
A COMPARATIVE STUDY OF PROGRAMMING LANGUAGES FOR NEXT-GENERATION
ASTRODYNAMICS SYSTEMS

Helge Eichhorn, Reiner Anderl

Technische Universität Darmstadt
Dept. of Computer Integrated Design

Darmstadt, Germany

Juan Luis Cano

Universidad Politécnica de Madrid
Madrid, Spain

Frazer McLean

CS GmbH
Darmstadt, Germany

ABSTRACT

Due to the computationally intensive nature of astrodynam-
ics tasks, astrodynamicists have relied on compiled program-
ming languages such as Fortran for the development of astro-
dynamics software. Interpreted languages such as Python on
the other hand offer higher flexibility and development speed
thereby increasing the productivity of the programmer. While
interpreted languages are generally slower than compiled lan-
guages recent developments such as JIT (just-in-time) com-
pilers or transpilers have been able to close this speed gap
significantly. Another important factor for the usefulness of a
programming language is its wider ecosystem which consists
of the available open-source packages and development tools
such as integrated development environments or debuggers.

The study compares three compiled languages and three
interpreted languages which were selected based on their
popularity within the scientific programming community and
technical merit. The three compiled candidate languages
are Fortran, C++, and Java. Python, Matlab, and Julia were
selected as the interpreted candidate languages. All six lan-
guages are assessed and compared to each other based on
their features, performance, and ease-of-use through the im-
plementation of idiomatic solutions to classical astrodynam-
ics problems.

We show that compiled languages still provide the best
performance for astrodynamics applications but JIT-compiled
dynamic languages have reached a competitive level of speed
and offer an attractive compromise between numerical perfor-
mance and programmer productivity.

Index Terms— scientific programming, computational
astrodynamics, open-source software

1 INTRODUCTION

The choice of programming language for a project is usually
a highly subjective or political matter. Every person has their
own personal preferences and introducing a new program-
ming language into an existing environment will inevitably
cause disruptions. While Fortran 77 has been the gold stan-

dard in astrodynamics for many decades we argue that the in-
troduction of more modern programming languages is a sen-
sible investment despite the migration costs. With this study
we aim to provide scientifically sound evidence for the merit
of different programming languages and give organizational
leaders and project managers the opportunity to make an in-
formed decision.

While the features of the programming language itself are
important its so-called ecosystem, which includes toolchains,
programming tools, libraries, and also online communities,
should also be considered. The study is therefore structured
into two main parts: a general comparison of the candidate
languages and implementations and benchmarks of classical
astrodynamics problems.

Our main argument is that the conventional wisdom that a
programming language can either be statically compiled and
fast or dynamically interpreted and easy to work with is no
longer true. We have therefore included three languages from
either category in this study.

• Compiled languages:

– Fortran

– C++

– Java

• Interpreted languages:

– Matlab

– Python

– Julia

1.1 METHODOLOGY
To assess the suitability of programming languages for as-
trodynamics applications we have indentified the following
requirements:

Numerical Performance
The iterative nature of many astrodynamics algorithms makes
high numerical performance a necessity.

Linear Algebra Capabilities
Vector- and matrix-based calculations are equally important.
A programming language for astrodynamics thus needs to
provide convenient access to linear algebra routines.

Concise Syntax
Usability research by Prechtelt suggests that programmers
produce the same number of code units (e.g. lines) per unit
time regardless of the programming language they use [1].
Hence a concise language improves programmer productiv-
ity and reduces the size of the overall codebase which eases
maintenance.

Interfacing with Legacy Code
While it might be tempting to start on a green field it is eco-
nomically unsound to reimplement everything from scratch.
To preserve the vast organizational knowledge contained in
legacy libraries the candidate languages shall be able to call
code written Fortran 77 and C. Should procedures be reimple-
mented in a new language the capability to call legacy code is
also useful for verifying and validating the new implementa-
tion.

Programming Environment
In our experience the development of algorithms or ex-
ploratory data analyses are greatly simplified through interac-
tive environments such as an Read-Eval-Print-Loop (REPL).
Other useful tools include debuggers, integrated development
environments (IDE), or visualization libraries.

The core astrodynmical calculations are often just a small
part of a larger astrodynamics software system. Most codes
also need to read and write input and output files and conduct
standard tasks such as searching or sorting data. It is therefore
beneficial if a programming language distribution provides a
standard library which covers these functions.

