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ABSTRACT

This paper describes a tool and the associated mathematical
framework that computes an orbit acquisition plan that either
minimizes the duration of the orbit acquisition phase or the
required Delta-V given the spacecraft characteristics and mis-
sion constraints. The automatic algorithms are built upon on
a perturbation analysis of the nominal orbit and provide the
necessary information to perform preliminary analysis of or-
bit acquisition phases of Earth observation satellites. Two dif-
ferent strategies are exploited, one based on continuous rate
semi-major axis changes and a second based on step-wise
semi-major axis changes. The former is suitable for the case
when several small manoeuvres can be approximated by a sin-
gle manoeuvre with a constant altitude change rate and during
the early design phases when detailed information about the
manoeuvring constrains is not available. The latter produces
a more detailed plan that considers the existence of a first and
a last manoeuvres with smaller amplitude than the remaining
ones. All algorithms take into account Delta-V limits and the
existence of periods when manoeuvring is not possible.

Index Terms— Orbit acquisition, phasing, optimization

1. INTRODUCTION

Earth observation data is key for an efficient use of land and
natural resources, better land and sea monitoring, more in-
formed political decisions, and better understanding of the
weather, climate, and land changes. Many Earth observation
satellites are operated in Low Earth Orbits (LEO), which pro-
vide a good trade-off between revisit time and spatial reso-
lution. Repeat ground track orbits are of particular interest
as they allow the acquisition of the same scene at fixed time
intervals. Additionally, either for calibration or nominal op-
eration proposes, many satellites are required to overpass an
exact location on Earth. For missions comprising spacecraft
constellations, accurate orbit phasing is also needed. Hence,
the satellite manoeuvres should be carefully planned to con-
trol the ground track drift so that the desired longitude at as-
cending node crossing are achieved.

The work in [1] describes an analytical methodology for
modelling the ground track drift of a low-Earth satellite as

well as the semi-major axis and eccentricity change for a
given impulsive in-plane Delta-V. The modelling is based on
linearisation of ground track shift from one pass to the next.
This analytical formulation is implemented computationally
and used to select the manoeuvres of the orbit acquisition
process.

The conditions required for repeat ground track orbits are
analysed in [2]. In this work, an autonomous orbit control
system to drive the satellite from any initial condition to the
desired repeat ground track is also outlined. Similarly to [1],
the control concept is based on the linearised model of the
nodal period.

The works in [1] and [2] provide a theoretical framework
for the analysis and design of an orbit acquisition phase.
However, constraints that limit the manoeuvring strategies
and that are inherently present on any mission are not ad-
dressed. The different scenarios analysed for the orbit acqui-
sition of MetOp-A are described in [3] as well as the actual
manoeuvre executed to achieve the desired orbit position. The
ground track was required to be achieved within two weeks.
During the Launch and Early Orbit Phase (LEOP) there were
two opportunities for performing orbital corrections on the
third and last day. Since the out-of-plane manoeuvres have an
in-plane component and vice-versa, the last manoeuvre had
to be a small in-plane manoeuvre to correct eventual inaccu-
racies and cross component effects of previous manoeuvres.

This paper describes a tool for rapid orbit acquisition op-
timisation. Two strategies can be selected: i) constant semi-
major axis rate of change and ii) step-wise semi-major axis
manoeuvres. In the former, constant Delta-V per time inter-
val is applied to the spacecraft, which is suitable when sev-
eral small impulsive manoeuvres can be approximated by a
continuous manoeuvre and also when there is no detailed in-
formation about the manoeuvring capabilities and other con-
straints. The latter is based on impulsive semi-major axis
changes, which allows a more detailed plan, where practical
consideration such as the existence of calibration and touch-
up manoeuvres are taken into account. The tool also allows
the analysis of several semi-major axis launch dispersions
and launch dates providing for each case the resulting ac-
quisition duration, required Delta-V, and Mean Local Solar
Time (MLST) drift. In particular, to insert another spacecraft



within a constellation, a trade-off needs to be made regard-
ing the targeted injection orbit (in terms of semi-major axis,
inclination or MLST). Taking into account the spacecraft ma-
noeuvre capabilities, the operational constraints of LEOP, the
constraints preparing and implementing manoeuvres, launch
date constraints and the agreed (or expected) launch disper-
sions, the tool identifies the consequences of all the possible
scenarios, which can then be used to define the orbital offset
to be targeted at launch.

