6th International Conference on Astrodynamics Tools and Techniques, 14-17 March, 2016, Darmstadt, Germany.

Coupled dynamics of large space structures in Lagrangian points

L. Bucci, M. Lavagna

Politecnico di Milano

Department of Aerospace Science and Technology

Presentation overview

- Motivation
- Framework
- Coupled orbit-attitude periodic solutions
- Solar radiation pressure effect
- Spacecraft flexibility effect
- Conclusions

Motivation

Growing interest in Large Space Structures (LSS):

- New manned station after ISS dismissal
- Orbiting infrastructure to support lunar soil activities
- Space station with modular architecture

LSS in multi-body gravitational environments (Earth-Moon) require a deeper analysis of the coupled orbit-attitude dynamics; ACS sizing requirements derive from the environmental torques, highly coupled with the orbital motion.

Framework (1)

Earth-Moon **Circular Restricted Three-Body Problem** (CR3BP). Planar orbit and attitude dynamics in the synodic frame.

- $x_b y_b = principal body frame$
- *XY* = rotating synodic frame
- ϕ = rotation angle

Framework (2)

Investigation focused on **Distant Retrograde Orbits** (DRO).

- High stability (4 stable and 2 center manifolds up to Earth's vicinity)
- Possible location for asteroid boulder (ARM)
- Suitable for lunar support infrastructure

Coupled orbit-attitude periodic solutions (1)

The combined **gravity gradient torque** of the two primaries creates peculiar attitude behaviors, strongly coupled with the orbital motion

$$[I]\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times [I]\boldsymbol{\omega} = -3\frac{1-\mu}{r_1^5}[I][A]\boldsymbol{r}_1 \times [A]\boldsymbol{r}_1 - 3\frac{\mu}{r_2^5}[I][A]\boldsymbol{r}_2 \times [A]\boldsymbol{r}_2$$

[I] = principal inertia tensor; [A] = rotation matrix; ω = body angular velocity

Coupling term: gravity gradient torque, depending both on orbital position and body attitude.

Coupled orbit-attitude periodic solutions (2)

Search for periodic orbit-attitude behaviors:

- **Benefit for ACS**, reducing control effort
- Satisfy coarse pointing requirements
- Provide insight on the dynamical structure of the problem

Definition: given a periodic orbit in the CR3BP, find the initial condition that establishes a periodic attitude motion.

Coupled orbit-attitude periodic solutions (3)

Solution space visually portrayed in periodicity maps.

Inertia ratio
$$K_z = \frac{I_y - I_x}{I_z}$$

Different curves define families of solutions, classified according to the number of body revolutions per orbit.

L. Bucci, M. Lavagna

SRP effect (1)

Solar radiation pressure (SRP) perturbs both attitude and orbital motion.

- Acceleration component: long period orbital deviation
- **Torque** component: focus of the study, may lead to large perturbations

SRP torque depends on the surface **reflectivity coefficients**, on the illuminated **area**, and on the position of the **center of pressure**.

$$T_{SRP} = \boldsymbol{d}_{c} \times \boldsymbol{f}_{SRP}$$
 $\boldsymbol{f}_{SRP} = f(A, C_{d}, C_{a}, C_{s})$ \boldsymbol{d}_{c} known in body frame

SRP effect (2)

Major attitude disturbance for LSS; with $m = 500 \text{ ton}, A = 1000 \text{ }m^2$, an offset of 10 cm between barycenter and center of pressure is sufficient to obtain **large deviations** from the nominal attitude.

L. Bucci, M. Lavagna

POLITECNICO MILANO 1863

Spacecraft flexibility (1)

Coupling effect between structural vibrations and attitude dynamics.

Assumptions:

- Lumped parameters model
- Structural frequencies much higher than attitude's ones
- Spacecraft composed by a rigid section and flexible parts
- Orbital motion not perturbed by flexibility

L. Bucci, M. Lavagna

POLITECNICO MILANO 1863

Spacecraft flexibility (2)

- Under the assumption of high frequency structural vibrations, the flexible response is statically excited by the attitude motion.
- In turn, the attitude dynamics is perturbed by an equivalent torque due to flexural vibrations.
- The non-linear coupling terms may be dropped under the presented assumptions.

Conclusions

Presentation of a **tool** to investigate coupled orbit-attitude behaviors in the CR3BP

- Algorithm for periodic solutions in a purely gravitational environment
- Model enhancing with **solar radiation pressure** and spacecraft **flexibility**

Future works:

- Search for periodic solutions with SRP, both acceleration and torque components
- Refine flexible spacecraft model