Tube Dynamics and Low Energy Trajectory from the Earth to the Moon in the Coupled Three-Body System

○Kaori Onozaki*, Hiroaki Yoshimura* and Shane D. Ross**

*Waseda University
Applied Mechanics and Aerospace Engineering
**Virginia Polytechnic Institute and State University
Department of Engineering Science and Mechanics

$$
\text { March 15, } 2016
$$

6th International Conference on Astrodynamics Tools and Techniques

Backgrounds

Hohmann transfer (2-body problem)

The elliptic orbit connecting with the low Earth orbit and the lunar orbit. The two impulsive maneuver are required.
[Bate et al. (1971)]

Earth-Moon transfer with Sun-perturbation (4-body problem)

The Hiten transfer was established in the S-E-M-S/C 4-body problem by considering the Sunperturbation and by employing the theory of Weak Stability Boundaries.
[Belbruno and Miller (1993)]

Coupled PRC3BS

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled system.
[Koon et al. (2001)]

- PRC3BP and Tube dynamics [Conley (1968)]

Mass ratio : $\mu=\frac{m_{2}}{m_{1}+m_{2}}$

- Equation of motion $q=(x, y)^{T}$

$$
\ddot{q}-2 \tilde{\Omega} \dot{q}-q=-\frac{1-\mu}{\left|q-q_{1}\right|^{3}}\left(q-q_{1}\right)-\frac{\mu}{\left|q-q_{2}\right|^{3}}\left(q-q_{2}\right)
$$

- Energy

$$
E=\frac{1}{2}|\dot{q}|^{2}-\frac{1}{2}|q|^{2}-\frac{1-\mu}{\left|q-q_{1}\right|}-\frac{\mu}{\left|q-q_{2}\right|}=\text { const }
$$

- Lagrangian points

$$
\begin{array}{cl}
L_{1}, L_{2}, L_{3} & \text { saddle } \times \text { center } \\
L_{4}, L_{5} & \text { Stable (S-E-S/C and } \\
& \text { E-M-S/C systems) }
\end{array}
$$

Coupled PRC3BS

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled system.
[Koon et al. (2001)]

- PRC3BP and Tube dynamics [Conley (1968)]

Mass ratio : $\mu=\frac{m_{2}}{m_{1}+m_{2}}$

- Equation of motion $q=(x, y)^{T}$

$$
\ddot{q}-2 \tilde{\Omega} \dot{q}-q=-\frac{1-\mu}{\left|q-q_{1}\right|^{3}}\left(q-q_{1}\right)-\frac{\mu}{\left|q-q_{2}\right|^{3}}\left(q-q_{2}\right)
$$

- Energy

$$
E=\frac{1}{2}|\dot{q}|^{2}-\frac{1}{2}|q|^{2}-\frac{1-\mu}{\left|q-q_{1}\right|}-\frac{\mu}{\left|q-q_{2}\right|}=\text { con }
$$

- Lagrangian points

$$
\begin{array}{cl}
L_{1}, L_{2}, L_{3} & \text { saddle } \times \text { center } \\
L_{4}, L_{5} & \text { Stable (S-E-S/C and } \\
& \text { E-M-S/C systems) }
\end{array}
$$

Coupled PRC3BS

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled system.
[Koon et al. (2001)]

- PRC3BP and Tube dynamics [Conley (1968)]

Mass ratio $: \mu=\frac{m_{2}}{m_{1}+m_{2}}$

- Equation of motion $q=(x, y)^{T}$

$$
\ddot{q}-2 \tilde{\Omega} \dot{q}-q=-\frac{1-\mu}{\left|q-q_{1}\right|^{3}}\left(q-q_{1}\right)-\frac{\mu}{\left|q-q_{2}\right|^{3}}\left(q-q_{2}\right)
$$