The remainder of this paper is organized as follows. In
Section 2 the ground track drift evolution when the orbit semi-
major axis and inclination are not nominal is characterised
resorting to a perturbation analysis of the orbit. Section 3 de-
scribes the algorithms developed for the tool for the minimi-
sation of the orbit acquisition time and of the Delta-V con-
sumption. The tool inputs as well as its outputs are described
in Section 4. In Section 5, the tool is used to provide orbit
acquisiton plans using the developed algorithms for a realis-
tic scenario. Finally, concluding remarks and directions for
future work are outlined in Section 6.

2. PERTURBATION ANALYSIS OF THE NOMINAL
ORBIT

Typically, following the launch of a LEO spacecraft, the ini-
tial orbit injection errors need to be corrected so that the nom-
inal semi-major axis, eccentricity and inclination are reached.
If no phasing or specific ground track are required, the space-
craft is directly manoeuvred to the targeted semi-major axis,
eccentricity and inclination. On the other hand, if phasing
or a specific ground track are needed, the orbital manoeuvres
should be performed at appropriate time instants to achieve
the desired orbital drift.

2.1. Orbit drift of a perturbed orbit

The equatorial distance between two consecutive (in time) as-
cending nodes is given by

λone rev = R⊕(ω⊕ − Ω̇)PΩ, (1)

where R⊕ is the Earth’s radius, ω⊕ is the Earth’s rotational
velocity, Ω is right ascension of the ascending node (angle
from the vernal equinox to the ascending node), and PΩ is the
nodal period.

The dominant motion of Ω is caused by J2, which repre-
sents the Earth’s oblateness and it is described by

Ω̇J2 = −3

2

√
µ

a7

R⊕

(1− e2)2
cos(i), (2)

where µ denotes the gravitational constant, a is the semi-
major axis of the satellite’s orbit, e is the orbit eccentricity,
and i is the orbit inclination. By assuming that Ω̇ ≈ Ω̇J2 , the

(a) Orbital plane representation. (b) Ground track representation.

Fig. 1: Evolution of the orbital position with a semi-major
axis above or below the nominal.

nodal period of an orbit is approximately given by [4]

PΩ = 2π

√
a3

µ

(
1 +

3J2R
2
⊕

2a2
(3− 4 sin2(i))

)
. (3)

By using (3), we conclude that the nodal period depends
mainly on the semi-major axis, a. Thus, assuming that the
orbit inclination is nominal, by performing in-plane manoeu-
vres, the semi-major axis can be controlled to achieve the
desired ground track. For the same propellant, inclination
changes induced by out-of-plane manoeuvres have a much
smaller effect on the nodal period than the semi-major axis
changes induced by in-plane manoeuvres. Nevertheless, the
design orbit acquisition phase needs to take into account the
orbit inclination. We resort to a perturbation analysis of the
nominal orbit to study the consequences to the ground track
acquisition of small variations of a and of i. Since this is a
first order perturbation analysis, only the J2 zonal harmonic
of Earth’s gravity field is considered. The mathematical
derivation follows mostly the work in [4].

Using (1), we have that a specific ground track or orbital
phase can be achieved by reducing or increasing the nodal pe-
riod so that the ascending node drifts eastwards of westwards,
respectively, as illustrated in Fig. 1.

Assuming small variations of a and i (e is assumed to be
nominal, and thus not included in this analysis), (1) can be
approximated by

λone rev(a+ ∆a, i+ ∆i) ≈

λone rev(a, i) +
∂λone rev(a, i)

∂a
∆a+

∂λone rev(a, i)

∂i
∆i.

