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Politecnico di Milano, Aerospace Science and Technology Dept.

ABSTRACT

The topic of the paper is the investigation of Large Space
Structures coupled dynamics, whenever located in a Circular
Restricted Three-Body Problem (CR3BP) framework. The
configuration design/6 DOF dynamics coupling is deeply
investigated to, eventually, drive the infrastructure system
and operational design. Because of the wideness of possi-
ble practical applications in the incoming decade, the Earth
Moon Lagrangian points system is here considered. The pa-
per firstly shows the natural periodic orbit-attitude solutions,
introducing maps to visually identify the regions where those
solutions exist, under the CR3BP approach. The maps are
parametrized over the infrastructure inertia properties, and
solutions are classified with respect to the number of attitude
rotations per orbit. Solar radiation pressure (SRP) distur-
bance is part of the model enhancing, assessing its effects on
stability regions as a disturbing action on the whole coupled
6DOF dynamics. Effects of flexibility in the large infrastruc-
ture are then introduced in the model; linear modal analysis is
exploited to assess whether orbital and attitude motions could
excite/be excited by small vibrations of flexible structures.
Preliminary considerations are deduced from a spring-mass
single degree-of-freedom system, and are extended to lumped
mass models of given complexity.

Index Terms— Space structures, Lagrangian points, dis-
tant retrograde orbits

1. INTRODUCTION

Coupled orbit-attitude dynamical behaviors are of great in-
terest for space applications that include large structures; the
torque exerted by gravity gradient, if correctly exploited, may
yield a significant contribution in satisfying pointing require-
ments, even coarse, thus relieving some effort from the space-
craft’s attitude control system (ACS). In the restricted two-
body problem, the attitude behavior of a rigid body in orbit
is a well-known and discussed topic [1, 2]. When the grav-
ity gradient torque is investigated in a multi-attractor gravita-
tional environment, an interesting dynamical structure arises,
thanks to the coupling between the the torques exerted by all
the attracting bodies, even if of small amplitude. Early inves-
tigations of Kane [3] and Robinson [4] and more recent ones
[5, 6, 7] analyzed the attitude stability of a rigid spacecraft,

with the assumption of steady position in a Lagrangian point,
within the Earth-Moon CR3BP. The coupling with the orbital
motion is investigated by Guzzetti and Howell [8, 9], consid-
ering planar orbits and providing a first class of orbit-attitude
periodic solutions; other works [10, 11] are devoted to the
coupled orbit-attitude dynamics in the Earth-Moon CR3BP,
providing results on attitude perturbations and stable/unstable
motions triggered by the orbit.
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Fig. 1: Distant retrograde orbits

The study presents a tool for the analysis of coupled
orbit-attitude behaviors in the Earth-Moon system, focusing
on Distant Retrograde Orbits (DRO), depicted in Figure 1.
This class of orbits is chosen for the following reasons:

• They possess an high degree of stability [12], allowing
to assume that the orbital path remains unperturbed, at
least for a preliminary analysis, providing greater sig-
nificance to periodic solutions; such solutions are in
fact obtained assuming the orbit to remain the nominal
one, and this hypothesis is more reasonable the stabler
the orbit is.

• Encircling both Lagrangian points L1 and L2, they sup-
ply a proving ground to investigate dynamical struc-
tures based on local equilibria (e.g. [4, 7]).



• NASA’s Asteroid Redirect Mission [13] will likely
exploit a DRO, and a periodic orbit-attitude solution
might benefit both the asteroid boulder and the manned
segment, providing a passive attitude partial stabiliza-
tion.

The paper is organized as follows: Section 2 presents the
algorithm used to seek for coupled orbit-attitude solutions,
detailing their benefits and their possible exploitation; the so-
lution space is visually mapped, in order to provide the user
with a tool suitable for preliminary analyses and assessments.
Section 3 introduces the effects of solar radiation pressure
(SRP), showing sample results and suggesting guidelines for
design. Section 4 drops the rigid body assumption, and in-
vestigates the effects of flexible parts on the attitude motion;
the flexibility is approached with a linear, lumped-parameters
model, which well describes the coupled behavior when the
structural natural frequencies are far from the attitude-orbital
motions characteristic angular pulsations. Conclusions are
drawn in Section 5, together with remarks on possible future
studies and model improvements.

2. PERIODIC ORBIT-ATTITUDE SOLUTIONS

The coupled orbit-attitude dynamics opens a wide range of
operational possibilities for space structures in the Earth-
Moon system. The combined gravity-gradient torque of the
Earth and the Moon is a significant source of perturbation
for attitude dynamics; its inclusion in the model, and its ex-
ploitation for natural periodic motion, may then provide a
significant relief to the attitude control system of a LSS.