- Energy

$$
E=\frac{1}{2}|\dot{q}|^{2}-\frac{1}{2}|q|^{2}-\frac{1-\mu}{\left|q-q_{1}\right|}-\frac{\mu}{\left|q-q_{2}\right|}=\text { con }
$$

- Lagrangian points

$$
\begin{array}{cl}
L_{1}, L_{2}, L_{3} & \text { saddle } \times \text { center } \\
L_{4}, L_{5} & \text { Stable (S-E-S/C and } \\
& \text { E-M-S/C systems) }
\end{array}
$$

Coupled PRC3BS

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled system.
[Koon et al. (2001)]

- PRC3BP and Tube dynamics [Conley (1968)]

Mass ratio : $\mu=\frac{m_{2}}{m_{1}+m_{2}}$

- Equation of motion $q=(x, y)^{T}$
$\ddot{q}-2 \tilde{\Omega} \dot{q}-q=-\frac{1-\mu}{\left|q-q_{1}\right|^{3}}\left(q-q_{1}\right)-\frac{\mu}{\left|q-q_{2}\right|}$ Unstable manifold
$W_{1, \mathrm{P} 1}^{u}$
- Energy

$$
\begin{aligned}
& \text { Energy } \\
& F=\left.\frac{1}{\mid \dot{\rho}}\right|^{2}-\frac{1}{|q|^{2}-1-\mu} \quad \text { 入 } \quad 0 \quad \mu \quad L_{1}
\end{aligned}
$$

Lyapunov orbit
-0.05

- Lagrangian points

$$
\begin{array}{cl}
L_{1}, L_{2}, L_{3} & \text { saddle } \times \text { center } \\
L_{4}, L_{5} & \text { Stable (S-E-S/C and } \\
& \text { E-M-S/C systems) }
\end{array}
$$

Coupled PRC3BS

Invariant manifold on $\overline{\mathcal{U}}$

Transfer in the S-E rotating frame
Invariant manifold on $\overline{\mathcal{U}}$

Boundary condition (departure: low Earth orbit 169km, arrival : low lunar orbit 100 km)

Transfer	$\Delta V_{\mathrm{E}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\mathrm{M}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\mathrm{P}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\text {Total }}[\mathrm{km} / \mathrm{s}]$
Hohmann	3.141	0.838	-	3.979
Coupled PRC3BP [Goon et al. 2001]	3.537	1.989	0.098	5.624

Coupled PRC3BS

Invariant manifold on $\overline{\mathcal{U}}$

Transfer in the S-E rotating frame
Invariant manifold on $\overline{\mathcal{U}}$

Boundary condition (departure: low Earth orbit 169km, arrival : low lunar orbit 100km)

Transfer	$\Delta V_{\mathrm{E}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\mathrm{M}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\mathrm{P}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\text {Total }}[\mathrm{km} / \mathrm{s}]$
Hohmann Coupled PRC3BP [Koon et al. 2001] 3.141 3.537	0.838	-	3.979	

How do we find a low energy transfer in the coupled system?

Approach to a problem

- Use optimization algorithm for a patch point to construct a low energy transfer [Peng et al. (2010)]
- Utilize the tubes (invariant manifolds) near the LEO and LLO to obtain a low energy transfer

Departure trajectory in the S-E-S/C system

LEO
$\left(\bar{x}, \bar{y}, \bar{v}_{\bar{x}}, \bar{v}_{\bar{y}}\right)=\left(1-\mu_{\mathrm{S}}-\bar{r}_{\mathrm{LEO}}, 0,0,-\bar{v}_{\mathrm{LEO}}\right)$

Velocity : increase
Departure trajectory

$$
\left(\bar{x}, \bar{y}, \bar{v}_{\bar{x}}, \bar{v}_{\bar{y}}\right)=\left(1-\mu_{\mathrm{S}}-\bar{r}_{\mathrm{LEO}}, 0,0,-\bar{v}_{\mathrm{LEO}}-\Delta V_{\mathrm{E}}\right)
$$ * maneuver ΔV_{E} uniquely gives $\bar{E}^{S E}$