(4)

The partial derivative of λone rev with respect to a is given
by

∂λone rev(a, i)

∂a
= R⊕(ω⊕ − Ω̇)

∂PΩ

∂a
−R⊕PΩ

∂Ω̇

∂a
, (5)

where the partial derivative of (3) yields

∂PΩ

∂a
≈ 21

4

√
µ

a9

R2
⊕J2

(1− e2)2
cos(i), (6)



and, ignoring higher order zonal harmonics, from (2), we ob-
tain

∂Ω̇

∂a
≈ 3π

√
µ

a

(
1 +

J2

2

(
R2

⊕
a

)2

(3− 4 sin2(i))

)
. (7)

The partial derivative of λone rev with respect to i is given by

∂λone rev(a, i)

∂a
= R⊕(ω⊕ − Ω̇)

∂PΩ

∂i
−R⊕PΩ

∂Ω̇

∂i
, (8)

where the partial derivative of (3) yields

∂PΩ

∂i
≈ −12π

√
a7

µ
R2

⊕ sin(2i), (9)

and, ignoring higher order zonal harmonics, by using (2), we
obtain

∂Ω̇

∂i
≈ 3

2

√
µ

a7

R2
⊕J2

(1− e2)2
sin(i)). (10)

Expressing continuously in time the equatorial drift be-
tween the nominal and the perturbed orbits, we obtain

∆λ(t) =

=

∫ t

t0

λone rev(a+ ∆a(τ)), i+ ∆i(τ))− λone rev(a, i)

PΩ
dτ

=
1

PΩ

(
ka

∫ t

t0

∆a(τ)dτ + ki

∫ t

t0

∆i(τ)dτ

)
,

(11)

where ka = ∂λone rev(a,i)
∂a and ki = ∂λone rev(a,i)

∂i . As mentioned
above, in general, changing ∆a is more efficient than modify-
ing ∆i. For this reason, for sake of simplicity, let us assume
that ∆i = 0. Hence,

∆λ∆i=0(t) =
ka
PΩ

∫ t

t0

∆a(τ)dτ. (12)

From (12), we conclude that the ground track drift is closely
associated with the area given by the integration of the semi-
major axis time evolution, i.e. with A =

∫ t
t0

∆a(τ)dτ .

2.2. Sun-synchronous and repeat ground track orbits

Despite the above derivation being valid for any LEO, the
tool is specially targeted at Sun-synchronous orbits with a re-
peat ground track. A spacecraft with a repeat ground track
orbit passes over the exact same location on the earth sur-
face at fixed time intervals. This is important to guarantee
ground stations visibility and for monitoring of the evolution
of terrain over time (e.g. shoreline, land-coverage, and land-
change). In repeat ground track orbits, we have

λone rev =
kdays
kref

2πR⊕, (13)

where krev denotes the number of different ascending nodes,
and kdays denotes the number of days necessary to complete
a full cycle.

Sun-synchronous orbits are near circular with altitudes,
mostly, between 600 km and 800 km. In these orbits, the ori-
entation of the orbital plane with respect to the Sun is approx-
imately constant and the satellite observes a scene on ground
always with the same illumination conditions. This has sev-
eral advantages for Earth observation. For passive imaging
satellites which rely on the light reflected by the Earth, orbits
with Sun incidence angle different from 90 deg are advan-
tageous since, the height of terrain or other feature can be
computed from its shadow. On the other hand, radar satellites
can be placed on dawn/dusk orbits, so that they receive solar
power during mostly of its orbit, which maximizes the active
time of the instruments. The MLST is used to characterize the
Sun lightning conditions. The MLST of an equator crossing
(ascending or descending node) at longitude L (expressed in
degrees) is given by [5]

MLST = UT + L
24

360
(hours) (14)

where UT is the universal time based on the Earth’s rotation
expressed in hours. Consequently, UT is theMLST at 0 deg
longitude. This time is constant in Sun-synchronous orbits.
The constant orientation of the orbit plane with respect to the
direction of the Sun is achieved by a judicious selection of
the orbital parameters, in particular, of semi-major axis, ec-
centricity, and inclination, so that the perturbation effect due
to the Earth oblateness results in a rotation of the right ascen-
sion of the ascending node Ω.