Availability of Open-Source Libraries
Not only does the availability of open-source libraries save
the programmer from “reinventing the wheel” it is also an
indicator for the popularity of language. The more popular a
programming language is the easier it becomes to find help
in online communities and the higher the probability that stu-
dents and young professionals already have experience with
the language.

To test the aforementioned functional requirements under
realistic conditions we have implemented the following as-
trodynamics problems in the six target languages:

• Calculation of the classical Keplerian elements from
the Cartesian state vector (see 3.1).

• Solving Kepler’s equation (see 3.2).

• Solution of Lambert’s problem (see 3.3).

• Runge-Kutta orbit propagation (see 3.4).

2 CANDIDATE LANGUAGES

Fortran
Fortran probably does not need an introduction since it has
been a staple of computational astrodynamics from the very
beginning. The Fortran 77 standard has been especially suc-
cessful and many organizations still use and maintain large
codebases in this version of the language. In fact the core lin-
ear algebra routines such as BLAS or LAPACK that most of
the other languages discussed in this study use are based on
hand-optimized Fortran77 and assembly. But the language
has evolved considerably during the last decades. Fortran
90/95 moved from punchcard-based fixed-form source code
to free-form code and simplified array operations. Object-
oriented features were introduced in Fortran 2003 and the lat-
est standard Fortran 2008 added constructs for array-based
parallelism [2].

C++
C++ is a high-performance, multi-paradigm programming
language with a mature toolset and many options for com-
pilers, IDEs, and other tools. C++ is usually critized for its
complexity because there are generally multiple ways to solve
a problem in the language. The standard reference written
by the language’s creator which includes more than 1300
pages seems to confirm this [3]. While this fact makes the
language very powerful it also makes the language hard to
master and complicates the composition of software libraries
that use different “dialects” of C++. We conclude that an
organization that introduces C++ should generally determine
beforehand which subset of the language should be used to
keep the complexity of the resulting software manageable.

Java
Java was originally developed by Sun Microsystems with the
goal of being portable, secure and easy to learn. The first ver-
sion was released in 1995 and Sun Microsystems has since
been acquired by Oracle. Although Java has been extended
with generic and functional programming features its main
programming paradigm is class-based object-orientation. The
Java compiler does not emit native machine code but Java
bytecode which is then executed on the Java Virtual Machine
(JVM). In the past Java had the reputation to be slow but this
is no longer the case [4] and it has become an important part
of the scientific programming toolset, especially in the realm
of so-called “big data” analyses [5].

Matlab
Matlab is not only a programming language but also a full
featured technical computing environment. The Matlab IDE

posses powerful interactive computing, visualization, and de-
bugging features. It also ships with an extensive library of
useful functions and MathWorks provides an online platform
for sharing open-source Matlab code. The biggest point of
criticism is its price. This is made worse by the fact that
many features and libraries are sold separately as so-called
toolboxes.

Python
While Python is a general purpose language we consider it a
suitable language for scientific computing due to the existence
of well established libraries like NumPy and SciPy for math-
ematical calculations. Not only do these libraries make use of
compiled code from existing accelerated libraries like BLAS
and LAPACK, but it is also possible in Python to interface
with compiled code to speed up specific algorithms where re-
quired. This allows a user to define a problem in Python,
while benefiting from the speed of compiled languages for
computationally expensive algorithms.

Julia
Julia is the youngest language in this study. Its development
began as a research project at the Massachusetts Institute of
Technology (MIT) in 2009 and the first public version was
released in 2012. It uses a JIT-compiler based on LLVM to
combine Matlab-like syntax with performance close to C and
Fortran [6].

Due to its young age the language is still in flux and some
essential, e.g. a debugger, are still under development.

3 ASTRODYNAMICS
APPLICATIONS

In this chapter we compare the implementations of the afore-
mentioned astrodynamics applications within the six candi-
date languages. We will only list sections of the source code
that are relevant to the discussion here. Please refer to the
complete source code published online at GitHub (https:
//github.com/helgee/icatt-2016) for further in-
formation.

