<u>Real-Time Atmospheric Entry Trajectory Computation</u> <u>Using Parametric Sensitivities</u>

6th International Conference on Astrodynamics Tools and Techniques – ID 121

David Seelbinder German Aerospace Center Institute of Space Systems ⊠ david.seelbinder@dlr.de **Prof. Christof Büskens** University Bremen Center for Technomathematics

 \boxtimes bueskens@math.uni-bremen.de

Knowledge for Tomorrow

Guided Entry Phase

esa

Image credit: ESA

Guided Entry Phase

esa

Image credit: ESA

Agenda

Trajectory computation

- Offline sensitivity analysis
- Online solution approximation
- Two-Degree of Freedom Guidance System

Results of Monte Carlo Campaign

- Results of Processor-in-the-loop test
- > Summary

Offline Process: Problem Formulation and Transcription

OCP(p)

Formulation as parametric Optimal Control Problem:
min_z

$$J(x, u, p) = g(x(t_0), x(t_f), p) + \int_{t_0}^{t_f} l(x(t), u(t), p) dt$$
w.r.t.
$$\dot{x}(t) = f(x(t), u(t), p)$$

$$\psi_0(x(t_0), p) = 0$$

$$\psi_f(x(t_f), p) = 0$$

$$C(x(t), u(t), p) \le 0$$

$$t \in [t_0, t_f]$$

Offline Process: Problem Formulation and Transcription

➢Direct optimization

- Discretization (Runge-Kutta-4, Linear control interpolation)
- Transcription into a parametric <u>Nonlinear Program</u> (shooting technique)

 $\min_{z} \qquad F(z, p_{0}) \\ \text{w.r.t.} \qquad g_{l} \leq G(z, p_{0}) \leq g_{u}$

>Choice of a nominal parameter set p_0

Offline Process: Sensitivity Analysis I

OCP(p) -Trans **NLP(p_0)** -WORHP
$$\frac{z^*[p_0]}{\frac{dz}{dp}[p_0]}$$

➢ Obtain nominal optimal solution $z_0 = z^*(p_0)$

- > Let z_0 fulfill strong second order sufficient conditions
- Karush-Kuhn-Tucker-matrix is invertible
- Sensitivity differentials (SD) are computable

$$\begin{bmatrix} \frac{dz}{dp} [p_0] \\ \frac{d\eta^a}{dp} [p_0] \end{bmatrix} = -\begin{bmatrix} \nabla_z^2 L(z_0, \eta_0^a, p_0) & \nabla_z G^a(z_0, p_0)^T \\ \nabla_z G^a(z_0, p_0) & 0 \end{bmatrix}^{-1} \begin{bmatrix} \nabla_{zp}^2 L(z_0, \eta_0^a, p_0) \\ \nabla_p G^a(z_0, p_0) \end{bmatrix}$$

Online Solution Approximation: p-Step

 \succ Parameter vector p

- Perturbation of the initial condition ψ_0
- Perturbation of model parameters: mass, aerodynamic coefficients

> Approximation of optimal solution for disturbed parameters p using Taylor expansion

$$z^*(p) \approx z_1 \coloneqq z_0 + \frac{dz}{dp} [p_0] \cdot (p - p_0)$$

Online Solution Approximation: p-Step

 \succ Parameter vector p

- Perturbation of the initial condition ψ_0
- Perturbation of model parameters: mass, aerodynamic coefficients

> Approximation of optimal solution for disturbed parameters p using Taylor expansion

$$z^*(p) \approx z_1 \coloneqq z_0 + \frac{dz}{dp} [p_0] \cdot (p - p_0) \implies$$
 error in the active constraints $\|G^a(z_i, p)\| > 0$

Offline Process: Sensitivity Analysis II

Offline Process: Sensitivity Analysis II

> Additional parameter vector q with nominal value $q_0 = 0$

 $\min_{z} \qquad F(z, p_{0})$ w.r.t. $g_{l} \leq G(z, p_{0}) - q_{0} \leq g_{u}$

 $\succ \frac{dz}{dq}$ can be computed analog to $\frac{dz}{dp}$

Cesa

Online Solution Approximation: p-Step and q-Step

 \succ Parameter vector p

- Perturbation of the initial condition ψ_0
- Perturbation of model parameters: mass, aerodynamic coefficients

> Approximation of optimal solution for disturbed parameters p using Taylor expansion

$$z^*(p) \approx z_1 \coloneqq z_0 + \frac{dz}{dp} [p_0] \cdot (p - p_0) \implies \text{error in the active constraints}$$

 $\|G^a(z_i, p)\| > 0$

Online Solution Approximation: p-Step and q-Step

\succ Parameter vector p

- Perturbation of the initial condition ψ_0
- Perturbation of model parameters: mass, aerodynamic coefficients

> Approximation of optimal solution for disturbed parameters p using Taylor expansion

$$z^*(p) \approx z_1 \coloneqq z_0 + \frac{dz}{dp} [p_0] \cdot (p - p_0) \implies \text{error in the active constraints}$$