2.1. Model and assumptions

Figure 2 depicts the reference frames used for the analy-
sis. The Circular Restricted Three-Body Problem (CR3BP)
framework is used [14]; equations of motion (EoM) are
written in the synodic frame XY , which rotates with the
Earth-Moon relative motion’s angular velocity. EoM are nor-
malized, so that the universal gravitation constant is the unity,
and the problem is governed by a single non-dimensional
parameter µ, i.e. the ratio between the Moon mass and the
total system mass.

Limiting the analysis to the planar case, the orbit dynam-
ics is described by the classical CR3BP set of equations [15,
14]

ẍ− 2ẏ − x = −1− µ
r31

(x+ µ)− µ

r32
(x− 1 + µ) (1)

ÿ + 2ẋ− y = −1− µ
r31

y − µ

r32
y (2)

Considering the principal body axis frame xbyb, rigid
body attitude dynamics with gravity-gradient torque [6] is
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Fig. 2: Reference frames

described by equation (3)

ω̇z =
Iy − Ix
Iz

(
3(1− µ)

r31
e2e1 +

3µ

r32
l2l1

)
(3)

where ωz is the spacecraft’s angular velocity about the z axis,
e1, e2 and l1, l2 are, respectively, the Earth and the Moon di-
rection cosines in body frame, and Ix, Iy, Iz are the space-
craft’s principal inertia moments. The rotation angle of the
body is

φ̇ = ωz (4)

The orbital path is assumed not to be perturbed, while
its influence on the attitude dynamics is exerted through the
gravity-gradient torque, varying in magnitude along the orbit.
Since the investigation is limited to the planar motion, two
parameters are sufficient for the rigid-body analysis:

1. The angular velocity ωz about the out-of-plane axis; be-
ing the sole quantity necessary to describe the body’s
rotation, the subscript will be dropped from now on to
lighten the notation;

2. The inertia coefficient Kz , defined in equation (5)

Kz =
Iy − Ix
Iz

(5)

which governs the gravity-gradient torque effect.

In the following, we will describe periodic orbit-attitude
solutions, defined as a dynamical structure where both the
orbital and the attitude motion are periodic, under the com-
bined gravitational forces and torques due to the Earth and the
Moon. Thanks to their appealing features for future missions,
DROs and their associated periodic solutions are investigated
in this work.

2.2. Results

This Section presents the methodology to obtain a map of the
periodic orbit-attitude solutions. Given the inertia ratio Kz ,



the aim of the investigation is to find the initial angular ve-
locity ω0 necessary to establish such periodic motion. The
initial instant where such angular velocity must be applied is
defined as the X-axis crossing with positive velocity along
Y -axis, i.e. the X-crossing point between the Earth and the
Moon. Periodic solutions are obtained as follows:

1. A DRO is obtained with standard correction tech-
niques, or from a database;

2. The initial condition is set at the aforementioned posi-
tive X-crossing point; the xb axis is assumed to be ini-
tially aligned with the synodic X axis;

3. The attitude dynamics is propagated for different values
of initial angular velocity ω0;

4. The final values of angular velocity ωf and body rota-
tion φf after an entire orbit are gathered;

5. A periodic attitude behavior is identified when both ωf

and φf are null (within a tolerance of 10−6 non dimen-
sional units).

Other approaches [8, 9] are based on differential correction
techniques, and directly find both the orbital and the attitude
initial state of the periodic solution. The present method, dif-
ferently, is focused on searching attitude periodicity super-
posed to a given, fixed orbit.

For each DRO, multiple values of ω0 guarantee a periodic
rotational motion; each value corresponds to a family of so-
lutions, where the spacecraft carries out a given number N
of revolution per orbit. This number may be positive (i.e. the
rigid body revolvesN times about its zb axis along one orbit),
zero (the spacecraft oscillates, but the net number of body rev-
olution per orbit is null), or negative (the rigid body carries out
N revolutions per orbit with negative angular velocity). All
the angular velocities and rotation angles are referred to the
synodic frame, while the actual numerical integration keeps
into account the latter’s rotation.