2.3. Computing the targeted drift

Let the reference orbit be characterized by nominal a, i, and
e, and in which λref (tref ) is the equatorial position of the
ascending node at instant tref . The mean time evolution of
λref is given by

λref (t) = R⊕(ω⊕ − Ω̇)(t− tref ) + λref (tref ) mod 2πR⊕,
(15)

where a mod b denotes the modulo operation, i.e. the remain-
der after division of a by b. Also, consider that, the equatorial
position of the ascending node of the injection orbit at time t0
is given by λ0. Then, the equatorial distance between the in-
jection orbit ascending node to the reference orbit ascending
node is given by

∆λ0 = λ0 − λref (t0). (16)

Figure 2 depicts the initial equatorial drift with respect to the
reference orbit. The figure also show the orbital nodes of a
repeat ground track orbit with kdays = 10.



Fig. 2: Ground track and orbital plane representation of the
orbital nodes and injection orbit.

To achieve the desired ground track, the spacecraft can
drift to any node, then the target drift is given by

∆λtarget = n
2πR⊕

krev
−∆λ0, n ∈ Z. (17)

On the other hand, if the spacecraft needs to be in a specific
node, the target drift must satisfy

∆λtarget = n
2πR⊕kdays

krev
−∆λ0, n ∈ Z. (18)

The problem of ground track acquisition can then be posed as
the optimal selection of orbital manoeuvres that satisfy∫ tend

t0

∆a(τ)dτ =
PΩ

ka
∆λtarget, (19)

while minimizing the either acquisition time tend or the Delta-
V consumption. The optimal selection of in-plane manoeu-
vres is subject to several constraints that can be due to op-
erations, planning, platform limits, or instrument safety. For
instance, it is usual to have a period without manoeuvres after
launch, and the first and last manoeuvres are normally smaller
than the others, to allow thruster calibration and to minimize
effects of thruster misperformance, respectively. However,
these constraints vary from mission to mission. Thus, a sys-
tematic analysis of the impact of different design options calls
for automatic algorithms that produce suitable orbit acqui-
sition solutions while taking into account the mission con-
straints.

3. ALGORITHMS

In this section, the algorithms developed for the tool are de-
scribed. Two distinct approaches are pursued, one based on
constant rate semi-major axis changes and another based on
step-wise semi-major axis changes. The algorithms are spe-
cially target at Sun-synchronous repeat ground track orbits.
Thus, the targeted drift ∆λtarget is computed using (17) or
(18). As inputs, the algorithms require:

• nominal orbit (a,i,e,krev ,kdays);

• longitude of ascending node crossing of the reference
orbit and associated epoch;

• longitude of ascending node crossing of the injection
orbit and associated epoch;

• period of time without orbit acquisition manoeuvres
(since the epoch of the injection ascending node);

• Delta-V budget for orbit acquisition;

• initial semi-major axis, inclination, MLST difference
of the injection orbit with respect to the targeted;

• days when manoeuvring is not possible due to schedul-
ing or other constraints;

• targeted node (e.g. for phasing).

Additionally, the algorithms based semi-major axis changes
with constant rate require the maximum Delta-V per day and
algorithms based on step-wise semi-major axis manoeuvres
require the maximum and minimum amplitudes of each ma-
noeuvre (a different maximum and minimum can be specified
for the first, last and intermediate manoeuvres).

3.1. Continuous semi-major axis manoeuvres

This approach only requires knowledge of the Delta-V per
time interval that can be used for orbital manoeuvres. It is spe-
cially suitable when several small manoeuvres can be approx-
imated by a constant semi-major axis rate of change. More-
over, it can also be valuable in early mission phases when
detailed information about the manoeuvring constraints is not
available.