3.1 Calculating the Keplerian Elements
In this simple example we calculate the classical Keplerian
orbital elements from the Cartesian state vector and compare
the syntax of the candidate languages for expressing vector
equations. We will discuss the syntax differences based on the
derivation of the eccentricity vector as shown in the following
equation.

e =

(
‖v‖2 − µ

‖r‖

)
r− (r · v)v

µ

Fortran
The calculation is straight-foward in Fortran. The exponenti-
ation can be conveniently expressed through the ** operator
and the inner product through the dot_product intrinsic
function.

e = ((v_mag**2 - mu/r_mag)*r -
dot_product(r,v)*v)/mu↪→

C++
C++ is lacking an exponentiation operator which makes a call
to std::pow necessary. The inner product is an instance
method of the VectorXd template class of the Eigen li-
brary.

e = ((std::pow(v_mag,2)-mu/r_mag)*r -
r.dot(v)*v)/mu;↪→

Java
In Java the mathematical expression is turned into a chain of
method calls. As in C++ an exponentiation operator is not
available. Code like this can be fluidly written with the sup-
port of an IDE but in our opinion it is harder to read and ob-
scures the underlying mathematics.

e = r.scalarMultiply(Math.pow(v_mag,2) -
mu/r_mag).subtract(r.dotProduct(v),
v).scalarMultiply(1/mu);

↪→

↪→

Matlab
Matlab is foremost a convenient environment for vector- and
matrix-based calculations. It does not come as a surprise
that the calculation of eccentricity vector can be expressed
through very concise Matlab code.

e = ((v_magˆ2 - mu/r_mag)*r -
dot(r,v)*v)/mu;↪→

Python
Python uses the same exponentiation operator as Fortran. The
inner product is implemented in the NumPy library which
is by convention imported as import numpy as np and
thereby made available through the np identifier.

e = ((v_mag**2 - mu/r_mag)*r - np.dot(r,
v)*r)/mu↪→

Julia
The ASCII version of the Julia code listed below is identical
to the Matlab version. Julia also supports UTF-8 identifiers
thus the greek letter µ can be used as a variable name for the
gravitational parameter.

ASCII version
e = ((v_magˆ2 - mu/r_mag)*r -

dot(r,v)*v)/mu↪→

UTF8 version
e = ((v_magˆ2 - µ/r_mag)*r - (r·v)*v)/µ

https://github.com/helgee/icatt-2016
https://github.com/helgee/icatt-2016

3.2 Solving Kepler’s Equation

In this example the task is to implement a generic Newton-
Raphson solver which is then used to solve Kepler’s equa-
tion. We test several properties of the candidate languages
which we need within this example to express the problem as
concisely as possible:

1. How does the language handle runtime errors? The
solver shall report an error if the solution has not con-
verged after a certain number iterations.

2. How can default arguments to functions be supplied?
The user shall be able to control the convergence toler-
ance and the maximum number of iterations but shall
also be able to use default values.

3. Can new functions be constructed ad-hoc? The Kepler
equation and its derivative shall be passed as arguments
to the generic solver. Since they do not only depend
on the eccentric anomaly but also the mean anomaly
and the eccentricity they need to be constructed on-the-
fly by the Kepler solver and need to be able to access
variables from the solver. In computer science terms
these features are called higher-order functions (func-
tions that create functions) and closures (functions are
able to access variables from their enclosing scope).

Fortran
Fortran does not support higher-order functions or closures.
An implementation that fulfills the requirements outlined
above is therefore necessarily more involved. We have imple-
mented the example by using Fortran 2003 features but the
result is too verbose to list it here.

In production code it might make more sense to copy-
paste the Newton-Raphson solver into the subroutine that
solves the Kepler equation. Although this violates the “Do
Not Repeat Yourself” rule [7]. Another possibility would
be to extend the interface of the Newton-Raphson solver to
accept an additional array of double-valued parameters.

Unlike all other examined languages Fortran does not pro-
vide exceptions or any other mechanism or convention for er-
ror handling. We use the stop statement in the example code
to terminate the program when an error occurs. This is not
possible in a production environment because the code call-
ing the routine might be able to recover from the error and a
single problem should not bring down the whole system. In
real-world code a convention for signaling errors through pa-
rameters must be defined and enforced through coding stan-
dards.

Default values for parameters can be set by using the
optional keyword in the subroutine signature and later
checking for the presence of the value via the present
intrinsic function.