Figure 3 portrays a map of the results: for each DRO,
characterized by its period T (horizontal axis), multiple peri-
odic orbit-attitude solutions are obtained. They are grouped
into families, represented with different trait lines (bold, dash-
dot, dots, dashed), following the previous definition. The ver-
tical axis indicates the non-dimensional angular velocity ω0,
referred to the synodic frame, that is needed at the initial in-
stant to establish the periodicity of the attitude motion. Note
that this body angular velocity does not remain constant along
the orbits, but undergoes short-period oscillations; as a conse-
quence, the number N represents the overall number of body
revolutions, even though they are not carried out uniformly.
Figure 4 depicts the angular rotation and velocity time histo-
ries of a sample solution.

The parametrization of the solution space with respect to
Kz allows a further degree of operational flexibility. A peri-
odic solution may in fact be sought for a space station, whose
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Fig. 3: Periodicity maps for DROs

attitude motion would then remain naturally periodic (or at
least bounded, as a response to small perturbations); if such
station is approached by a vehicle which subsequently docks,
or if some modules are to be relocated in different positions,
its inertia properties will change after the operations; the co-
efficient Kz changes accordingly. It will be then possible to
find the new parameters needed to preserve periodicity in the
dynamical orbit-attitude behavior, with two main possibili-
ties:

• If the mean angular velocity is to be maintained, the
orbit can be changed, shifting towards a different DRO
that allows the same ω0 of the previous solution;

• If the orbit should be kept the same, a new value of ω0

ought to be identified, performing a spin-up (or spin-
down) maneuver at the beginning of the new orbital pe-
riod.

2.3. Extension to other orbits

The presented technique may be exploited to find periodic
orbit-attitude solutions for multiple classes of planar orbits
in the CR3BP framework; DRO are presented due to their ap-
pealing features and their possible exploitation for near-future
mission, but no loss of generality is involved in the usage of
the tool.

Periodicity maps, like the sample of Figure 3, can be gen-
erated for potentially any type of planar periodic orbit, start-
ing from a reference catalog as [16] or including the orbit
identification into the code.

The extension to three-dimensional orbits presents some
issues, not addressed in this paper. The fully 3D dynamics
does not allow for a clear and simple visualization of the re-
sults, since all the three components of the angular velocity
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Fig. 4: Sample periodic solution Kz = 0.8, T = 4.85

vector are involved; furthermore, the single coefficient Kz is
no longer sufficient for a complete description of the space-
craft’s inertia properties, but at least another parameter is nec-
essary. A preliminary investigation of a Halo orbit-attitude
periodic solution is presented in [17].

3. EFFECTS OF SOLAR RADIATION PRESSURE

Solar radiation pressure (SRP) may be a significant distur-
bance for LSS in the Earth-Moon system, acting both on the
orbital path (acceleration) and on attitude dynamics (torque).
In particular, large surfaces exposed to solar radiation (e.g.
solar arrays) are able to produce a substantial torque com-
ponent with magnitude even greater than the gravity-gradient
torque, unless they are symmetric with respect to the space-
craft’s center of mass. The present work is focused on the
torque arising from SRP, while the orbital perturbation is as-
sumed to be compensated by some sort of station-keeping
system; is also worth noting that DROs, being a highly sta-
ble family, do not undergo significant path variation before a
few orbital periods, easing the station-keeping strategy.

3.1. Model and assumption

The force dF acting on an infinitesimal surface dA, due to
the radiation incoming from the sun, can be divided into three
components [18, 1]:

• The specularly reflected radiation (subscript s)

dFs = −2
W0

c0
Cs(ŝ · n̂)2n̂ dA (6)

• The diffusively reflected radiation (subscript d)

dFd = −W0

c0
Cd

(
2

3
(ŝ · n̂)n̂+ (ŝ · n̂)ŝ

)
dA (7)

• The absorbed radiation (subscript a)

dFa = −W0

c0
Ca(ŝ · n̂)ŝ dA (8)

where W0 is the solar constant (1361 W/m2), c0 the speed of
light in vacuum, n̂ the unit vector normal to the surface and
ŝ the sun direction, using the spacecraft as basepoint. For an
opaque surface, the three coefficients Cs, Ca, Cd are linked
by equation (9)

Cs + Ca + Cd = 1 (9)

In order to provide a simple tool for preliminary analyses,
with the aim of assessing the effect of SRP on the attitude be-
havior of a spacecraft in design phase, a single-surface model
is employed, assuming all the irradiated area A to be lumped
into a plate. The total SRP acceleration results in

aSRP = −W0

c0

A

m
(ŝ · n̂)

[
(1− Cs)ŝ

+

(
2Cs|ŝ · n̂|+

2

3
(1− Cs − Ca)

)
n̂

]
(10)

Assuming to know the position of the center of pressure dc,
in principal body axes, the torque about the z axis reads

TSRP = dc ×maSRP (11)
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Fig. 5: Sample periodic solution with SRP torque perturbation

3.2. Results

The SRP torque is a major source of disturbance for the atti-
tude motion of LSS in the Earth-Moon system. As example,
for a structure with 1000 m2 of surface and a weight of 500
metric tons, a difference of 30 cm between the position of
the center of radiation pressure and the barycenter provokes a
SRP torque of the same order of magnitude of gravity gradi-
ent torque, i.e. ' 1×10−3 Nm. This small value is actually
able to highly disturb the spacecraft’s attitude dynamics, and
especially for long-term mission may not be acceptable (e.g.
for momentum wheels operational life and fuel quantity for
desaturation maneuvers).