3.1.1. Constraints and assumptions

In addition to the Delta-V budget for the orbit acquisition
phase, the main assumption taken in this approach is that the
orbital manoeuvres can be approximated by a constant semi-
major axis rate of change, i.e.

d

dt
∆a(t) = ∆ȧ = constant. (20)

3.1.2. Minimizing Delta-V consumption

The minimum Delta-V consumption is achieved when the or-
bit acquisition is performed exclusively by taking advantage
of the initial injection error, i.e. ∆a(t0). The typical time evo-
lution of ∆a(t) is illustrated in Fig. 3. In general, there is a
period of time after launch before actual the orbit acquisition
phase. In Fig. 3, this period corresponds to the interval be-
tween t0 and t1. The manoeuvring time necessary to achieve
the nominal semi-major axis corresponds to t3 − t2 in Fig. 3
and it satisfies

t3 − t2 =
∆a(t0)

∆ȧ
. (21)



Fig. 3: Orbit acquisition using constant ∆a rate of change and
natural drift.

The total drift is given by

∆λtotal = ∆λ[t0,t1] + ∆λ[t1,t2] + ∆λ[t2,t3], (22)

where

∆λ[t0,t1] =
ka
PΩ

(t1 − t0)∆a(t0), (23)

∆λ[t1,t2] =
ka
PΩ

(t2 − t1)∆a(t0), (24)

and

∆λ[t2,t3] =
ka
PΩ

t3 − t2
2

∆a(t0). (25)

After taking into account the drift during the periods [t0, t1]
and [t2, t3] (∆λ[t0,t1] and ∆λ[t2,t3], respectively), the al-
gorithm computes the next suitable node (westwards, if
∆a(t0) > 0, or eastwards, if ∆a(t0) < 0) to determine
the target drift ∆λtarget. The interval t2 − t1 necessary to
achieve the targeted drift is then given by

t2 − t1 =
PΩ

ka

∆λtarget −∆λ[t0,t1] −∆λ[t2,t3]

∆a(t0)
. (26)

If manoeuvring is not possible in certain periods, the in-
terval [t1, t2] is found iteratively. After the minimum drift
being calculated, ∆λtarget is obtained based on the next node
suitable node (eastwards if ∆a(t0) < 0 and westwards if
∆a(t0) > 0). Then t2 is increased until ∆λtarget is reached.
Note that, if the period between t2 and t3 coincides with the
period when manoeuvring is not possible, (25) is no longer
valid. In such circumstances, ∆λtotal is no longer given by
(22) and it needs to de adapted appropriately. This case is
illustrated in Fig. 4.

3.1.3. Minimizing duration of the orbit acquisition phase

The minimum time necessary to achieve a specific node, i.e. a
specific ∆λtarget, is accomplished by taking fully advantage
of the manoeuvring capabilities of the spacecraft to raise or
lower the orbit as quickly as possible. A typical semi-major
axis profile which minimizes the duration of the orbit acqui-
sition is depicted in Fig. 5. The plateu between t2 and t3 is
due to Delta-V budget limitations.

Fig. 4: Orbit acquisition using constant ∆a rate of change
and natural drift when manoeuvring is not possible for a time
period.

Fig. 5: Orbit acquisition with minimum duration using con-
stant rate of change of ∆a. The plateu between t2 and t3 is
due to Delta-V budget limitations.

If there is no period when manoeuvring is not possible,
the strategy to achieve the desired drift can determined ana-
lytically. The minimum absolute ground track drift is given

∆λmin = ∆λt1−t0 + ∆λt4−t5 . (27)

If ∆λtarget < ∆λmin, the solution is to raise the orbit the
maximum allowed by then Delta-V budget and then lower it
as quickly as allowed by the spacecraft and ground opera-
tions.

The maximum semi-major axis variation is given by [4]

∆̄a = 2

√
a3

µ
∆̄v, (28)

where µ is and ∆̄v is the Delta-V budget for orbit acquisition.
Let us assume that ∆̄a > |∆a(t0)|, otherwise there would not
be enough available Delta-V to manoeuvre the spacecraft to
its nominal orbit. Then, the maximum semi-major axis with
respect to the nominal satisfies

∆amax =
∆̄a+ ∆a(t0)

2
, (29)

and the minimum semi-major axis with respect to the nominal
satisfies

∆amin = −∆̄a−∆a(t0)

2
. (30)

The time instants t2, t3, can be easily obtained resorting to a
similar reasoning as the one used in Section 3.1.2.



