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ABSTRACT

The real-time generation of optimal trajectories and controls
for nonlinear systems is a technology of interest to many ap-
plications. The online solution of an optimal control prob-
lem (OCP) is often not computationally feasible on current
embedded systems hardware. We present a method to gen-
erate a near-optimal control sequence and the corresponding
state trajectory based on the parametric sensitivity analysis
(PSA) of nonlinear programs (NLPs) which does not require
performing the classical gradient based NLP process online
and hence reduces the computational load. The OCP is tran-
scribed into a parametric NLP which is solved offline for a
nominal set of parameters. Additionally the parametric sensi-
tivities of the optimal solution with respect to different types
of perturbations are computed at discrete points along the
nominal trajectory. The sensitivities are used online in a Tay-
lor expansion of the nominal solution and an iterative feasibil-
ity and optimality restoration to compute a new near-optimal
control sequence and trajectory from an off-nominal state to
the terminal set without solving a NLP. This process is re-
peated iteratively in the neighborhood of the nominal trajec-
tory. The proposed method is demonstrated for the guided,
hypersonic entry of a small capsule into the Martian atmo-
sphere. The PSA algorithm is used as feed forward com-
mand and trajectory generation to provide the input for a drag-
energy tracking controller.

Index Terms— Optimal Control, Sensitivity, Re-entry,
Guidance

1. INTRODUCTION

This work develops an atmospheric entry guidance system
combining methods from sensitivity analysis for trajectory
computation and drag control for trajectory tracking.

A theoretical basis for the sensitivity analysis of optimal
control processes is formulated by Maurer and Pesch [1][2].
In this work a direct optimization approach is used to solve an
OCP and the parametric sensitivities of the discretized OCP,

i.e. a nonlinear program, are analyzed [3]. Previous work on
this topic includes e.g. [4][5] which is expanded to enable a
repeated trajectory computation during flight.

Drag tracking is a technique developed during the Space
Shuttle era. Mease and Kremer [6][7] applied nonlinear meth-
ods to drag tracking by using feedback linearization. This has
since been subject to many other authors e.g. [8][9][10].

The paper is structured as follows: In section 2 the con-
trol problem is formulated which is maintained throughout
the paper as an example. Section 3 gives an overview over
the proposed guidance system before the central ideas of the
trajectory generation (section 4) and the trajectory tracking
(section 5) are presented. In section 6 a performance analy-
sis of the guidance system is given, including the results of a
processor in the loop test (section 6.2). In section 7 properties
of the guidance system are discussed before in section 8 some
conclusions are given.

2. PROBLEM FORMULATION

The control problem under consideration is the entry of a
small capsule into the Martian atmosphere. It is controlled
by rotating the lift vector using bank angle modulation. The
capsule is assumed to be trimmed at a fixed angle of attack.
The entry scenario is characterized by a steep flight path an-
gle, a high ballistic coefficient and a low lift-to-drag ratio of
the entry capsule. The scenario is similar to missions inves-
tigated in ESA Mars Precision Lander studies. The nominal
entry interface point (EIP) is given in table 1. Considered are
the dynamics for planetary atmospheric flight over a rotating
spherical planet with the independent variable being specific
energy E. The potential energy is normalized to zero at the
planets surface.

E =
v2

2
−
(
Gmp

rp + h
− Gmp

rp

)
(1a)

Ė = −vD (1b)

G is the gravitational constant,mp is the planet mass, rp is the
planet radius and D is the drag acceleration (3b). The energy



dynamics for altitude h, longitude λ, latitude ϕ, air-speed v,
flight path angle γ and azimuth χ (with respect to the north)
are given by (·)′ = d(·)

dE = d(·)
dt

dt
dE .
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− 1

D
cos γ sinχ tanϕ+ Ω3 (2f)

The terms Ω1, Ω2, Ω3 depending on the planet rotational rate
are not written out, but they are included in the subsequently
defined optimization problem. The control enters the system
as the bank angle µ. The lift- and drag accelerations are

L =
1

2
ρ(h)v2cL(M)

s

m
(3a)

D =
1

2
ρ(h)v2cD(M)

s

m
(3b)

where the atmospheric density ρ is given as a function of al-
titude. The aerodynamic coefficients cD, cL are given as a
function of Mach M = v

c(h) with c being the speed of sound
given as a function of altitude. Lastly s is the aerodynamic
reference surface and m is the entry mass. The average lift-
to-drag ratio of the capsule is L/D ≈ 0.2. The angle of attack
assumed to be constant.

