is to rely on a tool
largely used by Engineers (and not computer guys) for
taking advantage of the capabilities of solving dynamic
problems: the tool used is a European tool which is an
object oriented solver of differential equations which is the
cornerstone of the Spacecraft Simulator (ESPSS -
EcosimPro® European Space Propulsion System
Simulation) largely used by engineers.
The paper presents the mathematical problem in simple
words and the method used to solve it.
The major advantages of the approach proposed and used
successfully is to benefit of a real simulation framework
based on models and on experiments where there are no
mixing between the inputs\outputs needs and the real
problem being to be solved. Hence the full model can be
clearly and explicitly described while the results coming
from the experiments can be extensively assessed and
analysed with simple monitor outputs.

Index Terms— Solver, Halo, EcosimPro, ESPSS

1. INTRODUCTION
The use of an engineering simulation tool not dedicated to
computer people neither to mathematicians or numerical
analysts can be considered as a great improvement of the
current engineering practices. The paper describes the
integration of the equations into EcosimPro® which is a
Physical Simulation Modelling tool that is an object-
oriented tool dedicated for system analysis. That is a visual
simulation tool capable of solving various kinds of dynamic
systems represented by writing equations and discrete

events. It can be used to study both transients and steady
states. The object oriented tool, with the propulsion libraries
ESPSS (European Space Propulsion System Simulation)
from ESA for example, allows the user to draw (and to
design at the same time) the propulsion system with
components of that specific library with tanks, lines,
orifices, thrusters, tees. The user enhances the design with
components from the thermal library (heaters, thermal
conductance, radiators), from the control library
(analogue/digital devices), from the electrical library, etc.

Because this tool, developed for ESA is available freely
for every of its engineers, and available too at all prime
satellite corporations, and in many other companies, it has
been found interesting to assess its use for deeper
mathematical problems like finding halo orbits around
Earth-Moon L2 point as it is needed to know for some
preliminary projects.
Most of the well known problems take as starting point the
circular restricted three body problem, which models the
motion of a massless particle under the gravitational
attraction of two punctual primaries revolving in circular
orbits around their centre of mass. In the rotating frame, the
two bodies remain fixed, and the point L2 is also fixed (as
well as 4 other well known points). It is rather easy to find
the characteristic point L2, but orbits around such point
must be solved with a so high accuracy that the problem is
more to find initial condition with the same accuracy. This
problem is thus presented below, first with the equations
which are not very complex, then the method used within
EcosimPro to iterate to a good enough solution.

2. THE DIFFERENTIAL SYSTEM
First, one presents directly the differential system needed to
be solved for finding any trajectory (without thrust) in the
circular restricted three body problem (CR3BP), one has:

)(XfX  (1)
where the vector X is a 6 dimensions vector and the vector
function f contains equations according to the following one
column matrixes.

6th ICATT, Darmstadt, March 15th to 17th, 2016

    

 

 










































































r
z

r
z

r
y

r
yxy

r
x

r
xyx

z
y
x

Xf

z
y
x
z
y
x

X

3
2

3
1

3
2

3
1

3
2

3
1

1

12

)1(12)(




























with

22

22

zy-(1(xr
z
y

x
r

zy(-(xr
z
y

x
r
















 

















 


2
22

2
11

))
)1(

))
)(







This system of differential equations (1) comes from the fact
that one considers the non dimensional rotating two main
body system centered at the system center of mass.
First, the relative position of the third body r having
coordinates x,y,z is sketched in Figure 1.

Figure 1: Non dimensional rotating frame considered

A very important simplification comes from the fact that the
main body orbit is supposed here circular, so the angular
rotation of the rotating system wrt inertial frame is
constant. A standard convention for such problem in non
inertial frame, is used: the total mass of the system is a unit
mass (m1 + m2 = 1) and the constant separation between
main body is a unit length. The normalized mass of both
main body then follows as m1 = 1 - μ and m2 = μ. The time
unit is 2 for one period of the system, leading to =1 as for
the gravitation constant G=1.Velocity derivative equation
(i.e. acceleration) of the third body is thus quite easy to
derive because in the rotating system, the well known
expression of the relative acceleration r for a constant 



under the two main body gravitational attractions stands as:

  23
2

13
1

)1(2 r
r

r
r

rrr  
 




With simply 


=1 along the z axis, the cross products are
obvious, giving straightforward the system (1).

