Tube Dynamics and Low Energy Trajectory from the Earth to the Moon in the Coupled Three-Body System

Kaori Onozaki*, Hiroaki Yoshimura* and Shane D. Ross**

*Waseda University Applied Mechanics and Aerospace Engineering

**Virginia Polytechnic Institute and State University Department of Engineering Science and Mechanics

March 15, 2016

6th International Conference on Astrodynamics Tools and Techniques

Backgrounds

Hohmann transfer (2-body problem)

The elliptic orbit connecting with the low Earth orbit and the lunar orbit. The two impulsive maneuver are required.

[Bate et al. (1971)]

Earth-Moon transfer with Sun-perturbation (4-body problem)

The Hiten transfer was established in the S-E-M-S/C 4-body problem by considering the Sunperturbation and by employing the theory of Weak Stability Boundaries.

[Belbruno and Miller (1993)]

Hiten [Belbruno and Miller (1993)]

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled system. [Koon et al. (2001)]

• PRC3BP and Tube dynamics [Conley (1968)]

• Equation of motion
$$q = (x, y)^T$$

 $\ddot{q} - 2 \tilde{\Omega} \dot{q} - q = -\frac{1 - \mu}{|q - q_1|^3} (q - q_1) - \frac{\mu}{|q - q_2|^3} (q - q_2)$

• Energy

$$E = \frac{1}{2} |\dot{q}|^2 - \frac{1}{2} |q|^2 - \frac{1-\mu}{|q-q_1|} - \frac{\mu}{|q-q_2|} = \text{const}$$

Lagrangian points

 L_1, L_2, L_3 saddle × center L_4, L_5 Stable (S-E-S/C and E-M-S/C systems)

5

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled [Koon et al. (2001)] system.

 m_2 $(1-\mu, 0)$ m_1 $(-\mu, 0)$ Mass ratio : $\mu = \frac{m_2}{m_1 + m_2}$ PRC3BP and Tube dynamics [Conley (1968)] $W^u_{1,\mathrm{P1}}$

 $W^u_{2,\mathrm{P2}}$

Transit orbit

1.1

1.2

 $W^s_{2,X}$

S/C

 \mathcal{Y}

 $W^s_{1,\mathrm{P2}}$

 P_2

1

 \mathcal{X}

Forbidden region

0.9

 L_1

0.8

5

_yapunov orbit

-0.05

-0.1

-0.15

• Equation of motion
$$q = (x, y)^T$$

 $\ddot{q} - 2 \tilde{\Omega} \dot{q} - q = -\frac{1 - \mu}{|q - q_1|^3} (q - q_1) - \frac{\mu}{|q - q_2|^3} (q - q_2)$
0.05

E

$$=\frac{1}{2}|\dot{q}|^2 - \frac{1}{2}|q|^2 - \frac{1-\mu}{|q-q_1|} - \frac{\mu}{|q-q_2|} = \text{cons}$$

Lagrangian points

 L_1, L_2, L_3 saddle × center L_4, L_5 Stable (S-E-S/C and E-M-S/C systems)

1.3

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled system. [Koon et al. (2001)]

PRC3BP and Tube dynamics [Conley (1968)]

y q m_{2} m_{2} m_{2} m_{2} m_{2} $(1-\mu,0)$ m_{1} $(-\mu,0)$ $Mass ratio : \mu = \frac{m_{2}}{m_{1} + m_{2}}$ $W_{1,P_{1}}^{u}$ W_{1}^{s} $W_{2,X}^{s}$

3

The S-E-M-S/C 4-body problem is approximated to coupled two PRC3BS (S-E-S/C and E-M-S/C systems), and then the transfer is constructed based on the tube dynamics in the coupled [Koon et al. (2001)] system.

3

• Equation of motion
$$q = (x, y)^T$$

 $\ddot{q} - 2\tilde{\Omega}\dot{q} - q = -\frac{1-\mu}{|q-q_1|^3}(q-q_1) - \frac{\mu}{|q-q_2|}$ Unstable manifold
0.05
• Energy
 $E = \frac{1}{2}|\dot{q}|^2 - \frac{1}{2}|q|^2 - \frac{1-\mu}{|q-q_1|} - \frac{\mu}{|q-q_2|} = \operatorname{con} \begin{bmatrix} L_1 \\ 0.05 \end{bmatrix}$
• Lagrangian points
 L_1, L_2, L_3 saddle × center
 L_4, L_5 Stable (S-E-S/C and
E-M-S/C systems)
• Equation of motion $q = (x, y)^T$
 $(1)^{W_1, P_1}$
 $(1)^{W_1, P_2}$
 $(1)^{W_1, P_2}$
 $(1)^{W_1, P_2}$
 $(1)^{W_1, P_2}$
 $(1)^{W_1, P_2}$
 $(1)^{W_1, P_2}$
 $(1)^{W_2, P_$

Boundary condition

(departure : low Earth orbit 169km, arrival : low lunar orbit 100km)

Transfer	$\Delta V_{\rm E} \; [\rm km/s]$	$\Delta V_{\rm M} {\rm [km/s]}$	$\Delta V_{\rm P} [{\rm km/s}]$	$\Delta V_{\rm Total} \; [\rm km/s]$
Hohmann	3.141	0.838		3.979
Coupled PRC3BP [Koon et al. 2001]	3.537	1.989	0.098	5.624

Boundary condition

(departure : low Earth orbit 169km, arrival : low lunar orbit 100km)

Transfer	$\Delta V_{\rm E} \; [\rm km/s]$	$\Delta V_{\mathrm{M}} \; \mathrm{[km/s]}$	$\Delta V_{\rm P} [{\rm km/s}]$	$\Delta V_{\rm Total} \; [\rm km/s]$
Hohmann	3.141	0.838		3.979
Coupled PRC3BP [Koon et al. 2001]	3.537	1.989	0.098	5.624

How do we find a low energy transfer in the coupled system ?

