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ABSTRACT

In this paper, we develop a low energy transfer from the low
Earth orbit (LEO) to the low lunar orbit (LLO) by employing
the coupled planar restricted circular 3-body system, i.e., the
Sun-Earth-spacecraft (S/C) and Earth-Moon-spacecraft (S/C)
systems. We show that the departure and arrival trajectories
can be chosen so that no correction maneuver is required at
the patch point. To do this, we consider an optimal design
problem of choosing boundary trajectories from the LEO to
the LLO. Associated with energies, the family of departure
trajectories from the LEO in the Sun-Earth-S/C system and
the family of arrival trajectories to the LLO in the Earth-
Moon-S/C system are constructed by utilizing the tube dy-
namics. Then, we show how the zero-maneuver trajectory
can be constructed at the patch point. Finally, we compare
the proposed transfer with those obtained by other methods.

Index Terms— Low energy transfer, boundary trajecto-
ries, tube dynamics, coupled 3-body system

1. INTRODUCTION

There have been many low energy transfers from the Earth
to the Moon. The classical Hohmann transfer has been most
commonly used for the design of orbit transfers, which is an
elliptic orbit connecting with two circular orbits. However,
one may need high energy for approaching to the Moon by
the Hohmann transfer. In particular, under the gravitational
effects due to the Sun, the Moon as well as the Earth, a low
energy transfer was established by using the notion of the
weak stability boundary which corresponds to stable invari-
ant manifolds of the 4-body system (see [1]). A similar trans-
fer was developed by coupling two planar restricted circular
3-body systems, namely, the Sun-Earth-S/C and Earth-Moon-
S/C systems (see [2]). In the coupled PRC3BS, using the
characteristics of the tubes, stable and unstable manifolds, an
orbit near from the Earth to a patch point was constructed in
the Sun-Earth-S/C system and another orbit from the vicinity
of the Moon to the patch point was computed in the Earth-
Moon-S/C system. Then, the orbits were connected at the
patch point by some velocity correction maneuver. Recently,
the idea of the coupled PRC3BS has been extended to the case

of the coupled circular-elliptic 3-body system in [4] and the
case in which there exist perturbations due to the Sun (or the
Moon) in the context of the Bicircular system (see, [5]).

For the design point of view, one needs to construct a low
energy trajectory from the boundary conditions in which the
spacecraft departs from the low Earth orbit (LEO) and arrives
at the low lunar orbit (LLO) are given. However, it is gen-
erally difficult to construct an optimal low energy transfer by
detecting an appropriate patch point on the section. For such
problems, there have been developed an optimization algo-
rithm to find the appropriate patch point, as in [6].

In this paper, we will propose a design method for a low
energy transfer from the LEO to the LLO by using the cou-
pled PRC3BS as well as the tube dynamics. In this transfer,
we will need three maneuvers; ∆VE from the LEO to a depar-
ture trajectory, ∆VP from the departure trajectory to an arrival
orbit and ∆VM from an arrival trajectory to the LLO. First, we
will make a brief review on the tube dynamics in the planar re-
stricted circular 3-body problem (PRC3BP). Second, we will
develop non-transit/transit orbits as the departure/arrival tra-
jectories which are parametrized by energies associated with
velocities of the spacecraft at the LEO/LLO. Among the fam-
ilies of the departure and arrival trajectories, we will establish
the lowest energy transfer by choosing the departure and ar-
rival trajectories connecting smoothly with ∆VP = 0.

2. PLANAR RESTRICTED CIRCULAR 3-BODY
PROBLEM AND TUBE DYNAMICS

Consider the motion of a spacecraft under the attraction of
two planets in the context of the planar restricted circular 3-
body problem (PRC3BP) as in Fig.1. We assume that two
bodies of large primary planets move along circular orbits
with a constant angular velocity around the common mass
center and also that the spacecraft with an infinitesimal mass
moves in the plane of the circles. We also assume that the
collision points between the spacecraft and the planets are re-
moved. Let m1 and m2 be masses of the planets, respectively.
The nondimensional system can be made by choosing the unit
of mass as m1+m2, the unit of length as the distance between
the planets and the unit of time so that the planets period be-
comes 2π. By this non-dimensionalization, the constant of
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Fig. 1: PRC3BP

gravitation G is set to 1. We can define the mass parameter
by µ = m2/(m1 + m2), and it follows that equations of mo-
tion in the rotating frame with the planets are given in local
coordinates (x, y, vx, vy) of the velocity phase space M ≈ R4

by 
ẋ = vx,

ẏ = vy,

v̇x − 2vy = x − (1−µ)(x+µ)
r3
1

− µ(x−1+µ)
r3
2

,

v̇y + 2vx = y − (1−µ)y
r3
1

− µy
r3
2
,

(1)

where r1 =
√

(x + µ)2 + y2 (and r2 =
√

(x − 1 + µ)2 + y2)
denotes the distance between the spacecraft and the primary
(and secondary) planet. The total energy is given by