3. SOME PERIODIC ORBITS
For some periodic orbit it is sufficient to find initial
conditions of X (position and velocity) such that after half an
orbit some values remain null as initially:



























0

0

0

)0(

0

0

0

y

z

x

X





























0

0

0

)(

y

z

x

T½X



In clear, the starting point is in the x,z plane because y0=0
with no velocity on x, z but with velocity on y: 0y ≠0.
One notes that in the final condition there are 3 zeros.

4. SOLUTIONS OF PERIODIC ORBITS
To find a periodic orbit, one supposes that a first starting
point not too far from the solution is given.
In order to reduce the number of guesses to do, one can fix
the initial value 0x (and further make a loop on it) .The new

problem of the 3 zeros is for a given 0x , to find Y such that:

0)(Yg with





















2
1

0

0

T
y
z

Y  and

2
1

)(
)(
)(

)(

Tt
tz
tx
ty

Yg























where the value T½ is the time at which y is for the first time
null after the integration 0 to t; i.e. the trajectory is back to
the x, z plane whatever the values of velocities along x or z.
Those two last values have to be nullified: iterations by
Newton method can be used for finding right guesses for
nullified all the lines of)(Yg :

)(.
1

1 n
YY

nn Yg
Y
gYY

n




 













Note : This is like for a 1-D curve: finding a new
guess u1 after u0 of a function h(u)=0, one follows
the tangent of the curve h(u) at point u=u0 up
crossing the line "0",

010

0 0)(
uudu

dh
uu

uh




 .

Hence  0)(. 0

1

10
0














uh

du
dhuu

uu

 giving

)(. 0

1

01
0

uh
du
dhuu

uu












 in one dimension.

x
y

-µ

1-µ

r2
r1 r



Here the tangent (or Jacobian differential) is a bit delicate
because the definition of g is including integration 0 to T½.

The derivative matrix
nYYY

g



is:

 for the sub set of variable Y: 








0

0

y
z


,
nYYY

g



comprises

integration of a subset of the derivative of the general
function f in (1))(XfX  for which one has the STM

(state transition matrix):
0

),(0
tt

tt

X
X

ttM







 defined by

the differential equation with initial value (2):






















0

),(0
tt

tt

X

X

dt
dttM  Identity

X

X
ttM

tt

tt 









0

0),(00
(2)

That is an impressive system of 36 differential
equations to be integrated simultaneously from t=0 to t,
but some of the equations are trivial...

Note: because the time is not explicitly appearing
in the equations f(X) as the system is autonomous,
one has:

),(),(00

000

ttM
X
f

X
X

X
X

X
X

X
X

dt
dttM

tt

tt

tt

tt

tt

tt

tt

tt 





























































































Hence, it is obvious that (2) can better rely on the
following differential equation (3) involving f :

),(),(00 ttM
X
fttM 







 . (3)

 for the sub set of variable Y: 



 T

2
1 ,

nYYY
g




is given

by
n

n
YY

YY
g

dt
dg



  , this is directly a sub set of the f

function itself in (1))(XfX  which is to be
integrated as well (6 additional differential equations).

A. PRACTICAL APPROACH
By numbering the variables of the first problem (1) with
index 1 to 6 and numbering the variable t to index 7, one
gets straight forward successively that Y involves variables
index 3 5 7 and g(Y) involves variables index 2 4 6. Hence
the derivative matrix can be written symbolically in short as
in equation (3):

nYYdY
dg


=  ),(0ttMof642rowsof53Col.  )(Xfof642rows

B. FINAL RESOLUTION
Finally the solution of periodic orbits is performed by the
integration of a system of 36 + 6= 42 differential equations
and that within a second sub-loop for finding the solution

0)(Yg with Newton, which leads to periodic orbit.
A primary loop on the fixed variable allows plotting many
halo orbits.
With some tests, it was better to guess 0x while keeping

fixed 0z so in the equations above it is just matter of
replacing the index 3 by index 1.