The guidance and control task is to steer the capsule to the
parachute opening point specified in table 1 while respecting
path constraints on the heat flux Q̇, dynamic pressure q and
load factor n. The values of used constants are given in ta-
ble 2.

Q̇ = kp

√
ρ

rn
v3 ≤ 1600

kW
m2

(4a)

q =
1

2
ρv2 ≤ 17 kPa (4b)

n =

√
D2 + L2

ge
≤ 15 (4c)

3. GUIDANCE SYSTEM OVERVIEW

The guidance system is composed of two main loops: In the
outer loop adapted trajectories are computed at a low rate,
while the inner loop tracks the most recent trajectory at a high
rate. The trajectory generation yields a discrete near opti-
mal control sequence with corresponding state trajectory and

Table 1. Nominal Entry Interface and Parachute Opening
Conditions

State Value State Value
h0 = 120000 m hf = 10000 m
λ0 = 0◦ λf = 11.3◦

ϕ0 = 25◦ ϕf = 23.3◦

v0 = 5440.8 m/s vf ≤ 450 m/s
γ0 = −14.5◦ γf free
χ0 = 97.4◦ χf free

Table 2. Model Parameter

Value Value
kp = 1.9027E-04

√
kg/m rn = 0.7 m

rp = 3393940 m ge = 9.806 m/s2

drag-energy profile. In the inner loop downrange is controlled
by tracking the computed drag profile. The tracking controller
commands a vertical lift to drag ratio which is converted into
a command for the bank angle magnitude. The crossrange is
managed with secondary priority and is controlled using the
bank angle sign which is computed based on the heading er-
ror. The control system architecture is shown in figure 1. The
symbols p1, ..., p9 are parameters of the sensitivity analysis
described in section 4.1.4.

Nom. Traj.

Sen. Catalog
Traj. Comp. Drag Track.  μcom 

EstimationL, D, h, λ, ϕ, v, γ, χ, p7-p9

 μref

Dref

L, D

μnom, xnom, p1-p6

seninterp

Fig. 1. Guidance system overview

4. OPTIMAL TRAJECTORY COMPUTATION

The trajectory computation strategy is divided into a prepara-
tory offline phase and a real-time capable online phase. The
general approach is to view the entry problem as optimal con-
trol problem (OCP) and solve it by discretization and tran-
scription into a nonlinear program (NLP). A parametric sensi-
tivity analysis of the optimal NLP solution is performed. The
solution and its sensitivities are then used in the online phase
for trajectory recomputation.



4.1. Offline Phase

4.1.1. Optimal Control Process

The optimal control process immediately follows from the
problem definition. All mission constraints are represented as
hard constraints, this leaves the objective function to be cho-
sen freely. The path constraint boundaries (4) include large
margins and remain inactive for reasonable objective func-
tions. Hence the objective can be used to shape the control
function.

To incentivize a low terminal velocity vf a quadratic
penalty term is added. A smooth bank angle profile is de-
sirable to ensure the realized bank angle can always closely
match the command. Hence the bank angle time derivative µ̇
is treated as the control variable and quadratically penalized
in the objective function. The bank angle µ becomes an aux-
iliary state. To avoid the singularities at bank angles of µ = 0
and µ = π a penalty term is added on the vertical lift ratio.

J(x, u) = w1v
2
f (5)

+ w2

∫ Ef

E0

we
[
w3(cosµ)2 + w4(µ̇)2

]
dE

The variables w1, w2, w3, w4 are positive constant weighting
factors and we is a positive function

we(E) =
1

vD
(6)

that decreases the cost when the absolute value of the energy
time rate (1b) is high. This leads the system to utilize more lift
in regions where the energy dynamics are fast. This decreases
the sensitivity of the control against most perturbations and
thus results into an increase of the controllable region.