 $\|G^a(z_i, p)\| > 0$

- > $\frac{dz}{dq}$ is used to iteratively correct the constraint error and at the same time improve the order of optimality of the approximation
 - while $||G^a(z_i, p)|| > \varepsilon$

esa

$$q_i = G^a(z_i, p)$$
$$z_{i+1} \coloneqq z_i + \frac{dz}{dq^a} [p_0] \cdot q_i$$

For $||q - q_0|| < \delta$ iteration converges against a fixpoint z_{∞} at which $||G^a(z_{\infty}, p)|| = 0$

Offline Process: Build Sensitivity Catalog

► For trajectory computation at time *t* the sensitivity differentials must be known for the initial condition $\psi_0^t \coloneqq x^*(t), t \in [t_0, t_f)$

- ➤ For trajectory computation at time *t* the sensitivity differentials must be known for the initial condition $\psi_0^t \coloneqq x^*(t), t \in [t_0, t_f)$
- ➢ Repeat sensitivity analysis at discrete points $t_i \in [t_0, t_f)$, 0 < i ≤ l of the nominal trajectory $x^*(t)$

Sensitivity on Discrete Points of the Nominal Trajectory

Example: Sensitivity of μ against perturbations in *h* at $x^*(t_i)$, $0 \le i \le k$

Sensitivity on Discrete Points of the Nominal Trajectory

- > Example: Sensitivity of μ against perturbations in h at $x^*(t_i)$, $0 \le i \le k$
- Interpolation between SD is feasible based on the continuity of the OCP
- Sensitivity surfaces

esa

➢ Online: At time \bar{t} surface is evaluated at (t, \bar{t}) , $\bar{t} \leq t \leq t_f$

$$\frac{d\mu}{dh}(t,\bar{t}) \approx \frac{d\mu}{dh_{\bar{t}}}(t)$$

to obtain an approximation of the SD against a perturbation affecting the system at the instant \bar{t}

Guidance System Overview

- Two-degree-of-freedom design
 - Fast inner tracking loop (20 Hz)
 - Slow outer trajectory loop (0.05 Hz)
- Trajectory computation outputs
 - near optimal discrete u^* , x^* for the entire remaining process
 - optimal bank angle profile μ_{ref} and drag profile D_{ref} obtained from u^* , x^*
- Drag tracking controller based on Mease et. al.

Monte Carlo: Perturbed Environment

- Comparatively large EIP state errors (using a uniform error distribution)
- Atmospheric perturbations:
 - Random temperature profile between
 warm and cold conditions
 - Random sinusoidal density perturbations of up to 50% amplitude
- Aerodynamic coefficients perturbed by up to 10%
- Guidance input:
 - true state, lift and drag falsified with white noise
 - Atmospheric perturbation parameters are estimated using an extended kalman filter

State	Pert.		
h_0	+- 3 km		
λ_0	+- 0.3265°		
$arphi_0$	+- 0.1632°		
v_0	+- 200 m/s		
γ_0	+- 1°		
χo	+- 1°		

Param	Pert.		
ρ	Temp. +- 50%		
C_L	+- 10 %		
C _D	+- 10 %		
wind	+- 200 m/s		
mass	+- 20 kg		

Monte Carlo: Results

 $(|\mu| + 3\sigma)$ hori. dist.: **<u>12.3 km</u>**

 $(|\mu| + 3\sigma)$ alt. error: **<u>2.4 km</u>**

(3.5 DOF, 2500 MC cases)

Result	Mean (μ)	Std. Dev. (σ)
Eucl. dist.	4.1 km	2.6 km
Hori. dist.	4 km	2.7 km
DR error	- 2.6 km	3.8 km
CR error	- 0.4 km	1.1 km
Alt. error	- 0.4 km	0.7 km
Vel. error	4 m/s	6 m/s

Cesa

Processor-in-the-loop

- Test on RASTA-101 with 80 MHz LEON2 processor
- GNC c-code from autocoding from Embedded Matlab
- TASTE toolset: Onboard SW interface definition, communication setup and target compilation
- Used dense NLP formulation
 - grid length 70
 - ~25 MB sensitivity data

Processor-in-the-loop

- Test on RASTA-101 with 80 MHz LEON2 processor
- GNC c-code from autocoding from Embedded Matlab
- TASTE toolset: Onboard SW interface definition, communication setup and target compilation
- Used dense NLP formulation
 - grid length 70
 - ~25 MB sensitivity data

Trajectory computation time: < 1 sec.