Note: The model and experiment is a standalone model
within EcosimPro "as-is" without real need of sophisticated
libraries like ESPSS, even if for further applications this
library would be highly recommended. In addition to the
equations in EL (EcosimPro langage) shown below, a
simple function so called "ODE113" has been implemented
for the integration of the 6 and 42 differential equations
(based on Runge-Kutta with possibility of error control and
variable time steps) and also a matrix inversion routine with
error quantification has been added. Such features could be
as well added by the Ecosimpro team to EcosimPro "as-is"!

5. APPLICATION TO HALO ORBITS LAGRANGE
POINT L2 OF THE SYSTEM EARTH+MOON

The system of equations (1) representing the CRTBP is used
for the Earth+Moon system with µ = 0.0121506038.
For the following set of initial values:

x0= 1.12
z0=0.01 (fixed for each Halo)

0y = 0.17
T½= 1.7

we get the following Figure 2 of simulation plots of 20 Halo
orbits with run time around of half second for each Halo
orbit. After each halo the fixed value z0 is increased by 1%
each time.
Of course, the above plot is very useful for analysts, but for
a first view showing the complexity of the periodic
solution, using a 3D visualisation tool fed by the data from
EcosimPro we can get a cubic view with projections of the
orbits on the three reference planes as in Figure 3.

(3)

Figure 2: simulation plots of 20 Halo orbits around Earth+Moon L2

Figure 3: 3D visualisation of 20 Halo orbits around Earth+Moon L2 (3D cubic view)

6. CONCLUSIONS
The paper has presented in simple words the mathematical
problem of finding some Halo orbits and the method
implemented to solve it within the EcosimPro environment.
The major advantages of the approach and used successfully
is to benefit of a real simulation framework based on models
and on experiments where there are no mixing between the
inputs\outputs needs and the real problem being to be
solved.
Hence the full model can be clearly and explicitly described
while the results coming from the experiments can be
extensively assessed and analysed with simple EcosimPro
monitor outputs.

7. REFERENCES
[1] Robert W. Farquhar "The Utilization of Halo Orbit in
Advanced Lunar Operation," NASA-TN-D-6365, JULY 1971

[2] J.D. Mireles James, "Celestial Mechanics Notes Set 1:
Introduction to the N-Body Problem," January 3, 2007

[3] Franco Bernelli Zazzera, Francesco Topputo, Mauro Massari,
"Assessment of Mission Design Including Utilization of Libration
Points and Weak Stability Boundaries," for Advanced Concepts
Team (ESTEC), 2005

[4] JeffreyS. Parker, "Developing a Mission Design Architecture
for the EarthMoon Three-Body System," thesis December 3, 2004

8. ANNEX: TRACEABILITY
For readers interested to run similar cases, the full listing of
the experiment and the model in the EcosimPro environment
is given below.
A. LISTING OF THE EXPERIMENT

/*---
LIBRARY: MY_SAT
COMPONENT: Halo
PARTITION: default
EXPERIMENT: exp1
TEMPLATE: TRANSIENT
---*/

EXPERIMENT exp1 ON Halo.default
DECLS
 REAL T_Halo
 STRING Filnam="Rep"

 INTEGER nbHalo=1
OBJECTS
INIT
BOUNDS
 MY_SAT.AbsTolM12 = 1e-012
 MY_SAT.NbSteps2000 = 50
 MY_SAT.NorderRK85 =4 -- 5

BODY
 GuessZ3notX1_o=1
 Xo1= 1.12 -- x_o

 Xo3=0.01 -- zo FIXED NOW

 Xo5= 0.17--ydot_o

 Thalfperiod_o=1.7-- t

 NloopNewtonHalo=15

 T_Halo=2*Thalfperiod_o
 nbHalo=20
 Filnam="Halo20.rpt"
 -- creates an ASCII file with the results in table format

 REPORT_TABLE(Filnam, " *X[*] *XX[*] *PHI* Cj* A* G* Halo* *12 *00 *85 *U *RK Om*

R* T_* Teco* V* conv* mu* per* r* wrot*] dE* L* ")
 DEBUG_LEVEL= 1
 IMETHOD= DASSL
 setStopWhenBadOperation(FALSE)
 REL_ERROR = MY_SAT.AbsTolM12
 ABS_ERROR = REL_ERROR
 TOLERANCE =REL_ERROR REPORT_MODE=IS_STEP
 TIME = 0
 FOR (i IN 1, nbHalo)
 FlagSearchPeriodicOrbit=TRUE
 INTEG_TO(TIME+T_Halo,1)
 -- Case of series of Halo orbits (evolution of z)