It is straightforward to conclude that, the furthest away
that ∆λtarget is from ∆λmin, the longer it takes to reach.
Thus, the node that minimises the acquisition time can be
found iteratively using a bisection method adapted for dis-
crete functions.

If there are periods when manoeuvring is not possible,
the time to achieve a certain node (∆λtarget) needs to be
found iteratively. To that end, we define a continuous bijec-
tive function f(α) = ∆λ. The absolute value of α is the
corresponds to the time when the semi-major axis reaches its
nominal value subtracted of t1 − t2 + t4 − t3 and the time
associated with the periods when manoeuvring is not possi-
ble. If α > 0, ∆a(t) first raises and then lowers to zero,
whereas if α < 0, ∆a(t) first lowers and afterwards raises
to zero. Using this function, one obtains the time for each
specific node. Then, using a similar method as in the case
without constraints on the manoeuvring periods, one can find
the optimal target node.

3.2. Stepwise semi-major axis manoeuvres

In the previous two algorithms, the semi-major axis changes
are approximated by a constant rate of change. In reality, each
individual manoeuvre has a short duration in time. The set of
algorithms proposed in this section explore the idea of step-
wise semi-major axis changes, this is also an approximation
but is closer to the reality and allows to take into account more
constraints such as the necessity of a calibration manoeuvre
and a small last manoeuvre to reduce the associated uncer-
tainty (soft touch-up manoeuvre).

3.2.1. Constraints and assumptions

The algorithms proposed in this section assume that the in-
plane manoeuvres can be approximated by step-wise semi-
major axis changes not taking into account eccentricity vari-
ations. It also assumes that the inclination is nominal. As
main parameters, the algorithms use the maximum and min-
imum amplitude of the fist and last manoeuvres, the maxi-
mum amplitude of the intermediate manoeuvres, and the fre-
quency of the manoeuvres, i.e. what is the minimum period
between ∆a changes. The user can also set a period of time
after launch without orbit acquisition manoeuvres, the Delta-
V budget available for those manoeuvres, and periods of time
when manoeuvring is not possible.

3.2.2. Minimizing Delta-V consumption

This algorithm starts by computing the absolute minimum
drift, which corresponds to the drift when the orbit is driven
to the nominal as quickly as allowed by the spacecraft capa-
bilities. From that, it computes the targeted drift, which cor-
responds to the next node satisfying (17) or (18) (depending if
the aim is to achieve any node or a specific one). The solution

is a set of step-wise ∆a changes that need to satisfy the ma-
noeuvring constraints as illustrated in Fig. 6. Then, to reach

Fig. 6: Step-wise manoeuvres yielding minimum ground
track drift.

the target drift firstly ∆a at each time is adjusted (Fig. 7).
In case, it is not possible to reach the targeted drift only by

Fig. 7: Semi-major axis at each time adjusted to reach the
target drift.

changing ∆a, the drift duration needs to be also increased.

Fig. 8: Duration of the drift adjusted to reach the target drift.

The manoeuvring sizing and scheduling taking into ac-
count periods without manoeuvres is a non convex optimiza-
tion problems. Thus, heuristics were devised that provide a
suitable solution. The first step is to increase the duration of
the drift time associated with the semi-major axis more dis-
tant to the nominal one because that is the one which min-
imises the duration of the acquisition phase (greatest drift per
time unit). If one or more conflicts with periods when ma-
noeuvring is not possible occur, the drift time is reduced so
that we have no conflicts. The drift time of the second ∆a
steps is then increased until the desired node is reached. If
one or more conflicts are detected, the drift time is reduced
to avoid then. This process is then repeated for all ∆a step
until the desired node is reached. If after the adjustment of



the last ∆a step, the target drift has not been reached yet, the
size of all manoeuvres are adjusted until the last manoeuvre
is performed at a moment when manoeuvring is possible.