Small asymmetry of the surface with respect to the
barycenter does not hinder the periodic solutions obtained
with gravity gradient only. Figure 5 depicts how the previ-
ous sample periodic solution (Figure 4) is affected by the
perturbation of SRP torque, assuming a displacement of 2
and 10 cm of the center of pressure and a structure with
A = 1000 m2, m = 500× 103 kg, Ca = 0.4 and Cs = 0.6.

3.3. Highlights

It is noted that, even for preliminary analyses, SRP torque
is not negligible, since it may lead to large deviations from
the nominal attitude. At this stage, the study may proceed
following two different paths:

• The perturbation can be faced with an active control
system, designing a sequence of maneuvers to keep the
nominal periodic solution obtained with gravity gradi-
ent only; excess angular momentum may be stored and
regularly dumped with proper wheels and thrusters.

• The periodic solution search might be enhanced with
the implementation of SRP into the model, looking for

periodic orbit-attitude dynamical structures that include
SRP torque; the acceleration component may be in-
cluded as well, investigating the deviations from the
nominal orbital path.

4. FLEXIBLE SPACECRAFT ANALYSIS

The last step in the analysis is the assessment of the flexibility
of the spacecraft and its effect on attitude motion. The previ-
ously presented solutions and methods are in fact based on a
rigid body assumption, while low-frequency structural modes
might hinder and perturb such motion. The effects of flexi-
bility on the spacecraft attitude are investigated, neglecting at
this preliminary stage interactions with the orbital path; fur-
ther efforts may be directed to the extension of the model to
consider the full translational and rotational dynamics.

4.1. Model and assumptions

Figure 6 depicts the lumped-parameter model used for the
analysis: a rigid body, with moment of inertia Īz , is free to
rotate in a XY frame centered in its barycenter, with angu-
lar velocity ω. The angle φ indicates the rotation of the xb
body axis with respect to the X axis. Attached to this rigid
part there are N spring-mass systems, with stiffness ki and
mass mi intended to model a flexible part of the spacecraft.
Each i-th spring is located at a point Pi, with known and fixed
coordinates in body frame x̄i, ȳi. The angle αi, known in
body frame, indicates the vibration direction; it might be as-
sumed as a further degree of freedom for more complex parts
to be modeled, but for the present preliminary analysis it is
assumed to be fixed.
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Fig. 6: Flexible spacecraft lumped-parameter model

4.2. Flexible parts response

Calling si the elongation of the i-th spring, each flexible com-
ponent will be governed by the following differential equa-
tion:

s̈i + (
ki
mi
− ω2)si = ω2(x̄i cosαi + ȳi sinαi)

− ω̇(x̄i sinαi + ȳi cosαi) (12)

The N EoM that describe the flexible dynamics may be writ-
ten in matrix form as

[M ]s̈ + ([K]− [M ]ω2)s = [Lc]ω
2 − [Le]ω̇ (13)

where [M ] and [K] are, respectively, the mass and stiffness
matrix of the flexible system; for the case at hand they result
diagonal, but the treatment may be extended to non-diagonal
models, i.e. where each flexible system’s vibration is not to-
tally decoupled from the others. The term [M ]ω2 indicates
the gyroscopic softening effect, which apparently reduces the
stiffness of the flexible component. The matrices [Lc] and
[Le] denote the centrifugal and Euler accelerations contribu-
tions.

Denoting the fundamental frequencies Ωi =
√
ki/mi,

one notes that if Ωi � ω each flexible system behaves as a
forced mass-spring oscillator, and the contribution of the body
angular velocity to the stiffness may be neglected. Further-
more, variations in angular velocity are negligible too, since
they will be very slow with respect to the fast dynamics of the
oscillator. It is then possible to simplify equation (12) reduc-
ing it to

s̈i +
ki
mi

si = ω̄2(x̄i cosαi + ȳi sinαi) (14)

where the angular velocity ω is assumed to have a fixed, mean
value ω̄ and its variations ω̇ are neglected.