Investigate the energy range (ΔV_{E} range) such that an orbit is to be a non-transit orbit

Departure trajectory in the S-E-S/C system

$$
\begin{aligned}
& \text { LEO Energy } \bar{E}_{\mathrm{LEO}}^{S E}=-1.53501 \\
& \left(\bar{x}, \bar{y}, \bar{v}_{\bar{x}}, \bar{v}_{\bar{y}}\right)=\left(1-\mu_{\mathrm{S}}-\bar{r}_{\mathrm{LEO}}, 0,0,-\bar{v}_{\mathrm{LEO}}\right)
\end{aligned}
$$

Velocity : increase Energy : increase
Departure trajectory Energy $\bar{E}^{S E}$

$$
\left(\bar{x}, \bar{y}, \bar{v}_{\bar{x}}, \bar{v}_{\bar{y}}\right)=\left(1-\mu_{\mathrm{S}}-\bar{r}_{\mathrm{LEO}}, 0,0,-\bar{v}_{\mathrm{LEO}}-\Delta V_{\mathrm{E}}\right)
$$ * maneuver ΔV_{E} uniquely gives $\bar{E}^{S E}$

Investigate the energy range (ΔV_{E} range) such that an orbit is to be a non-transit orbit

Departure trajectory in the S-E-S/C system

$$
\begin{aligned}
& \text { LEO Energy } \quad \bar{E}_{\mathrm{LEO}}^{S E}=-1.53501 \\
& \left(\bar{x}, \bar{y}, \bar{v}_{\bar{x}}, \bar{v}_{\bar{y}}\right)=\left(1-\mu_{\mathrm{S}}-\bar{r}_{\mathrm{LEO}}, 0,0,-\bar{v}_{\mathrm{LEO}}\right)
\end{aligned}
$$

Velocity : increase Energy : increase

Departure trajectory Energy $\bar{E}^{S E}$

$$
\left(\bar{x}, \bar{y}, \bar{v}_{\bar{x}}, \bar{v}_{\bar{y}}\right)=\left(1-\mu_{\mathrm{S}}-\bar{r}_{\mathrm{LEO}}, 0,0,-\bar{v}_{\mathrm{LEO}}-\Delta V_{\mathrm{E}}\right)
$$ * maneuver ΔV_{E} uniquely gives $\bar{E}^{S E}$

Investigate the energy range (ΔV_{E} range) such that an orbit is to be a non-transit orbit

Initial point of departure trajectory should be outside of the stable manifold

Departure trajectory in the S-E-S/C system

Inside of stable manifold

Stable manifold on \bar{U}
$\left(\bar{E}^{S E}=-1.50039\right)$

Departure trajectory in the S-E-S/C system

Outside of stable manifold
Stable manifold on \bar{U}
$\left(\bar{E}^{S E}=-1.50040\right)$

Departure trajectory in the S-E-S/C system

Outside of stable manifold
Stable manifold on \bar{U}

$$
\left(\bar{E}^{S E}=-1.50040\right)
$$

Upper limit of the energy of the departure trajectory (non-transit orbit)

$$
\bar{E}_{\mathrm{D}_{\max }^{S E}}^{S E}=-1.50040
$$

Departure trajectory in the S-E-S/C system

Family of the departure trajectories (non-transit orbits) parametrized by the energy

$$
\bar{E}^{S E} \in\left[\bar{E}_{\bar{L}_{2}}^{S E}, \bar{E}_{\mathrm{D}_{\max }}^{S E}\right]
$$

Energy at the Lagrangian point $\bar{L}_{2}: \bar{E}_{\bar{L}_{2}}^{S E}=-1.50045$
Upper limit of the energy : $\bar{E}_{\mathrm{D}_{\max }}^{S E}=-1.50040$