Summary

- Applied sensitivity analysis to discretized optimal control process for different initial conditions
- Repeated online trajectory computation based on sensitivity interpolation, Taylor expansion and iterative constraint correction
- Two-degree-of-freedom guidance system using drag tracking
- > Promising results in 3.5 DOF Monte Carlo campaign
- Real-time capability proven by PIL test on LEON2 processor

Summary

- Applied sensitivity analysis to discretized optimal control process for different initial conditions
- Repeated online trajectory computation based on sensitivity interpolation, Taylor expansion and iterative constraint correction
- Two-degree-of-freedom guidance system using drag tracking
- > Promising results in 3.5 DOF Monte Carlo campaign
- Real-time capability proven by PIL test on LEON2 processor

Thank you for your attention!

david.seelbinder@dlr.de

This research was conducted under No. 4000107257/12 NL/GLC/al of the ESA Networking and Partnering Initiative.

Monte Carlo and PIL Results

State	Pert.	Param	Pert.	4000 -	*		× × ×	×××	× ×	-*	
h_0	+- 3 km	ρ	Temp. +- 50%	<u>ع</u> 2000 -	× Co	1				Xx	-× -×
λ	+- 0.3265°	C_L	+- 10 %	-2000 -	Y	XXX			XXX	×	
$arphi_0$	+- 0.1632°	C _D	+- 10 %	-4000 -		-	* *	* ***	× **	-*	
v_0	+- 200 m/s	wind	+- 200 m/s	-8000 - U			-*	-×			
γ_0	+- 1°	mass	+- 20 kg	-10000 -							
χo	+- 1°			L	-1.5	-1	-0.5	0	0.5	1	

Result	Mean (μ)	Std. Dev. (σ)
Eucl. dist.	4.1 km	2.6 km
Hori. dist.	4 km	2.7 km
DR error	- 2.6 km	3.8 km
CR error	- 0.4 km	1.1 km
Alt. error	- 0.4 km	0.7 km
Vel. error	4 m/s	6 m/s

Task	i7, 2.9 GHz	LEON2, 80 MHz	Factor
Sen. interp.	12 ms	324 ms	~ 27
p-step	0.05 ms	3 ms	~ 60
q-step	0.19 ms	8 ms	~ 42
G(z,p)	0.88 ms	32 ms	~ 36

Real-Time Production Code Generation and Testing

Closed Loop Guidance Design

Parameter Dependent NLP Resulting From Control Discretization ("Single Shooting")

$$\Phi(u,p) = g(x_1, x_N(u), p)$$

subject to

Minimize

$$\psi(x_1, x_N(u), p) - q^1 = 0$$

$$S(x_i(u), u_i, p) - q^2 \le 0$$
 $i = 1, ..., N$

Parameter Dependent NLP Resulting From Control Discretization ("Single Shooting")

Minimize
$$\Phi(u,p) = g(x_1, x_N(u), p)$$

subject to $\psi(x_1, x_N(u), p) - q^1 = 0$

$$\psi(x_1, x_N(u), p) - q^1 = 0$$

$$S(x_i(u), u_i, p) - q^2 \le 0$$
 $i = 1, ..., N$

Parameter Dependent NLP Resulting From Control and State Discretization ("Multiple Shooting")

Minimize

 $\Phi(u, x, p) = g(x_1, x_N, p)$

subject to

Cesa

$$\psi(x_1, x_N, p) - q^1 = 0$$

 $S(x_i, u_i, p) - q^2 \le 0$ i = 1, ..., N

 $\delta_j(x_i,u_{i\ldots k},x_{i+1},p)-q^3=\ 0 \quad j=1,\ldots,SI \quad k=1,\ldots,CpSI$

Mind: Only optimizable ("free") variables should be included in the NLP...

Initial Condition Dependency of Sensitivity Differentials

• OCP_i and OCP_{i+1} are closely related by the Bellman Principle

esa

Initial Condition Dependency of Sensitivity Differentials

- OCP_i and OCP_{i+1} are closely related by the Bellman Principle
- In the NLP representation of the OCP, gridded optimization variables become fixed up to $\tau_{\rm cur}!$
- Fixed variables can be removed → K-Matrix is time dependent

$$K_{\tau_i} = \begin{bmatrix} \nabla_z^2 L(z_0, \eta_0^a, p_0) & \nabla_z G^a(z_0, p_0)^T \\ \nabla_z G^a(z_0, p_0) & 0 \end{bmatrix} \qquad K_{\tau_{i+1}} = \begin{bmatrix} \nabla_z^2 L(z_0, \eta_0^a, p_0) & \nabla_z G^a(z_0, p_0)^T \\ \nabla_z G^a(z_0, p_0) & 0 \end{bmatrix}$$

Estimation of Sensitivity Matrix Dimensions for PSA Update

	SS	FD
# NLP variables: N	u*D	(u+x)*D
# Constraints: M	x	(x-1)*D
Size(dz/dp) = N*p	u*D*p	(u+x)*D*p
Size(dz/dq) = N*M	u*x*D	(u*x+x ²)*(D ² - D)

Example: Entry Problem: x=10, u=1, D=50, no path constraints!

SS size(dz/dq) = 500 FD size(dz/dq) = 269500 Lower bound on multiplication operations required per update iteration

→ SS clearly preferable as it will allow for a much higher trajectory generation frequency