3.2.3. Minimizing duration of the orbit acquisition phase

This is the most complex case, because both the optimal node
and the optimal number of ∆a steps are not known. The de-
veloped algorithm is based on a divide to conquer strategy.
Similarly to the algorithm presented in Section 3.2.2, we use
a derivative-free method to find the final node that locally
minimizes the orbit acquisition duration and, for each final
node, another derivative-free method is used to find the op-
timal number of ∆a steps. In order to use this approach, an
algorithm was devised that computes the sizing and sched-
ule of the manoeuvres for each pair final node and number of
∆a steps. This function follows a similar approach as in the
previous algorithm but it allows that the drift rate is firstly in-
creased before being stopped. A manoeuvring plan using this
algorithm is depicted in Fig 9.

Fig. 9: Orbit acquisition with minimum duration using step-
wise ∆a manoeuvres.

To address the case when manoeuvring is not possible, for
each pair final node and number of ∆a steps, a heuristic pro-
cess was developed. This heuristic process consists in firstly
adjust the ∆a steps to achieve the target drift. When that is not
possible, the drift time of the ∆a step that are furthest from
the nominal is increased until the targeted node is reached. If
a conflict is detected with the periods when manoeuvring is
not possible, the drift of that step is truncated, the duration of
the drift of the following step is increased until the targeted
node is achieved. If again a conflict occurs, the duration of
drift of the following step is truncated and the process is re-
peated with the subsequent ∆a steps until the node is reached
and there is no conflict.

4. INTERFACE

As inputs the tool requires information about the nominal or-
bit, injection orbit, and mission constraints. The inputs re-
garding the nominal orbit are: semi-major axis, eccentric-
ity, inclination, repeat cycle, cycle length, reference longi-
tude at ascending node and corresponding epoch. The inputs
from the injection orbit are: initial semi-major axis relative

to the nominal, initial inclination relative to the nominal, ini-
tial MLST relative to the nominal, and longitude at ascending
node of the injection orbit and corresponding epoch. Mission
constraints necessary are: the period of time the spacecraft
will be drifting before the orbit acquisition manoeuvres, max-
imum Delta-V, maximum Delta-V per day (for the algorithms
that rely on constant change rate of the semi-major axis),
maximum and minimum sizes of the calibration and touch-up
manoeuvres, and maximum size of the remaining manoeu-
vres (for the algorithms based on step-wise semi-major axis
changes). The user can also specify the final targeted node
(e.g. for phasing) or let the tool select the optimal one.

The tool has two modules: i) a single orbit acquisition
plan optimiser, and ii) a parametric analyser. The former gives
the user a detailed orbit acquisition plan based on the inputs,
providing the sizing and scheduling of the manoeuvres that
allow to achieve the desired ground track. Information re-
garding MLST drift, total duration of the acquisition phase,
and Delta-V consumption is also provided. The single or-
bit acquisition plan optimiser also allows to manually modify
the schedule and size of each manoeuvres and to add or re-
move manoeuvres, once the orbit acquisition plan has been
computed. The current algorithms do not take into account
inclination and MLST correcting manoeuvres. Thus, these
also need to be inserted manually. The parametric analyser
runs the algorithm for several different conditions (initial rel-
ative semi-major axis, launch date, and selected algorithms)
and presents the user key information to evaluate each case,
such as the final target node, the Delta-V consumption, and
the duration of the orbit acquisition phase.

The interface of the single orbit acquisition plan optimiser
is depicted in Fig. 10.

Fig. 10: Interface with the single orbit acquisition plan opti-
miser where the user can input some of the orbital character-
istics and mission constraints.

The parametric analyser interface is depicted in Fig. 11.
In this interface, the user can select the algorithms that should
be run, an interval of initial relative semi-major axis, and an
interval of launch dates.