 IF i!=nbHalo THEN --change but not for the last one to keep all results of the last case

 Xo[3]=Xo[3]+i*Xo[3]*0.01
 END IF
 END FOR
END EXPERIMENT

B. LISTING OF THE MODEL
COMPONENT Halo
DATA

 REAL Xo1=0.99197555537727 UNITS "DU" "xo"
 REAL Xo3=-0.00191718187218 UNITS "DU" "zo"
 REAL Xo5=-0.01102950210737 UNITS "DU/TU" "vyo"
 REAL Thalfperiod_o=1.52776735363559 UNITS "TU" "half period for
periodic orbit, initial guess"
 INTEGER NloopNewtonHalo=0 UNITS "-" " 0 --no convergence-- else up to 14 is
enough for convergennce"
 INTEGER GuessZ3notX1_o=3 UNITS "-" " flag=3 for xo fixed and zo guess
==>find a Lyapunov plan; flag=1 for zo fixed and xo guess ==>find Halo from a Lyapunov plan
with some small zo "
 --REAL RunCode=2 UNITS "-" "code=0: J.D. Mireles James 1 Nick Truesdale 2: Earth Moon
L2, 10: J.D. Mireles James L2 from Lyapunov, etc..."

DECLS
 BOOLEAN FlagSearchPeriodicOrbit=TRUE --directive for new search of
periodic orbits
 CONST INTEGER LDIM=6
 INTEGER NorderRK,NbSteps, RKsteps42,RKsteps6,
GuessZ3notX1,Function_ODE_IVP --info
 INTEGER i462[3]={4,6,2}
 INTEGER i357[3]={3,5,7}
 REAL X[LDIM] UNITS "-" --position then velocity in barycentric rotating frame addim
 REAL theta UNITS "-"
 REAL T_ECI,period UNITS "s"
 REAL periodDay UNITS "day"
 REAL r1,r2,Omega,Cjacobi UNITS "-"
 EXPL REAL wrotEM3D[3] , wrotEMCrossXXrot[3] UNITS "-" --dim
 EXPL REAL XX[6], XXrot[3] UNITS "SI" --dim
 EXPL REAL Rnorm UNITS "m"
 EXPL REAL Vnorm UNITS "m/s"
 DISCR REAL Xf_n[LDIM] UNITS "-" --point then velocity in barycentric rotating frame
addim
 DISCR REAL dX6_dt[LDIM] UNITS "-" --velocity then acceleration in barycentric
rotating frame addim
 DISCR REAL Xo_n[7+10], Xo[7] UNITS "-" -- 6+added more rowse for compact
information data
 DISCR REAL PHI[6,7] UNITS "-"
 DISCR REAL DF[3,3],D[3,3],XSo[3], XSo_star[3] ,Xff[3],ErrCumul
UNITS "-"
 DISCR REAL muE,muS,muM UNITS "m^3/s^2"
 DISCR REAL dEM,AU,DU UNITS "m"
 DISCR REAL MassU UNITS "kg"
 DISCR REAL wrotEM UNITS "-"
 DISCR REAL mu UNITS "-"
 DISCR REAL G = 6.67384E-11 UNITS "m^3/(kg.s^2)"--+- 0.00080 m^3.kg^-1.s^-2
 DISCR REAL convergence_tfo UNITS "-"
 DISCR REAL to_n,tf_n,Thalfperiod UNITS "-"
 DISCR REAL AbsTol UNITS "-"
 DISCR REAL L1, L2, L3 UNITS "DU" --for info

INIT
 FOR (i IN 1,6)
 Xo[i] = 0
 END FOR
 GuessZ3notX1=GuessZ3notX1_o
 muE = 1*3.986005E14
 muS = 328902.82113001*3.986005E14--; % was Relative to earth
 muM = 0.0123000569113856 *3.986005E14
 mu=muM/(muE+muM)
 dEM=384400e3
 Xo[1]=Xo1 --GuessZ3notX1=3 --guess Z User to choose or default =3
 Xo[3]=Xo3
 Xo[5]=Xo5
 Thalfperiod=Thalfperiod_o
 DU=dEM
 MassU=(muE+muM)/G
 wrotEM=sqrt(G*MassU/DU**3)
 --for info here only because mu in known and allow computation of L1 L2 L2
 L1=findLagrangePoints(0.83, mu)-- init value not too far from the wanted roots
 L2=findLagrangePoints(1.15 , mu)
 L3=findLagrangePoints(-1.0, mu)
 PRINT (" for_information:_L1,L2,L3_in DistanceUnitsEarthMoon= $L1 $L2 $L3 ")
 --Eco Normal Init of the derivatives