4.1.2. Transcription

The transcription uses well known methods and will not be
addressed here formally. It is based on the multiple shoot-
ing algorithm with a 4th order Runge-Kutta discretization
scheme. A grid adaption strategy is used to find a grid that
equally distributes the local discretization error with the goal
of keeping the global discretization error low. The result
of the transcription is the discretized OCP in standard NLP
form (7). The optimization variables z, dim(z) = N are the
control variables at every grid point and the state variables
at the shooting nodes. The path constraints are discretized at
every grid node. Together with the initial and final conditions
and the defect constraints introduced by the multiple shoot-
ing algorithm the joint constraint function G : RN → RM
is formed. The objective is a function F : RN → R which
corresponds to (5) where the integral is approximated using
the trapezoidal quadrature.

min
z

F (z) (7a)

w.r.t. gl ≤ G(z) ≤ gu (7b)

The terminal energy point is free (note that the terminal speed
is only bounded above). During the transcription the inde-
pendent variable is normalized and the terminal energy is in-
cluded as an additional optimization variable.

Let the solution exist on a grid T with length l of the nor-
malized energy τ ∈ [0, 1].

T = {τi |1 ≤ i ≤ l, τ1 = 0, τl = 1, τi < τi+1} (8)

The notation x(i,j) refers to state j, 1 ≤ j ≤ 6, at grid point
τi, 1 ≤ i ≤ L. In the following the state is assumed to be
known at all grid points, either from being a multiple shooting
node or from integration of the control function.

4.1.3. Nominal Solution

Let ?
z denote the nominal optimal solution. The optimal bank

angle profile ?
µ(τ) and the corresponding state trajectories are

shown in figure 2. Note that a large portion of the altitude de-
crease happens in the high energy region. Initially the energy
loss is marginal Ė ≈ 0, Ė < 0, the velocity slightly increases
as the altitude rapidly decreases. This stiff characteristic can
be problematic for integration, requiring a fine solution grid.

In all investigated problem variants ample margins were
left before the path constraints would become active. During
the online computation the trajectory is checked for path con-
strained violation. A violation is detected in advance, but a
separate guidance mode is required to ensure that the viola-
tion is prevented.

τ

0 0.2 0.4 0.6 0.8 1

h
[m

]

×10
4

0

5

10

15

(a)
τ

0 0.2 0.4 0.6 0.8 1

v
[m

/s
]

0

2000

4000

6000

(b)

τ

0 0.2 0.4 0.6 0.8 1

γ
[r
a
d
]

-0.3

-0.2

-0.1

0

(c)
λ [rad]

0 0.05 0.1 0.15 0.2

ϕ
[r
a
d
]

0.4

0.41

0.42

0.43

0.44

(d)

τ

0 0.2 0.4 0.6 0.8 1

µ
[r
a
d
]

-1

0

1

2

3

(e)
τ

0 0.2 0.4 0.6 0.8 1

µ̇
[r
a
d
]/
s

-0.15

-0.1

-0.05

0

0.05

(f)

Fig. 2. Nominal optimal solution of the altitude h (a), velocity
v (b), flight path angle γ (c), ground track (d), bank angle µ
(e) and bank angle derivative µ̇ (f).



4.1.4. Parametric Sensitivity Analysis

The optimal solution ?
z is seen as function of a parameter

set p. With sufficiently continuous functions F,G the dif-
ferentiability of the solution ?

z(p) with respect to p can be
achieved locally around a chosen set of nominal parameters
p0 [1][2]. The problem is defined as parametric nonlinear
program NLP(p) (9). The parameters p may nonlinearly af-
fect the objective function and the constraint function.

min
z

F (z, p) (9a)

w.r.t. gl ≤ G(z, p) ≤ gu (9b)

In the entry problem the vector p, dim(p) = 9 includes a
perturbation of the initial state, the vehicle mass, and the lift-
and drag-acceleration. The parameterized initial conditions
are

h0 + p1 − x(1,1) = 0 (10a)
λ0 + p2 − x(1,2) = 0 (10b)
ϕ0 + p3 − x(1,3) = 0 (10c)
v0 + p4 − x(1,4) = 0 (10d)
γ0 + p5 − x(1,5) = 0 (10e)
χ0 + p6 − x(1,6) = 0. (10f)

The perturbed model parameters are

m̃ = m+ p7 (11a)

L̃ =
1

2
ρ(h)v2cL(M)

s

m̃
(1 + p8) (11b)

D̃ =
1

2
ρ(h)v2cD(M)

s

m̃
(1 + p9) (11c)

The solution for the nominal parameter set

p0 = (p1, p2, p3, p4, p5, p6, p7, p8, p9) = 0 (12)

is denoted z0 =
?
z(p0).