5. EXAMPLE

Let us consider the following scenario. We wish to design an
orbit acquisition plan for a spacecraft on a Sun-synchronous



Fig. 11: Interface with the parametric analyser.

orbit, with repeat cycle of 27 days and cycle length of 385 or-
bits. No phasing is necessary, thus, any node can be targeted.
The initial relative semi-major is ∆a(t0) = 3000 m, the in-
clination is nominal and manoeuvring is possible 7 days after
launch. The equatorial distance to the closest node is 1653 m.

Assuming that the spacecraft can provide a constant
Delta-V of 1 m/s per day and that the algorithm that min-
imises the Delta-V consumption using constant rate manoeu-
vres is selected, the computed acquisition plan has a duration
of 9.09 days and a Delta-V consumption of 1.56 m/s. The
relative semi-major axis evolution is depicted in Fig 12. On

Fig. 12: Semi-major axis profile that minimises the orbit ac-
quisition duration using constant Delta-V manoeuvres.

the other hand, the algorithm that minimizes the acquisition
duration reaches the target node in 8.49 days with a Delta-V
consumption of 3.49 m/s. The semi-major axis evolution of
this plan is shown in Fig 12.

To assess the results using the step-wise algorithms, let
us now assume that more detailed information is available.
That it is possible to perform one manoeuvre per day, that
the maximum Delta-V of the fist and last manoeuvres is 0.3
m/s, the minimum Delta-V of the first and last manoeuvres is
0.1 m/s, and the maximum Delta-V of the intermediate ma-
noeuvres is 1 m/s. The algorithm that minimises the Delta-V
consumption resorting to step-wise manoeuvres computes an
acquisition plan with a duration of 9.38 days and a Delta-V
consumption of 1.56 m/s. The relative semi-major axis evo-

Fig. 13: Semi-major axis profile that minimises the Delta-V
consumption using constant Delta-V manoeuvres.

lution for this case is depicted in Fig 14. The algorithm that

Fig. 14: Semi-major axis profile that minimises the orbit ac-
quisition duration using step-wise manoeuvres.

minimizes the orbit acquisition duration provides the solution
if we wish to reach the desired ground track as quickly as pos-
sible. In this case the final node is reached in 9.02 days with a
Delta-V consumption of 2.16 m/s. The semi-major axis evo-
lution of this plan is shown in Fig 14. The duration of the plan

Fig. 15: Semi-major axis profile that minimises the Delta-V
consumption using step-wise manoeuvres.

is slightly reduced but the Delta-V consumption is necessarily
higher.



6. CONCLUSIONS

This paper presented a tool and the the algorithms that au-
tomatically compute optimised orbit acquisition plans. The
user can select the algorithm that minimizes the duration of
the orbit acquisition phase or the required Delta-V given the
spacecraft characteristics and mission constraints. A pertur-
bation analysis of the nominal orbit is described and used as
the basis for the proposed solutions.

Two different strategies were exploited, one based on con-
tinuous rate semi-major axis changes and a second based on
step-wise semi-major axis changes. The former is suitable
for the case when several small manoeuvres can be approx-
imated by a single manoeuvre with constant rate and during
the early design phases when detailed information about the
manoeuvring constrains is not available. The latter produces
a more detailed plan that considers the existence of a first and
a last manoeuvres with smaller amplitude than the remaining
ones. All algorithms take into account Delta-V limits and the
existence of periods when manoeuvring is not possible.

The tool is not intended to produce the final orbit acqui-
sition plan, but to rather provide an initial suitable strategy
which can be used by the flight dynamics team as the base to
more detailed plan. To that end, the tool allows to manually
modify the schedule and size of each manoeuvres and also to
add or remove manoeuvres. The developed algorithms do not
take into account inclination and MLST correcting manoeu-
vres. These also need to be inserted manually. By performing
a parametric analysis considering several initial dispersions
and launch dates, the tool is also suitable to provide informa-
tion about how the mission constraints influence the acquisi-
tion plan during the early design phase of a mission.

Future work will focus on the improvement of the inter-
face with the used and the automatic sizing and scheduling of
out-of-plain manoeuvres for inclination correction.
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