Arrival trajectory in the E-M-S/C system

 * maneuver ΔV_{M} uniquely gives $E^{E M}$

Energy range (ΔV_{M} range) such that an orbit is to be a transit orbit

Final point is inside of the unstable manifold

Arrival trajectory in the E-M-S/C system

Outside of unstable manifold

Unstable manifold on U

$$
\left(E^{E M}=-1.57962\right)
$$

Arrival trajectory in the E-M-S/C system

Inside of unstable manifold
Unstable manifold on U

$$
\left(E^{E M}=-1.57961\right)
$$

Arrival trajectory in the E-M-S/C system

Inside of unstable manifold
Unstable manifold on U

$$
\left(E^{E M}=-1.57961\right)
$$

Lower limit of the energy of the arrival trajectory (transit orbit)

$$
E_{\mathrm{A}_{\min }}^{E M}=-1.57961
$$

Arrival trajectory in the E-M-S/C system

Family of the arrival trajectories (transit orbits) parametrized by the energy

$$
E^{E M} \in\left[E_{\mathrm{A}_{\min }}^{E M}, E_{L_{3}}^{E M}\right]
$$

Lower limit of the energy : $\quad E_{\mathrm{A}_{\text {min }}}^{E M}=-1.57961$
Energy at the Lagrangian point $L_{3}: E_{L_{3}}^{E M}=-1.50608$

LEO-LLO transfer

Family of the departure and arrival trajectories in the S-E rotating frame

$$
\left(\bar{\theta}_{\mathrm{M}}=2.58030\right)
$$

*E-M-S/C system is to be nonautonomous system depending on $\bar{\theta}_{\mathrm{M}}$

Family of the departure and arrival trajectories on $\overline{\mathcal{U}}$

$$
\bar{\theta}_{\mathrm{M}} \in[0,2 \pi)
$$

LEO-LLO transfer

Family of the departure and arrival trajectories in the S-E rotating frame

$$
\left(\bar{\theta}_{\mathrm{M}}=2.58030\right)
$$

*E-M-S/C system is to be nonautonomous system depending on $\bar{\theta}_{\mathrm{M}}$

LEO-LLO transfer

Family of the departure and arrival trajectories in the S-E rotating frame

$$
\left(\bar{\theta}_{\mathrm{M}}=2.58030\right)
$$

*E-M-S/C system is to be nonautonomous system depending on $\bar{\theta}_{\mathrm{M}}$

Family of the departure and arrival trajectories on $\overline{\mathcal{U}}$

$$
\bar{\theta}_{\mathrm{M}} \in[0,2 \pi)
$$

Optimal transfer for a patch point with zero-maneuver

LEO-LLO transfer

Transfer
in the S-E rotating frame

Transfer in the E-M rotating frame

Transfer	$\Delta V_{\mathrm{E}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\mathrm{M}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\mathrm{P}}[\mathrm{km} / \mathrm{s}]$	$\Delta V_{\text {Total }}[\mathrm{km} / \mathrm{s}]$
Hohmann	3.141	0.838	-	3.979
Coupled PRC3BP	3.537	1.989	0.098	5.624
Proposed approach	3.270	0.642	0	3.912

- We designed the transfer from the low Earth orbit (LEO) to the Iow Iunar orbit (LLO) in the context of the coupled planar restricted 3-body system, namely, the Sun-Earth-spacecraft and Earth-Moon-spacecraft systems.
-We constructed the family of the departure trajectories (non-transit orbits) parametrized by the energy by investigating the tube near the Earth. On the other hand, the family of the arrival trajectories (transit orbits) was obtained.
- We chosen the patch point so that the families of the departure and arrival trajectories are intersected on set section, and then we designed the low energy LEO-LLO transfer. The patch point required the zero maneuver, and thus we optimized the maneuver in patching. Further, the total maneuver is $0.068[\mathrm{~km} / \mathrm{s}]$ fewer than the Hohmann transfer.

Thanks for your attention!