 FOR (i IN 1,6)
 X[i]=Xo[i]
 END FOR
 Xo[7]= Thalfperiod --variable added
 i357[1]=GuessZ3notX1

DISCRETE
 WHEN FlagSearchPeriodicOrbit THEN -- this is like a program to be run
before starting integratons by EcosimPro depending on the directive FlagSearchPeriodicOrbit .
 --Inputs : Xo[i] (including Xo[7]= Thalfperiod), NloopNewtonHalo , mu OUT: X[i] initialized by
Xo which is set to the last converged Xo_n[i] (for a good starting guess for other periodic orbits)
 --Iteration on the suited IVP fulfilling the goal (with xo fixed (index 1))
 -- goal: after a half_period vx,vz and y shall be all null (index 4,6,2) with free variables to
guess: initial values of zo, vyo, half_period (index 3,5 and variable tf_n)
 FlagSearchPeriodicOrbit=FALSE --clear the condition for running this routine
 to_n=0 --never modified here

 FOR (i IN 1,7)
 Xo_n[i]=Xo[i] --here we work with IVP Xo_n (including Thalfperiod) because Xo is
never modified inside the next loop

 END FOR
 --@@@@@@@@@@@@@@@@@@@@@@@@@@@

 FOR (k IN 1,NloopNewtonHalo)
 --call ODE integration for the final state Xf_n from the given IVP Xo_n to see how good
are the guesses and process the iterations
 AbsTol=AbsTolM12--1E-12
 NbSteps=NbSteps2000
 NorderRK=NorderRK85
 Function_ODE_IVP=LDIM
 tf_n=Xo_n[7] -- tf is a condition final for the ODE but it is as Thalfperiod an initial
condition for the process of finding a periodic solution by convergence Newton

 ODE113 (LDIM, to_n, tf_n, Xo_n, Xf_n, NorderRK, AbsTol,
NbSteps, mu, Function_ODE_IVP, RKsteps6)--out Xf_n
 --Zero search by Newton method iterations

 FOR (i IN 1,3)
 XSo[i]=Xo_n[i357[i]]
 END FOR
 FOR (i IN 1,3)--Array with the 3 components results of ODE integration to be
nullified by converging the IVP XSo to XSo_star
 Xff[i]=Xf_n[i462[i]] -- i462[3]={4,6,2} i357[3]={3,5,7}

 END FOR
 --Jacobian at current final point tf_n=Xo_n[7] wrt IVP initial Xo_n given for to_n -- IT
INCLUDES THE ODE113 SIZE 42

 STMatrixCR3BP (to_n, tf_n , Xo_n, PHI, mu ,
RKsteps42)-- out PHI = d FF / d xx = d xxdot_i / d xx_j
 --derivative of X6 wrt time at final point, needed for getting the time derivatives to fill the
matrix DF (dFF/dxx)

 Function_ODE_IVP_6(6, Xf_n, dX6_dt, mu)
 FOR (i IN 1,6)--extended PHI last column added with time derivatives d FF / d t = d
xxdot_i / d t in column 7
 PHI[i,7] = dX6_dt[i]
 END FOR
 -- dFF/dxx Full derivative of XXf (to be nullified) wrt XXo (selected state variables and
time) i462[3]={4,6,2} i357[3]={3,5,7}

 FOR (i IN 1,3)
 FOR (j IN 1,3)
 DF[i,j] =PHI[i462[i],i357[j]] -- i462[3]={4,6,2} i357[3]={3,5,7}

 END FOR

 END FOR
 InvMatrix(3,DF, D , ErrCumul)
 --XSo_star The next solution guess : XSo_star = XSo-inv(dFF/dxx)*Xff