To obtain the nominal optimal solution z0 the problem is
solved for p0 using an NLP solver. Once z0 is known and if
strong second order sufficient conditions (SSOSC) [3] hold,
a parametric sensitivity analysis can be performed as follows:
The Lagrangian function of (9) is defined as

L(z, η, p) = F (z, p) + ηᵀG(z, p) (13)

with the lagrangian multipliers η ∈ RM . Consider the set of
constraints Ga that is active at the solution and the associated
Lagrangian multipliers ηa.

Ga := {Gi | Gi(z0, p0) = 0, i = 1, ...,M} (14)

If z0, η0 is regular an explicit formulation of the sensitivity
differentials of the primal- and dual-variables can be given(

dz
dp [p0]
dηa

dp [p0]

)
= −∇(z,ηa)K

−1
(
∇2
zpL[z0, η

a
0 , p0]

∇pGa[z0, p0]

)
(15)

where

∇(z,ηa)K =

(
∇2
zL[z0, η

a
0 , p0] (∇zGa[z0, p0])ᵀ

∇zGa[z0, p0] 0

)
(16)

Under SSOSC the Hessian ∇2
zL[z0, η

a
0 , p0] evaluated at the

solution is guaranteed to be positive definite and thus the right
hand side of (15) is computable. The differentials (15) are
called parametric sensitivities of the solution. They are first
order total derivatives of the optimal solution with respect to
the defined parameters p in a neighborhood around p0. Note
that the parametric sensitivities take feasibility and optimality
into account. Figure 3 shows examples of the sensitivity of
the bank angle against different perturbations.
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Fig. 3. Sensitivities of the bank angle µ against a perturbation
in initial altitude h (a), velocity v (b), flight path angle γ (c)
and constant multiplicative error in the drag acceleration (d).

4.2. Online Phase

4.2.1. Perturbed Solution Approximation

Given the knowledge of the nominal solution z0 and the para-
metric sensitivities (15), a linear approximation z̃1(p) of the
perturbed solution z(p) for a set of disturbed parameters p
in a neighborhood U(p0) around p0 can be obtained using a
Taylor expansion of first order.

z̃1(p) := z0 +
dz

dp
[p0] (p− p0) ≈ z(p) (17)

The approximation (17) causes an error in the active con-
straints which can be computed exactly as

Ga(z̃1, p) = ε1 6= 0 (18)

Now consider linear perturbations q ∈ RM in the constraint
function of (9)

gl ≤ G(z, p) − q ≤ gu. (19)



The linear constraint perturbations q are a specialization of
the general perturbations p. Obviously q is also of the same
type as the resulting constraint error ε1. Assume that when
performing the offline sensitivity analysis (15) in addition to
the sensitivities with respect to p also the sensitivities with
respect to q are obtained for q0 = 0 in an analog way. The ap-
proximate solution z̃1(p) can be significantly improved [5] by
taking into account the error that the initial Taylor expansion
(17) causes in the constraint function. A better approximation
than (17) can be obtained by

z̃k+1(p) = z̃k(p) +
dz

dqa
[q0] Ga(z̃k, p) (20)

starting with k = 1. Policy (20) defines an iterative proce-
dure. It has been shown [5] that if functions F and G of the
underlying NLP are three times continuously differentiable
with respect to their arguments and p = p0 +∆p ∈ U(p0) the
iteration (20) converges linearily against a fixpoint z̃∞(p). At
the fixpoint the active constraints are fulfilled exactly.

‖Ga(z̃∞(p), p)‖ = 0 (21)

Already after the first iteration of (20) the error in the objec-
tive function reduces by one order to O(‖∆p‖3).

The approximation z̃(p) includes an adapted control se-
quence and, depending on the transcription, a state trajec-
tory for the entire problem. After termination of the itera-
tion scheme the drag profile Dref (z̃(p)) for the adapted tra-
jectory is computed. It is input to the drag tracking con-
troller along with the corresponding adapted bank angle pro-
file µref ∈ z̃(p).

4.2.2. Repeated Trajectory Computation during Flight

The parametric sensitivities obtained through (15) are a to-
tal solution derivative valid for a specific initial condition. If
the trajectory computation is to be repeated at different initial
conditions, a corresponding set of sensitivities is required. A
possible approach to is to repeat the offline sensitivity anal-
ysis at several discrete points of the nominal trajectory, each
yielding a set of parametric sensitivities.