E(x, y, vx, vy) =
1
2
(v2

x+v2
y)−1

2
(x2+y2)−1 − µ

r1
− µ

r2
, (2)

which is preserved in the PRC3BP.
As is well known, there exist five equilibrium (La-

grangian) points on the x axis (L1, L2, L3) as well as on
the lines of the regular triangle (L4, L5). Fixing the energy
E to some value E0, one can define a subset E ⊂ M , called
energy surface, by

E(µ,E0) = {w = (x, y, vx, vy) ∈ M | E(w) = E0}. (3)

Then, one can also define Hill’s region, where the spacecraft
can move, by projecting the energy surface E onto the x−y
plane. The forbidden region is simultaneously defined as the
region excluding the Hill’s region. Denoting the potential en-
ergy at a Lagrangian point by ELi (i = 1, · · · , 5), we choose
the energy slightly greater than EL2 so that there exist neck
region around L2, as shown in Fig.2.

Since the collinear Lagrangian points (L1, L2, L3) has
the saddle × center structure, there exists the unstable orbit
around the Lagrangian point, which is called the Lyapunov
orbit. Further, there are stable and unstable invariant mani-
folds associated with the Lyapunov orbit; namely, the stable
invariant manifold may tend asymptotically to the Lyapunov
orbit, and the unstable invariant manifold may leave from
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Fig. 2: Flows near the secondary planet

the Lyapunov orbit as illustrated in Fig.2. These invariant
manifolds are sometimes called tubes since the manifolds
are homeomorphic to the cylinder S × R. The Hill’s re-
gion is divided into three regions by the y-axes including
L1 and L2, namely, P1 region including the primary planet,
P2 including the secondary planet, and X region without P1

and P2 regions. So let us denote by W s
i,A stable manifolds

which tend to a Lyapunov orbit around Li (i = 1, 2) from
A (A = P1, P2,X) region and by Wu

i,A unstable manifolds
which leave from a Lyapunov orbit around Li (i = 1, 2)
toward another region A (A = P1, P2,X), as illustrated in
Fig.2. Now, we can see that the tubes separate orbits into
transit and non-transit orbits[7]; namely, an orbit inside of
the tubes is to be a transit orbit. For example, if the spacecraft
is inside of the tube in some region, it is to be transported to
another region. On the other hand, an orbit existing outside
of the tubes is to be a non-transit orbit, where a spacecraft in
a region remains in the same region.

3. LOW ENERGY TRANSFER

3.1. Coupled PRC3BS

Now, we consider the design problem for the transfer tra-
jectory of the spacecraft from the LEO to the LLO un-
der the gravitational effect of the Sun, the Earth and the
Moon. The Sun and the barycenter of the Earth and the
Moon (Earth-Moon barycenter) rotate along the circular or-
bits around mass center CM of the whole system, where
the distance between the Sun and the Earth-Moon barycen-
ter is aS(= 1.49598 × 108 km) and the angular velocity is
ωS(= 1.99640 × 10−7 1/s). The Earth and the Moon rotate
along the circular orbits around their barycenter with the an-
gular velocity ωM(= 2.66498 × 10−6 1/s) and the distance
between the planets is aM(= 3.84400 × 105 km), as shown
in Fig.3. The masses of the Sun, Earth and Moon are denoted
by mS,mE and mM, respectively. The spacecraft and planets
move on the same plane.
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Fig. 3: Bicircular model

Recall that the coupled PRC3BS is an approximated
model of the planar bicircular restricted 4-body problem and
we consider the coupled system of the Sun-Earth-S/C sys-
tem with the mass parameter µS = mE/(mS + mE) =
3.02319 × 10−6 and the Earth-Moon-S/C system with the
mass parameter µM = mM/(mE + mM) = 1.21536× 10−2.
In this paper, the expression for some quantity or set A is
given by local coordinates of the Earth-Moon (E-M) rotating
frame, while Ā is expressed by local coordinates of the Sun-
Earth (S-E) rotating frame. Let (x̄, ȳ, v̄x̄, v̄ȳ) ∈ M denote
the position and velocity of the spacecraft in the S-E rotating
frame.