Approach to a problem

- Use optimization algorithm for a patch point to construct a low energy transfer [Peng et al. (2010)]
- Utilize the tubes (invariant manifolds) near the LEO and LLO to obtain a low energy transfer

Investigate the energy range $(\Delta V_{\rm E} \text{ range})$ such that an orbit is to be a **non-transit orbit**

Investigate the energy range $(\Delta V_{\rm E} \text{ range})$ such that an orbit is to be a **non-transit orbit**

Investigate the energy range $(\Delta V_{\rm E} \text{ range})$ such that an orbit is to be a **non-transit orbit**

Initial point of departure trajectory should be **outside** of the stable manifold

Inside of stable manifold

Stable manifold on \overline{U} $(\overline{E}^{SE} = -1.50039)$

Outside of stable manifold

Stable manifold on \overline{U} $(\overline{E}^{SE} = -1.50040)$

Outside of stable manifold

Stable manifold on \overline{U} $(\overline{E}^{SE} = -1.50040)$

Upper limit of the energy of the departure trajectory (non-transit orbit)

$$\bar{E}_{\mathrm{D}_{\mathrm{max}}}^{SE} = -1.50040$$

Family of the departure trajectories (non-transit orbits) parametrized by the energy

 $\bar{E}^{SE} \in [\bar{E}_{\bar{L}_2}^{SE}, \bar{E}_{D_{\max}}^{SE}]$

Energy at the Lagrangian point \bar{L}_2 : $\bar{E}_{\bar{L}_2}^{SE} = -1.50045$ Upper limit of the energy : $\bar{E}_{D_{max}}^{SE} = -1.50040$

Energy range ($\Delta V_{\rm M}$ range) such that an orbit is to be a **transit** orbit

Final point is **inside** of the unstable manifold

Outside of unstable manifold

Unstable manifold on U $(E^{EM} = -1.57962)$

Inside of unstable manifold

Unstable manifold on U $(E^{EM} = -1.57961)$

Inside of unstable manifold

Unstable manifold on U $(E^{EM} = -1.57961)$

Lower limit of the energy of the arrival trajectory (transit orbit) $E_{\rm A_{\rm min}}^{EM} = -1.57961$

Family of the arrival trajectories (transit orbits) parametrized by the energy

 $E^{EM} \in [E_{A_{\min}}^{EM}, E_{L_3}^{EM}]$

Lower limit of the energy : $E_{A_{min}}^{EM} = -1.57961$ Energy at the Lagrangian point L_3 : $E_{L_2}^{EM} = -1.50608$

Family of the departure and arrival trajectories in the S-E rotating frame

 $(\bar{\theta}_{\rm M} = 2.58030)$

*E-M-S/C system is to be non-autonomous system depending on $\overline{\theta}_M$

Family of the departure and arrival trajectories on $\bar{\mathcal{U}}$

$$\bar{\theta}_{\mathrm{M}} \in [0, 2\pi)$$

Family of the departure and arrival trajectories in the S-E rotating frame

 $(\bar{\theta}_{\rm M} = 2.58030)$

*E-M-S/C system is to be non-autonomous system depending on $\overline{\theta}_M$

Family of the departure and arrival trajectories on $\bar{\mathcal{U}}$

$$\bar{\theta}_{\mathrm{M}} \in [0, 2\pi)$$

Family of the departure and arrival trajectories in the S-E rotating frame

 $(\bar{\theta}_{\rm M} = 2.58030)$

*E-M-S/C system is to be non-autonomous system depending on $\overline{\theta}_M$

Family of the departure and arrival trajectories on $\bar{\mathcal{U}}$

 $\bar{\theta}_{\mathrm{M}} \in [0, 2\pi)$

Optimal transfer for a patch point with zero-maneuver

Transfer in the S-E rotating frame

Transfer in the E-M rotating frame

Transfer	$\Delta V_{\rm E} \; [\rm km/s]$	$\Delta V_{\rm M} \; [{\rm km/s}]$	$\Delta V_{\rm P} \; [{\rm km/s}]$	$\Delta V_{\rm Total} \; [\rm km/s]$
Hohmann	3.141	0.838		3.979
Coupled PRC3BP	3.537	1.989	0.098	5.624
Proposed approach	3.270	0.642	0	3.912

Conclusions

- We designed the transfer from the low Earth orbit (LEO) to the low lunar orbit (LLO) in the context of the coupled planar restricted 3-body system, namely, the Sun-Earth-spacecraft and Earth-Moon-spacecraft systems.
- We constructed the family of the departure trajectories (non-transit orbits) parametrized by the energy by investigating the tube near the Earth. On the other hand, the family of the arrival trajectories (transit orbits) was obtained.
- We chosen the patch point so that the families of the departure and arrival trajectories are intersected on set section, and then we designed the low energy LEO-LLO transfer. The patch point required the zero maneuver, and thus we optimized the maneuver in patching. Further, the total maneuver is 0.068 [km/s] fewer than the Hohmann transfer.

Thanks for your attention !