Let z0[τi, p0], 1 ≤ i < l denote the nominal optimal so-
lution on the subinterval [τi, 1]. The solution on the interval
[τi, 1] is the solution of the same optimal control process, but
for the initial condition x0i =

?
x(i,:) ⊂ z0[0, p0]. The cost

function F is separable and the Principle of Optimality holds,
hence z0[τi+1, p0] ⊂ z0[τi, p0].

The parametric sensitivity differentials computed for the
optimal solution on each subinterval [τi, 1] are denoted by

dz

dp
[τi, p0] (22)

where τi refers to the changing initial condition. Figure 4.a
shows the sensitivities of the bank angle µ against perturba-
tions in altitude at different initial conditions τi, 1 ≤ i ≤ k.

dµ

dh
[τ1, p0], . . . ,

dµ

dh
[τk, p0] (23)

Observe that

dµ

dh
[τi+1, p0] *

dµ

dh
[τi, p0] (24)

and that the sensitivity increases as τi → 1. A perturbation
of constant strength requires a stronger change of the control
function to be compensated on a shortening process interval.
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Fig. 4. Sensitivity of the bank angle µ against perturbations
in altitude h at τi, 1 ≤ i ≤ k < l along the nominal trajectory.
Figure (a) shows the data basis dµ

dh [τi, p0] for the interpolation
dµ
dh (τ, τi)[p0] shown in (b).

If the parametric sensitivities sets are computed on a dense
grid of initial conditions occurring along the nominal trajec-
tory it is possible to interpolate between them based on the
continuity assumptions on F and G and the underlying opti-
mal control process. The obtained surface (25) (figure 4.b) is
a function of the initial condition at τi and the independent
variable τ with τi ≤ τ ≤ 1.

dµ

dh
(τ, τi)[p0] (25)

At normalized energy τ̄ the surface can be evaluated at τi = τ̄
to obtain the approximate sensitivity for the bank angle on
the remaining interval [τ̄, 1]. The surface interpolation has to
be performed separately for each state, control channel and
perturbation. Figure 5 shows additional examples.



The interpolated sensitivities are used as input for the real-
time iteration scheme. A more detailed description of this
strategy will appear soon.
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Fig. 5. (a) Sensitivity of the bank angle rate µ̇ against pertur-
bations in altitude h. (b) Sensitivity of the longitude λ against
perturbations in velocity v along the nominal trajectory.

5. TRAJECTORY TRACKING

Drag tracking is heritage from the space shuttle era. It has
proven to be very robust against perturbations in atmospheric
density, which is a major concern for Mars entry. The lim-
ited availability of measurement data is the driving design fac-
tor. The drag acceleration can be related to the accelerations
measured by an inertial measurement unit (IMU) hence the
control concept is based on a direct measurement, which is a
unique advantage as other state information must be assumed
to be integrated.

The used tracking law is due to Mease et. al and re-
lated work [6][7]. The tracking controller is based on exact
input-output linearization of the drag dynamics in the energy
domain as feedforward and a PID controller as stabilizing
feedback. The concept is briefly summarized, e.g. Isidori
[11] provides a comprehensive introduction into feedback lin-
earization techniques.

By neglecting the planet rotation and substituting the ver-
tical lift over drag ratio (vLoD) as the control variable

u =
L

D
cosµ (26)

the longitudinal entry dynamics can be written as a control
affine system, with drag as the output variable. In the energy
domain this system is of full relative degree and the dynam-
ics can be transformed into a new set of coordinates using a
diffeomorphism. In the new coordinates the second energy
derivative of drag can be written as

D′′ = a+ bu (27)

where a and b are terms depending onD,D′, E. The lineariz-
ing control is then given by

udrag =
1

b
(−a+ ν) (28)

where ν is the outer loop PID control. The commanded vLoD
is converted to the bank angle magnitude while the sign is de-
termined by a corridor on the heading error or it can be ob-
tained from the trajectory solution directly depending on the
frequency of the trajectory updates. The tracking controller
takes into account the estimated perturbations p7, p8, p9 when
calculating (28).

