Debris cloud analytical propagation for a space environmental index

Francesca Letizia, Camilla Colombo, Hugh G. Lewis Astronautics Research Group, University of Southampton

> Holger Krag Space Debris Office, ESOC

6th International Conference on Astrodynamics Tools and Techniques Orbit Determination and Prediction Techniques (II) Darmstadt, 16th March 2016

SPACE DEBRIS ENVIRONMENT *metrics for the impact of fragmentations*

Long term evolution of space debris environment highly affected by the fragmentations of massive objects

Different **metrics** to rank space objects depending on their **impact on the environment** considering several factors

(e.g. mass, orbit, residual lifetime)

> Utzmann et al. 2012, Bastida Virgili and Krag 2013, Lang et al. 2013, Lewis 2014, Rossi et al. 2015,

Possible application: identification of good **candidates** for **active debris removal** missions

Growth of the catalogued population of objects in Earth orbit (IADC)

Environmental Consequences of Orbital Breakups

It measures how the **fragmentation** of the spacecraft will affect the collision risk for **operational satellites** in LEO

OUTLINE

INTRODUCTION	01	02	03	CONCLUSIONS
	Target selection	Index computation	Applications	
	Definition of a set of targets representative of operational satellites	Structure of the tool and computation for the objects in DISCOS	Connection between the index and the severity of breakups	

Target selection

TARGET SELECTION algorithm

- 1 Input: database with all possible targets
- 2 Definition of a grid in altitude (semi-major axis) and inclination and computation of the total cross-sectional area in each cell

TARGET SELECTION

2

distribution of the cross-sectional area

spacecraft launched in the last 10 years, in orbit between 700 and 1000 km (DISCOS)

TARGET SELECTION

algorithm

- Input: database with all possible targets
- 2 Definition of a grid in altitude (semi-major axis) and inclination and computation of the total area in each cell
- 3 Selection of top cells and definition of representative objects area-to-mass ratio equal to cell average semi-major axis and inclination equal to the cell centre

TARGET SELECTION

algorithm

- Input: database with all possible targets
- 2 Definition of a grid in altitude (semi-major axis) and inclination and computation of the total area in each cell
- 3 Selection of top cells and definition of representative objects area-to-mass ratio equal to cell average semi-major axis and inclination equal to the cell centre
- 4 Index = sum of the collision probability for the reference targets

$$I = \sum_{j=1}^{N_T} w_j p_{c,j}$$

$$w_j = \frac{(A_c)_{\text{cell},j}}{(A_c)_{\text{tot}}}$$

weighting factor based on how relevant the cell is compared to the total population

 $p_{c,j}$

cumulative collision probability for the *j* object after **25** years

Index computation

2

variation with orbital parameters and mass

Index computed for **synthetic** objects on a grid of **semi-major axis**, **inclination**, **mass**

variation with orbital parameters and mass

Index computed for **synthetic** objects on a grid of **semi-major axis**, **inclination**, **mass**

The variation of the index with the **mass** follows the same **power law** that describes the **number of fragments** as a function of the fragmenting mass

Index ~ $M^{0.75}$ N_F ~ $M^{0.75}$ (NASA breakup model)

The index can be computed for a **reference mass** and **rescaled**

The variation of the index

reference layer for fixed mass value (10000 kg)

INDEX COMPUTATION *reference layer for fixed mass value (10000 kg)*

two-step process

Computation of the index for any space object

- **1 Rescaling** of the *reference layer* according to the **mass** of the object
- 2 Interpolation of the value on the grid points, to obtain the index considering the value of **semi-major axis** & **inclination**

STRUCTURE OF THE TOOL

INDEX COMPUTATION *combination with DISCOS database*

Applications

3

EXAMPLE OF APPLICATION

licensing process

Possible applications of the index

- candidates for active debris removal
- support to spacecraft licensing

It could be apply to distinguish different classes of satellites and orbital regimes when evaluating the compliance with end-of-life requirements

Interest in creating a **standard licensing procedure** to encourage commercial investors

INTERPRETATION OF THE INDEX

severity categories

Connection between the index and the severity categories in FMECA (Failure Modes, Effects, and Criticality Analysis)

Severity	Dependability effects	Safety effects	Breakup consequences
Catastrophic	Failure propagation	Severe detrimental environment effects	Subsequent collisions
Critical	Loss of mission	Major detrimental environment effects	Major increase in collision risk
Major	Major mission degradation		Increase in collision warnings
Minor	Minor mission degradation		Negligible

European Cooperation for Space Standardisation,

"Space product assurance: Failure modes, effects (and criticality) analysis," ESA Requirements and Standards Division, ECSS-Q-ST-30-02C, 2009

CLASSIFICATION OF MISSIONS

severity categories and criticality matrix

The link between index & severity cannot be based on the numerical value only

(it depends on the set of targets)

Definition of **reference breakups** as thresholds of the severity levels (e.g. Iridium, Fengyun 1-C, Envisat)

The severity categories are combined with the probability level in the **criticality matrix**: orange cell = critical element suggested design review

CONCLUSIONS

An environmental index based on the assessment of the effect of breakups on **operational satellites** is proposed.

A set of **representative targets** is defined starting from the distribution of **cross-sectional area** in semi-major axis and inclination. The index is obtained as sum of the collision probability for the targets.

The index is initially computed for a fixed **mass** value and on a grid of points in **semi-major axis** and **inclination**. The index for studied spacecraft is obtained by **interpolation** of the values on the grid points.

The index can be combined with a database of spacecraft to identify good candidates for **active debris removal**. It can also be applied to the **licensing** phase of satellites by connecting the value of the index to the definition of severity categories.

Debris cloud analytical propagation for a space environmental index

Francesca Letizia Astronautics Research Group Faculty of Engineering and the Environment University of Southampton

🖂 f.letizia@soton.ac.uk

Southampton

Backup slides

Computational time Comparison with other formulations

COMPUTATIONAL TIME *MATLAB parallel + IRIDIS*

COMPARISON WITH OTHER INDICES

Figure of Merit (FOM)

Criticality of Spacecraft Index (CSI or Ξ)

$$FOM = \Phi(h)A_c m^{0.75}\Delta t(h)$$

$$\Xi = \frac{m}{m_0} \frac{D(h)}{D(h_0)} \frac{\Delta t(h)}{\Delta t(h_0)} \frac{1 + k\Gamma(i)}{1 + k}$$

> Utzmann et al, Ranking and characterization of heavy debris for active removal, IAC, 2012 > Rossi et al, The Criticality of Spacecraft Index, ASR 56(3), 2015

Yes (Flux, Φ)	Environment	Yes (Density, D)
Yes	Cross sectional area (A_c)	No
Yes	Mass (m)	Yes
Yes	Lifetime (∆t)	Yes
No	Inclination	Yes

COMPARISON WITH OTHER INDICES correlation with FOM

COMPARISON WITH OTHER INDICES

correlation with CSI

> Rossi et al, The Criticality of Spacecraft Index, ASR 56(3), 2015

COMPARISON WITH OTHER INDICES *components of CSI*

COMPARISON WITH OTHER INDICES

CSI objects distribution