It follows from (3) that the energy surface in the S-E ro-
tating frame is given by

Ē(µS , ĒSE
0 )={w̄ = (x̄, ȳ, v̄x̄, v̄ȳ) ∈ M | ĒSE(w̄) = ĒSE

0 },

where ĒSE
0 denotes a given energy of the Sun-Earth-S/C sys-

tem. Denoting by w = (x, y, vx, vy) ∈ M the local coor-
dinate in the E-M rotating frame and by also EEM

0 a given
energy of the Earth-Moon-S/C system, the energy surface is
defined as

E(µM , EEM
0 )={w = (x, y, vx, vy) ∈ M |EEM (w) = EEM

0 }.

We show the transformation between the S-E and E-M
rotating frame below. The transformation of time is given by

t̄ =
ωS

ωM
t.

The transformation of position is(
x̄
ȳ

)
=

(
1 − µS

0

)
+

aM

aS
C(t)

(
x
y

)
.

In the above,

C(t) =
(

cos (θM) − sin (θM)
sin (θM) cos (θM)

)
,

where θM = (1 − ωS/ωM)t + θM0 is the angel between x
axis and x̄ axis. The coordinate transformation for the veloc-
ity phase space, ϕ̃ : M × I → M × I, (x, y, vx, vy, t) 7→

(x̄, ȳ, v̄x̄, v̄ȳ, t̄), is given by(
v̄x̄

v̄ȳ

)
=

aM

aSωS
C(t)

(
ωMvx − (ωM − ωS)y
ωMvy + (ωM − ωS)x

)
.

3.2. The Family of Departure Trajectories

For the boundary condition that the spacecraft departs from
the LEO (167 km, 7.80713 km/s) by the maneuver ∆VE, we
want to get the departure trajectory in the Sun-Earth-S/C sys-
tem. Set the departure point on the LEO in the S-E rotating
frame as (x̄, ȳ, v̄x̄, v̄ȳ) = (1 − µS − r̄LEO, 0, 0,−v̄LEO) =
(0.999953, 0, 0,−0.261364), where r̄LEO = 4.37038×10−5

denotes the altitude of the spacecraft from the Earth’s center
and v̄LEO = 0.261364 the velocity of the LEO in the S-E ro-
tating frame. The energy at the point is ĒSE

LEO = −1.53501.
It is assumed that ∆VE is produced in parallel to the veloc-
ity of the LEO in Fig.4. Hence the spacecraft is transferred
to the patch point w̄D = (x̄D, ȳD, v̄ȳD, v̄ȳD) = (1 − µS −
r̄LEO, 0, 0,−v̄LEO − ∆VE) = (0.999953, 0, 0,−v̄LEO −
∆VE). Note that the energy ĒSE after the maneuver is
uniquely obtained by ∆VE.
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Fig. 4: Configuration of departure point

Here, we construct the non-transit orbit from the patch
point as the departure trajectory in order to remain in the Earth
region. So, the patch point after the maneuver is required to
be outside of the stable manifold W̄ s

2,E. Let us find out an
energy range (associated with ∆VE) satisfying this condition.
To do this, set the Poincaré section Ū by

Ū = {(x̄, ȳ, v̄x̄, v̄ȳ) ∈ Ē(µS, ĒSE
0 ) | x̄ < 1 − µS, ȳ = 0,

v̄x̄ > 0}.

Set the energy at Lagrangian point L̄2, (x̄, ȳ, v̄x̄, v̄ȳ) =
(0.999997, 0, 0, 0), by ĒSE

L̄2
= −1.50045, and there exists

the neck region within the energy range ĒSE
L̄2

≤ ĒSE
0 . Now,

let us find out the upper limit of the departure trajectory for
this energy region by investigating the stable manifold W̄ s

2,E

on Ū .
The LEO and the patch point are illustrated together with

W̄ s
2,E ∩ Ū for the case of ĒSE

0 = −1.50040 in Fig.5. One



can detect that the energy range is ĒSE
L̄2

≤ ĒSE
0 ≤ ĒDmax =

−1.50040 where an orbit is to be a non-transit orbit. In par-
ticular, the stable manifold W̄ s

2,E with ĒSE
0 = ĒDmax is illus-

trated in Fig.6. Needless to say, for the region ĒDmax < ĒSE
0 ,

the spacecraft is transported to the exterior region since the
patch point is inside of W̄ s

2,E.
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Fig. 5: Boundary of non-transit orbits
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Fig. 6: Stable manifolds W̄ s
2,E

(ĒSE
Dmax

= −1.50040)

In this way, we can define the family of the non-transit
orbits parametrized by the energy ĒSE

0 as

D(ĒSE
0 ) = {φt̄(w̄D) ∈ M | w̄D ∈ Ē(µS, ĒSE

0 ),

ĒSE
0 ∈ [ĒSE

L̄2
, ĒSE

Dmax
]}.