Tests have shown that the controller is very sensitive to
early drag error. To guard against overreaction in the thin
layers of the atmosphere the drag based command udrag is
weighted against the reference command uref obtained from
the trajectory generation on a schedule of sensed drag accel-
eration using a sigmoid function S which is zero at zero drag
and one at 60% of the expected peak drag acceleration and
after.

ucom = uref + S(D)(udrag − uref ) (29)

This way the guidance system relies more on the trajectory
generation in the beginning and smoothly transitions to the
drag control law. The scheduling also increases the probabil-
ity that the commanded bank angle can be actually realized
during the high drag segment of the flight. The bank angle is
then obtained by

|µcom| = arccos

(
D

L
ucom

)
. (30)

6. PERFORMANCE ANALYSIS

6.1. Monte Carlo Simulation

The proposed guidance system was tested in a 3.5 degree
of freedom simulation, using a pseudo attitude control for
the bank angle rotation. The atmosphere data is obtained
from the European Mars Climate Database [12]. The nom-
inal trajectory assumes average UV conditions and average



dust distribution. Considered are errors in the atmospheric
density, aerodynamic coefficients, wind speed, mass and the
initial state. The atmosphere properties are randomized be-
tween cold and warm scenarios and in addition random si-
nusoidal perturbations with amplitudes of up to 50% of the
nominal value are added. Table 3 shows the intervals and
maximum amplitudes of the introduced perturbations. The
intervals around λ0 and ϕ0 roughly correspond to a maxi-
mum error of 20 km in downrange and 10 km in crossrange
direction at the EIP. No error covariance has been assumed,
the errors are equally distributed.

Table 3. Perturbed Environment

State Value Parameter max. Amp.
h0 +/- 3000 m ρ temp. + 50%
λ0 +/- 0.3265◦ cL 10%
ϕ0 +/- 0.1632◦ cD 10%
v0 +/- 200 m/s wind speed 200 m/s
γ0 +/- 1◦ mass (const.) up to 20 kg
χ0 +/- 1◦

The guidance inputs are the full state and the lift- and
drag acceleration. The inputs are the true values falsified with
white noise. An extended Kalman Filter is used to estimate
the p-perturbation in the lift- and drag-acceleration. The per-
turbed mass was assumed to be known.

The trajectory computation is executed at 0.05 Hz, the
tracking is performed at 20 Hz. The most recently computed
satisfactory trajectory is tracked. If the corrector iteration (20)
is not convergent the trajectory is discarded.

Table 4 lists the achieved mean errors and the standard
deviations based on 2500 Monte Carlo cases. The guidance
has a slight tendency to undershoot, the (µ + 3σ) horizontal
miss distance is 12.3 km. Figure 6 shows the dispersion at
parachute opening.

Table 4. Terminal Dispersion

Type Mean (µ) Std. Deviation (σ)
Euclidean Dist. 4132 m 2678 m
Horizontal Dist. 3999 m 2759 m
Downrange Error −2636 m 3895 m
Crossrange Error −435 m 1138 m
Altitude Error −408 m 690 m
Velocity Error 4 m/s 6 m/s

6.2. Processor in the Loop

The guidance was run on a 80 MHz LEON2 processor board.
Basis for the test was a discretization with a grid length of
l = 70 using a dense NLP formulation. The GNC C-code has
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Fig. 6. Dispersion ellipse at parachute opening.

been obtained via autocoding from the development imple-
mentation. Table 5 shows a comparison between the required
computation time on a standard Linux desktop PC and the
LEON2 running RTEMS. The binaries for both systems have
been compiled from the same source code. The binary size of
the sensitivity catalog was roughly 25 MB.

Table 5. Runtime Comparison

Computation i7, 2.9 GHz LEON2, 80 MHz Factor
Sen. interp. 12 ms 324 ms ≈ 27
p-step (17) 0.05 ms 3 ms ≈ 60
q-step (20) 0.19 ms 8 ms ≈ 42
G(z, p) 0.88 ms 32 ms ≈ 36

The p- and q-correction steps can be computed almost
instantly. The evaluation of the constraint function G takes
somewhat longer. In the majority of cases less than ten cor-
rector iterations (20) are required to reduce the constraint vio-
lation to an acceptable level. The most costly operation is the
interpolation of the required sensitivity differentials. An alter-
native is to trigger the trajectory generation at predetermined
points, using fix sets of sensitivities. But even including the
interpolation, the trajectory computation can be performed in
less than a second, proofing the real-time capability of the ap-
proach on flight equivalent hardware.

6.3. Numerical Treatment

The transcription and the analysis of the nominal trajectory
and the sensitivity differentials is performed by the code Sen-



sitivity Analysis Framework (SAF) by D. Seelbinder. The so-
lution of the parametric NLP and the computation of the sen-
sitivity differentials is performed by the NLP solver WORHP
[13].

