A Comparative Study of Programming Languages for Next-Generation Astrodynamics Systems

Helge Eichhorn, Juan Luis Cano, Frazer McLean, Prof Dr.-Ing. Reiner Anderl
Speed/Usability Dichotomy

1970
Computing costs are the limiting factor
Speed/Usability Dichotomy

1970
Computing costs are the limiting factor

Efficiency is most important
Speed/Usability Dichotomy

1970
Computing costs are the limiting factor

2016
Personnel costs are the limiting factor

Efficiency is most important
Speed/Usability Dichotomy

1970
Computing costs are the limiting factor

2016
Personnel costs are the limiting factor

Efficiency is most important

Usability should be most important
Speed/Usability Dichotomy

1970
Computing costs are the limiting factor

2016
Personnel costs are the limiting factor

Cannot have both?

Efficiency is most important

Usability should be most important
Fortran
Tried and tested
Fortran

➢ Tried and tested

➢ Fast
Fortran

➤ Tried and tested

➤ Fast

➤ Fortran 90+ offers great improvements…
Fortran

- Tried and tested
- Fast
- Fortran 90+ offers great improvements…
- …but also increases complexity.
C++
C++

➤ Powerful and versatile
C++

➤ Powerful and versatile

➤ Fast
C++

- Powerful and versatile
- Fast
- Complex and difficult to master
C++

➤ Powerful and versatile
➤ Fast
➤ Complex and difficult to master
➤ No training wheels
Java
Java

➤ Mature toolchain
Java

➢ Mature toolchain

➢ Large community and ecosystem
Java

➤ Mature toolchain
➤ Large community and ecosystem
➤ Language of Big Data
Java

➤ Mature toolchain

➤ Large community and ecosystem

➤ Language of Big Data

➤ Class-based OOP is not a panacea
Matlab
Matlab

Easy to learn
Matlab

➤ Easy to learn

➤ Powerful environment
Matlab

➤ Easy to learn
➤ Powerful environment
➤ Expensive
Matlab

- Easy to learn
- Powerful environment
- Expensive
- Core language is limited
Python
Python

➢ Easy to learn
Python

➤ Easy to learn

➤ Batteries included
Python

➢ Easy to learn
➢ Batteries included
➢ Large scientific computing ecosystem
Python

- Easy to learn
- Batteries included
- Large scientific computing ecosystem
- (Too) many optimization options
Python Optimization

Optimized Python code is still slow

Is it numerical code?

- Yes
 - Can it be vectorized?
 - Yes
 - Vectorize
 - No
 - Numba

- No
 - Cython

Rewrite hotspots in Fortran or C and interface via CFFI

Still slow?

- Yes
 - End
- No
 - Vectorize
Julia

➤ Matlab-like syntax
Julia

- Matlab-like syntax
- Fast
Julia

- Matlab-like syntax
- Fast
- Multiple dispatch
Julia

➤ Matlab-like syntax
➤ Fast
➤ Multiple dispatch
➤ Immature
LLVM

Edit time
- C Code
- C++ Code
- Julia Code

Compile time
- LLVM C Frontend
- LLVM C++ Frontend
- LLVM Julia Frontend
- LLVM IR (Intermediate Representation)
- LLVM Compiler
- LLVM JIT (Just-In-Time) Compiler

Run time
- Machine Code
Test Cases
1. Calculating the Keplerian orbital elements
Test Cases

1. Calculating the Keplerian orbital elements

2. Solving Kepler’s equation
Test Cases

1. Calculating the Keplerian orbital elements

2. Solving Kepler’s equation

3. Solving Lambert’s problem
Test Cases

1. Calculating the Keplerian orbital elements
2. Solving Kepler’s equation
3. Solving Lambert’s problem
4. Calling the DOP853 Fortran 77 code
Test 1: Keplerian Elements

How well can vector expressions be expressed?
Test 1: Keplerian Elements

How well can vector expressions be expressed?

Julia

\[e = \frac{(v_{mag}^2 - \frac{\mu}{r_{mag}}) \cdot r - (r \cdot v) \cdot v}{\mu} \]
Test 1: Keplerian Elements

How well can vector expressions be expressed?