In the above, φt̄ : M → M is the flow, where t̄ ∈ I ⊂ R. As-
sociated with 50 values for the energy ĒSE

0 ∈ [ĒSE
L̄2

, ĒSE
Dmax

],
the family of the non-transit orbits is illustrated in Fig.7.

3.3. The Family of Arrival Trajectories

One needs to consider another boundary condition for the
spacecraft; namely, the spacecraft is to be transferred from
an arrival trajectory into the LLO (100 km, 1.63346 km/s)
by a correction maneuver ∆VM in the Earth-Moon-spacecraft
system. Finally, the spacecraft is to arrive at (x, y, vx, vy) =
(1−µM −rLLO, 0, 0,−vLLO) = (0.983066, 0, 0,−1.58974),

y

x

E

Fig. 7: Family of non-transit orbits from LEO
(ĒSE

0 ∈ [ĒSE
L̄2

, ĒSE
Dmax

])

where the energy at the point is ELLO = −2.75466, rLLO =
4.78018 × 10−3 indicates the altitude of the spacecraft from
the Earth’s center and vLLO = 1.58974 the velocity of the
spacecraft at the LLO in the E-M rotating frame. We assume
the correction maneuver is produced in parallel to the veloc-
ity of the LLO in Fig.8. One can determine the patch point as
wA = (xA, yA, vxA, vyA) = (1− µM − rLLO, 0, 0,−vLLO −
∆VM) = (0.983066, 0, 0,−vLLO − ∆VM). Since the en-
ergy at the LLO is given, i.e., ELLO = −2.75466, one can
uniquely determine the energy EEM

0 at the patch point asso-
ciated with some correction maneuver ∆VM.
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Fig. 8: Configuration of departure point

Here, we construct the transit orbit from the LLO to the
exterior region in the backward time as the arrival trajectory.
The patch point is so chosen that it is to be inside of the un-
stable manifold Wu

2,M. We shall determine the energy range
(associated with ∆VM) to obtain the transit orbit and set the
Poincaré section U by

U = {(x, y, vx, vy) ∈ E(µM, EEM
0 ) | x <1 − µM,

y = 0, vx < 0}.

Since the energy at the Lagrangian point L3 is EL3 =
−1.50608, where L3 is (x, y, vx, vy) = (−1.00506, 0, 0, 0),



the upper limit of the energy is given by EEM
0 ≤ EL3 . In

this energy range, we illustrate the unstable manifold Wu
2,M

on U , namely, the subset Wu
2,M ∩ U for the case of EEM

0 =
−1.57961 in Fig.9. So, we can determine the lower limit of
the energy as EEM

Amin
= −1.57961 ≤ EEM

0 ≤ EEM
L3

. We
illustrate Wu

2,M with EEM
0 = EEM

Amin
in Fig.10.
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Fig. 9: Boundary of non-transit orbits
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Fig. 10: Stable manifold Wu
2,M

(EEM
Amin

= −1.57961)

One can obtain the family of the transit orbits parametrized
by the energy EEM

0 , which is given by

A(EEM
0 ) = {φ−t(wA) ∈ M | wA ∈E(µM, EEM

0 ),

EEM
0 ∈ [EEM

Amin
, EEM

L3
]}.

We show the family of the transit orbits associated with 50
values of EEM

0 in Fig.11.

3.4. Design of the Transfer Orbit from the LEO to the
LLO

In this section, we show how the transfer orbit from the LEO
to the LLO can be obtained by patching the departure and
arrival trajectories in the previous sections. In particular, we
demonstrate that the optimal transfer can be made in the sense
that ∆VP = 0, though the maneuver ∆VP is generally re-
quired in the patching.
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E M

Fig. 11: Family of transit orbits to LLO
(EEM

0 ∈ [EEM
Amin

, EEM
L3

])

Let us consider the Sun-Earth-S/C and Earth-Moon-S/C
systems in the S-E rotating frame in order to patch the trajec-
tories. The Earth-Moon-S/C system in the S-E rotating frame
can be considered to be a non-autonomous system since it de-
pends on the angle θ̄M ∈ [0, 2π). We show the arrival trajec-
tories ϕ̃(A(EEM

0 )) at θ̄M = 2.58030 in addition to the family
of the departure trajectories in Fig.12.