The numeric quality of the sensitivity differentials strongly
depends on the knowledge of the true sparsity structure of the
Hessian matrices in (15). Standard finite difference routines
do not provide sufficient accuracy. The required deriva-
tives are computed using the automatic differentiation library
ADOL-C [14].

The online part of the guidance algorithm is implemented
in Embedded Matlab. Automatic code generation is used to
obtain the guidance algorithm in C-code. For the processor in
the loop test the tool chain TASTE [15] is used to specify the
interfaces of the partition between the GNC algorithm and the
simulation environment. The setup of the communication ar-
chitecture and the final compilation for the LEON2 processor
is also performed by TASTE, using the generated C-code.

7. DISCUSSION

The p-correction step (17) is a direct feedback [16][17] on the
parameters p, requiring p to be known at computation time.
As a consequence there are no perturbation parameters explic-
itly for the atmospheric density model ρ(h). It has been found
problematic to meaningfully parametrize the atmospheric dis-
turbances and robustly distinguish between perturbations of
the aerodynamic coefficients and the inner functions of the
density model, using only parameters that can be estimated at
flight time.

Unforeseeable or unknown perturbations are countered
indirectly by computing the constraint violation and reduc-
ing it via the q-correction step (20). Relying only on this
strategy, without a perturbation model and corresponding p-
step (17), results into a lower order solution approximation
[5]. Although not strictly necessary, an accurate perturbation
estimation combined with a meaningful perturbation model
improve the solution approximation with respect to optimal-
ity.

The sensitivity differentials (15) are based on a lineariza-
tion [3] of the Karush-Kuhn-Tucker conditions around the
nominal value p0. The linearization is valid in a neigh-
borhood U(τ, p0) in which the real-time iteration scheme
(17)(20) converges to a fixpoint. For nonlinear problems the
extend of U(τ, p0) can only be approximated numerically.
Maximally U(τ, p0) extends until a change of the active set
of constraints is required, but depending on the nonlinearity
of the system it can be smaller. It is a major task to formulate
the optimization problem such that the optimal solution is
insensitive against perturbations and that the margin between
the nominal solution and inactive inequality constraints is
large. Possible extensions of the theory are discussed in [5].

Loosely speaking, most expected disturbed EIP condi-
tions lie withinU(0, p0). The sensitivity of the control against

perturbations at the EIP dµ
dp [0, p0] is small. Conversely small

changes in the early control function have a strong effect on
the terminal state. For that reason the method is well suited
to adapt to state errors at the EIP or to compensate for static
parameter changes, like the mass. As the system progresses
τ → 1 the neighborhood U(τ, p0) shrinks. This is dramat-
ically noticeable after the peak deceleration and when the
flight path angle starts to decrease. At this point strong pertur-
bations cannot be compensated anymore. It is an interesting
future task to further investigate the resulting controllability
tube and possibly compare it with the backwards reachable
set.

The iteration scheme does not rely on the online compu-
tation of derivatives and therefore requires less computational
power than methods which perform online optimization. If
single shooting is used as transcription method the integra-
tion of the trajectory performed in G(z, p) in (20) directly
yields knowledge of path- and terminal constraint satisfac-
tion. A dense problem formulation is also advantageous for
minimizing the amount of optimization variables and required
sensitivity differentials. In the case of multiple shooting the
evaluation of G(z, p) yields the defects at the shooting nodes.
A comparison between the convergence regions for single-
shooting and for full discretization is a future task.

8. CONCLUSION

For nonlinear dynamic processes that are too fast to allow for
the online solution of NLPs, or when computational resources
are at a premium, parametric sensitivity analysis combined
with the real-time iteration scheme (17)(20) is a promising
candidate to approximate feasible, near optimal solutions at
very low computational cost. The iteration scheme is a versa-
tile tool in that it can be applied to arbitrary NLPs for which
strong second-order sufficient conditions hold at the nominal
solution. The practical limit of the approach is defined by
the extend of the region of convergence U(τ, p0), which is
depended on the solution structure.

The Mars entry study demonstrates that the trajectory gen-
eration is capable of adapting to strong state and parameter
disturbances at the EIP. The combination with drag track-
ing provides the required robustness against the unforeseeable
changes of the atmosphere that are difficult to handle using
predictive methods. Therefore the two approaches comple-
ment each other well. Processor in the loop testing has proven
that the proposed method is real-time capable on flight equiv-
alent hardware.
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