4.3. Attitude motion perturbation

The attitude motion is in turn perturbed by the vibrations of
the flexible systems. For the model at hand, the rotational

motion is described by equation (15)

ω̇

[
Īz +

N∑
i=1

mi(s
2
i +x̄2i + ȳ2i )+2misi(x̄i cosαi+ ȳi sinαi)

+miṡi(x̄i sinα− ȳi cosα)

]
+ ω

N∑
i=1

2misiṡi + 2miṡi(x̄i cosαi + ȳi sinαi) =

Mz −
N∑
i=1

mis̈i(x̄i sinα− ȳi cosα) (15)

where Mz is the external torque applied to spacecraft (e.g.
gravity gradient torque).

The first term contains all the inertia properties of the full
spacecraft, summing the contribution of the rigid and flexi-
ble parts; the change of inertia due to structural vibrations
might be neglected, since the displacements si are expected
to be small and yield no significant contribution with respect
to the static terms, as proven in the next Section. One may
then group the inertia contributions into an overall reduced
inertia Iz , i.e. the inertia of the full spacecraft at rest. The
second term denotes a coupling between the body angular ve-
locity and both the displacements si and velocities ṡi; the last
term represents the equivalent torque resulting from the iner-
tia forces of the moving components, depending on their arms
with respect to the barycenter.

4.4. Results

Under the assumption of high flexible frequencies in compar-
ison to the attitude motion’s ones, equation (14) shows that
the flexible response of the system is statically excited by its
angular rotation along the orbit, and the small vibrations of
the spring-mass systems can be computed in closed form with
the simple expression of equation (16), assuming null initial
conditions.

si(t) =
ω̄2(x̄i cosαi + ȳi sinαi)

Ω2
i

(1− cos Ωit) (16)

It is remarked that such vibration is of infinitesimal amplitude,
due to assumption that Ωi � ω. For non-diagonal mass and
stiffness matrices, the problem may be generally diagonalized
(e.g. using modal coordinates) and expressions analogous to
equation (16) will result.

The vibration of the flexible parts, in turn, perturbs the at-
titude motion according to equation (15); using the analytical,
approximate solution of equation (16), and dropping infinites-
imal terms, the attitude motion equation may be simplified as

ω̇Iz = Mz − ω̄2
N∑
i=1

Ii cos Ωit (17)



defining

Ii = mi(x̄i cosαi + ȳi sinαi)(x̄i sinα− ȳi cosα) (18)

with the units of an inertia.
At this point of the analysis, analogy between equations

(3) and (18) is evident, and the angular motion of the space-
craft may be described summing the gravity gradient torque
and the flexibility contribution, resulting in equation (19)

ω̇z = Kz

(
3(1− µ)

r31
e2e1 +

3µ

r32
l2l1

)
− ω̄2

N∑
i=1

Ii
Iz

cos Ωit (19)

Note that the mean value ω̄ must be known, and may be com-
puted e.g. from a rigid body solution. The equivalent torque
arising from flexible parts is then a short-period contribution,
which may be superposed to the free motion. Its magnitude
depends on the ratios Ii/Iz , which will be in general small
(since Iz inherently includes the contributions of the flexible
parts), even though not negligible.

5. CONCLUSIONS AND FINAL REMARKS

The paper presents a tool for preliminary analyses of coupled
orbit-attitude dynamics in the CR3BP, with peculiar attention
to distant retrograde orbits. The presented technique allows
to:

• Obtain periodic orbit-attitude solutions with gravity
gradient torque in a multi-body gravitational environ-
ment, providing working examples in the Earth-Moon
system;

• Analyze solar radiation pressure perturbation, assess-
ing its effect on rigid body motion and, as a consequent
step, on orbital path;

• Investigate couplings between structural vibrations of
flexible parts and attitude rotation, obtaining prelimi-
nary analytical results and guidelines for the analysis.

Throughout the work, the orbital dynamics is assumed un-
perturbed, while the coupling with the attitude behavior is ex-
pressed through the gravity gradient torque; future works may
be devoted to the fully coupled dynamics, including second
order terms in the gravitational potential [19] and assessing
the effect of an extended body on the orbital trajectory. The
inclusion of SRP perturbing acceleration might be part of the
model enhancing as well, with a more detailed representation
of the orbital and attitude dynamics both disturbed by solar
radiation; the inclusion of 4th body gravitational attraction
(Sun) might be interesting to assess the stability of the men-
tioned solutions in a more realistic dynamical environment.
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