Julia

e = ((v_mag^2 - μ/r_mag)*r - (r·v)*v)/μ

Java

e = new Vector3D(v_mag*v_mag / mu - 1/r_mag, r, -r.dotProduct(v) / mu, v);
Test 2: Kepler’s Equation

Can functions be created ad-hoc (higher-order functions) and do they have access to their enclosing scope (closures)?
Test 2: Kepler’s Equation

Can functions be created ad-hoc (higher-order functions) and do they have access to their enclosing scope (closures)?

Yes.
Test 2: Kepler’s Equation

Can functions be created ad-hoc (higher-order functions) and do they have access to their enclosing scope (closures)?

Yes.

Except for Fortran.
Test 2: Kepler’s Equation

Can functions be created ad-hoc (higher-order functions) and do they have access to their enclosing scope (closures)?

Yes.

Except for Fortran.

def mean2ecc(M, ecc):
 def keplereq(E):
 return E - ecc*np.sin(E) - M
 def keplerderiv(E):
 return 1 - ecc*np.cos(E)
 return newton(M, keplereq, keplerderiv)
Test 2: Kepler’s Equation

Can functions be created ad-hoc (higher-order functions) and do they have access to their enclosing scope (closures)?

Yes.

Except for Fortran.

```python
def mean2ecc(M, ecc):
    def keplereq(E):
        return E - ecc*np.sin(E) - M
    def keplerderivative(E):
        return 1 - ecc*np.cos(E)
    return newton(M, keplereq, keplerderivative)
```

Test 3: Lambert’s Problem ➤ Performance test
Test 4: Interfacing with Fortran 77

How much additional glue code is required to call a Fortran77 subroutine? Can the Fortran code call back?
Test 4: Interfacing with Fortran 77

How much additional glue code is required to call a Fortran77 subroutine? Can the Fortran code call back?

➤ Fortran2008, C++, Julia: No glue code required. Callbacks are possible.
Test 4: Interfacing with Fortran 77

How much additional glue code is required to call a Fortran77 subroutine? Can the Fortran code call back?

➤ Fortran2008, C++, Julia: No glue code required. Callbacks are possible.

➤ Python: Moderate amounts of glue code required. Callbacks are possible.
Test 4: Interfacing with Fortran 77

How much additional glue code is required to call a Fortran77 subroutine? Can the Fortran code call back?

- Fortran2008, C++, Julia: No glue code required. Callbacks are possible.

- Python: Moderate amounts of glue code required. Callbacks are possible.

- Java, Matlab: Larger amounts of glue code required. Callbacks might require changes to the Fortran code.
Benchmark

https://github.com/helgee/icatt-2016

Languages
- Fortran
- C++
- Java
- Julia
- Python
- Matlab

SLOC w.r.t Fortran

Average runtime (N=100,000) w.r.t Fortran
Benchmark

https://github.com/helgee/icatt-2016

```
<table>
<thead>
<tr>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
</tr>
<tr>
<td>C++</td>
</tr>
<tr>
<td>Java</td>
</tr>
<tr>
<td>Julia</td>
</tr>
<tr>
<td>Python</td>
</tr>
<tr>
<td>Matlab</td>
</tr>
</tbody>
</table>
```

SLOC w.r.t Fortran vs Average runtime (N=100,000) w.r.t Fortran
Benchmark

https://github.com/helgee/icatt-2016

Languages
- Fortran
- C++
- Java
- Julia
- Python
- Matlab
Conclusion
Conclusion

➤ Statically compiled languages have borrowed features from dynamic languages and still offer best-in-class performance.
Conclusion

➢ Statically compiled languages have borrowed features from dynamic languages and still offer best-in-class performance.

➢ Purely interpreted languages remain orders of magnitude slower but JIT-compiled dynamic languages have become competitive.
Conclusion

➤ Statically compiled languages have borrowed features from dynamic languages and still offer best-in-class performance.

➤ Purely interpreted languages remain orders of magnitude slower but JIT-compiled dynamic languages have become competitive.

➤ Python+Numba and Julia offer an attractive compromise between flexibility and performance.