 FOR (i IN 1,3)--extended PHI with time derivatives

 XSo_star[i]=XSo[i]-SUM (m IN 1,3; D[i,m]*Xff[m])
 END FOR
 --New Xo_n = Xo_n+1 for iterations

 FOR (i IN 1,7)
 Xo_n[i]=Xo[i] --come back to the first init conditions before update of the selected
ones

 END FOR
 FOR (i IN 1,3)
 Xo_n[i357[i]]=XSo_star[i]--update the selected ones with better guesses

 END FOR
 -- end for the new Xo_n, ready to go for iterations
 --PRINTa1 (3, XSo_star , "new guess")
 --convergence and for info
 convergence_tfo=XSo_star[3]-XSo[3]
 Xo_n[8]= convergence_tfo --for info only and printing
 Xo_n[9]= NorderRK --for info only and printing
 Xo_n[10]= RKsteps6 --for info only and printing
 Xo_n[11]= RKsteps42 --for info only and printing
 Xo_n[12]= ErrCumul --for info only and printing
 Xo_n[13]= mu --for info only and printing

 END FOR --k
 --@@@@@@@@@@@@@@@@@@@@@@@@@@@
 PRINTa1 (13, Xo_n, "final_Xo_n--_tf_n_converg_RK..._err--_mu ")

 FOR (i IN 1,7)--Update Xo from last converged Xo_n, and also memorized for starting
other periodic orbit search if any
 Xo[i]=Xo_n[i] --including the time tf_n

 END FOR
 --Update wrt Init: New init conditions for derivative variables for EcosimPro integration: the
right one for a periodic orbit

 FOR (i IN 1,6) --only 6 for X

 X[i]=Xo[i]
 END FOR
 END WHEN

CONTINUOUS
 r1=((mu+X[1])**2+X[2]**2+X[3]**2)**(1/2)--distance point to body1
 r2=((mu+X[1]-1)**2+X[2]**2+X[3]**2)**(1/2)--distance point to body2
 EXPAND (i IN 1,3) X[i+3] = X[i]'
 --dynamic f=ma in barycentric rotating frame, see for example J.D. Mireles James and many
others
 X[4]'=+X[1]+2*X[5]-(X[1]+mu)*(1-mu)/r1**3-(X[1]+mu-1)*mu/r2**3
 X[5]'=+X[2]-2*X[4]-X[2]*(1-mu)/r1**3-X[2]*mu/r2**3
 X[6]'=-X[3]*(1-mu)/r1**3-X[3]*mu/r2**3
 --for info

 Omega=0.5*(X[1]**2+X[2]**2)+(1-mu)/r1+mu/r2
 Cjacobi=2*Omega-(X[4]**2+X[5]**2+X[6]**2)
 --Geocentric results in ECI with vector XX
 T_ECI=TIME/wrotEM --TIME is addim = 6.28 for 1 period
 period=2*3.1415926535897932384626433832795 /wrotEM
 periodDay=period/86400
 EXPAND (i IN 1,2) wrotEM3D[i]=0 -- only 2 first coordinates
 wrotEM3D[3]=wrotEM -- the 3rd coordinate
 --cross product
 wrotEMCrossXXrot[3]=wrotEM3D[1]*XXrot[2]-wrotEM3D[2]*XXrot[1]
 wrotEMCrossXXrot[1]=wrotEM3D[2]*XXrot[3]-wrotEM3D[3]*XXrot[2]
 wrotEMCrossXXrot[2]=wrotEM3D[3]*XXrot[1]-wrotEM3D[1]*XXrot[3]
 EXPAND_BLOCK (i IN 1,3)
 XXrot[i] = X[i]*DU
 XX[i+3] = X[i+3]*DU*wrotEM+wrotEMCrossXXrot[i]
 END EXPAND_BLOCK
 theta=TIME --wrotEM*T_ECI
 XX[1] = XXrot[1]*cos(theta)-XXrot[2]*sin(theta)
 XX[2] = XXrot[1]*sin(theta)+XXrot[2]*cos(theta)
 XX[3] = XXrot[3]
 -- useful
 Rnorm=sqrt(SUM(i IN 1,3; XX[i]**2))
 Vnorm=sqrt(SUM(i IN 4,6; XX[i]**2))

END COMPONENT