Lunar orbit

E

M µM

x

y

Ū

Fig. 12: Departure and arrival trajectories
in the S-E rotating coordinate (θ̄M = 2.58030)

To determine a patch point, set the Poincaré section on the
x̄ axis by

Ū = {(x̄, ȳ, v̄x̄, v̄ȳ) | x̄ > 1 − µS, ȳ = 0, v̄ȳ > 0}.

We show the family of the departure trajectories crossing the
section Ū given by D(ĒSE

0 ) ∩ Ū and the subset of the family
of the arrival trajectories ϕ̃(A(EEM

0 )) ∩ Ū for θ̄M ∈ [0, 2π)
in Fig.13. Thus, the patch point can be uniquely chosen at the
intersection of D(ĒSE

0 ) ∩ Ū and ϕ̃(A(EEM
0 )) ∩ Ū as

(x̄P, ȳP, v̄x̄P, v̄ȳP) = (1.00521, 0,−0.0105875, 0.0173207).

The transfer trajectory is obtained by smoothly connect-
ing the departure and arrival trajectories, where the trajectory
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Fig. 13: Patch point and the departure and arrival trajectories
(θ̄M ∈ [0, 2π)) on Ū

is optimal in the sense that the maneuver ∆VP is zero. The
departure trajectory can be computed from the initial point as

(x̄D, ȳD, v̄x̄D, v̄ȳD) = (0.999953, 0, 0,−0.370838),

where the energy is ĒSE
0 = −1.50041. It follows that ∆VE =

3.270 km/s. The final point of the arrival trajectory in the S-E
rotating frame is given by

(x̄A, ȳA, v̄x̄A, v̄ȳA) = (0.997859, 0.00134456, 0.0238594,

0.0379475),

and the angle at the final point is θ̄M = 2.58030. The energy
of the arrival trajectory is EEM

0 = −1.56243 and hence the
maneuver is ∆VM = 0.642 km/s.

As in Fig.14, it is clear that the patch point is outside of
the unstable manifold W̄u

2,E of the Sun-Earth-S/C system and
inside of the stable manifold W s

2,M of the Earth-Moon-S/C
system on Ū.
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the Sun-Earth-S/C system
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E(¹E,E
SE     )

ϕ̃(E(µM, EEM ))

Fig. 14: Patch point and invariant manifolds on Ū

We illustrate the obtained transfer from the LEO to the
LLO in the S-E rotating frame in Fig.15 and also that in the
E-M rotating frame in Fig.16. In this transfer, the flight time
T = 102 d is required.

Finally, we compare the proposed transfer with the
Hohmann transfer and a transfer obtained by the previous
coupled PRC3BS [2] in Table 1. We obtain the Hohmann
transfer as the elliptic orbit connecting with the LEO and
the lunar orbit. Using the previous approach of the coupled
PRC3BS, the energies of the Sun-Earth-S/C and E-M-S/C
systems are ĒSE

0 = −1.50037 and EEM
0 = −1.58340

respectively. As in Table 1, it follows that the total maneu-
ver of the proposed approach is 0.067 km/s fewer than the
Hohmann transfer. In addition, the proposed transfer does
not require any maneuver in patching comparing with the
previous coupled PRC3BS.
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Fig. 15: Transfer from the LEO to the LLO
in the SE rotating coordinate
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Fig. 16: Transfer from the LEO to the LLO
in the EM rotating coordinate

Table 1: Maneuver (∆V [km/s]) and flight time (T [d])
Transfer ∆VE ∆VM ∆VP T

Hohmann 3.141 0.838 − 5
Coupled PRC3BS[2] 3.537 1.989 0.098 179
Proposed approach 3.270 0.642 0 102



4. CONCLUSION

In this paper, we have shown design of a low energy trans-
fer under some given boundary conditions where the space-
craft departs from a low Earth orbit (LEO) and arrives at a
low lunar orbit (LLO). The transfer has been developed by
using the coupled planar restricted circular 3-body system,
namely, the Sun-Earth-spacecraft and Earth-Moon-spacecraft
systems. First, we have constructed the family of the depar-
ture trajectories so that the trajectories are to be the non-transit
orbits from the LEO existed outside of the stable manifold in
the Sun-Earth-spacecraft system. The family of the arrival
trajectories has been obtained by the transit orbits inside of
the unstable manifold in the Earth-Moon-spacecraft system.
By parametrizing the family of the arrival trajectories by the
angle θ̄M in the Sun-Earth rotating frame, we have obtained
the optimized patch point at which the departure and arrival
trajectories are connected smoothly with ∆VP = 0. Finally,
we have illustrated the low energy transfer from the LEO to
the LLO and the validity of the proposed approach in com-
parison with other approaches.
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