C++
In C++ default values for parameters are defined directly in
the function signature.

double newton(
double p0,
std::function<double(double)>

const &func,↪→

std::function<double(double)>
const &deriv,↪→

int maxiter = 50,
double tol = 1e-8

) {
for (auto i = 1; i < maxiter; i++) {

auto p = p0 - func(p0) /
deriv(p0);↪→

if (std::fabs(p - p0) < tol) {
return p;

}
p0 = p;

}
throw runtime_error("Not
converged.");↪→

}

The C++11 standard introduced lambda expressions and clo-
sures. Through a lambda expression an anonymous function
can be created with the following syntax:

[CLOSURE](SIGNATURE) -> RETURN_TYPE {
FUNCTION_BODY}↪→

It is a peculiarity of C++ that the variables contained in
the closure must be explicitly defined. The C++ Kepler solver
can then be expressed as shown below:

double mean2ecc(double M, double ecc) {
auto E = newton(M,
[ecc, M](double E) -> double {

return E - ecc * sin(E) - M;
},
[ecc](double E) -> double {

return 1 - ecc * cos(E);
});
return E;

}

Java
To supply default values for parameters in Java a method
needs to be overloaded with another method which accepts
fewer parameters. Therefore the method getRoot is defined
twice in the Java class below.

public class Newton {
public static double getRoot(

double p0,
Function<Double,Double> func,
Function<Double,Double> deriv, int
maxiter, double tol) {

↪→

↪→

↪→

Double result = Double.NaN;
for (int i=0; i < maxiter; i++)

{↪→

double p = p0 -
func.apply(p0) / deriv.apply(p0);↪→

if (Math.abs(p - p0) < tol)
{↪→

result = p;
break;

}
p0 = p;

}
if (result.isNaN()) {

throw new
RuntimeException("Not converged.");↪→

} else {
return result;

}
}
public static double getRoot(double
x0, Function<Double,Double> func,
Function<Double,Double> deriv) {

↪→

↪→

return getRoot(x0, func, deriv,
50, 1e-8);↪→

}
}

Java 8 also introduced lambda expressions and closures which
are used in the class listed below. A Java 7 implementation
which requires the use of an interface and an inner class is
available in the online repository.

public class Kepler {
public static double
meanToEcc(double M, double ecc) {↪→

Function<Double,Double> keplerEq
= E -> E - ecc * Math.sin(E) - M;↪→

Function<Double,Double>
keplerDeriv = E -> 1 - ecc *
Math.cos(E);

↪→

↪→

return
NewtonFunctional.getRoot(M,
keplerEq, keplerDeriv);

↪→

↪→

}
}

Matlab
In Matlab default values for parameters can be handled
through defining a function with a varying number of pa-
rameters. The disadvantage of the implementation shown
below is that not all combinations of input arguments are

allowed, e.g. if the tolerance needs to be set manually the
maximum number of iterations needs to be defined manually
as well and cannot use the default value.

function p = newton(x0, func, deriv,
varargin)↪→

switch nargin
case 3

maxiter = 50;
tol = 1e-8;

case 4
maxiter = varargin{1};
tol = 1e-8;

case 5
maxiter = varargin{1};
tol = varargin{2};

end

p0 = x0;
for ii = 1:maxiter

p = p0 - func(p0)/deriv(p0);
if abs(p - p0) < tol

return
end
p0 = p;

end
error(’Not converged.’);

end

Matlab supports closures through the use of nested functions
or the definition of an anonymous function through the @(x)
xˆ2; syntax.

function E = mean2ecc(M, ecc)
keplereq = @(x) x - ecc*sin(x) - M;
keplerderiv = @(x) 1 - ecc*cos(x);
E = newton(M, keplereq,
keplerderiv);↪→

end

Python
Like C++ Python defines default values for parameters in the
function signature. Unique to Python is the fact that it uses
indentation to delimit code blocks and therefore does not need
an end statement or curly braces.

def newton(x0, func, derivative,
maxiter=50, tol=1e-8):↪→

p0 = x0
for _ in range(maxiter):

p = p0 - func(p0)/derivative(p0)
if np.abs(p - p0) < tol:

return p
p0 = p

raise RuntimeError("Not converged.")

Higher-order functions and closures are supported in pure
Python but JIT-compilation of this code with Numba is cur-
rently not possible.

def mean2ecc(M, ecc):
def keplereq(E):

return E - ecc*np.sin(E) - M
def keplerderiv(E):

return 1 - ecc*np.cos(E)
return newton(M, keplereq,
keplerderiv)↪→

Julia
The Julia code is again very similar to the Matlab code. The
first notable difference is that Julia does not define the re-
turn value in the function signature but rather through the
return RETURN_VALUE statement. An important Julia
feature are the type annotations in the function signature (e.g.
x0::Float64). These help the JIT compiler to infer the
types of the variables within the function and are used during
method dispatch. Default values are defined in the function
signature.

function newton(x0::Float64,
func::Function,
derivative::Function,
maxiter::Int=50, tol::Float64=1e-8)

↪→

↪→

↪→

p0 = x0
for i = 1:maxiter

p = p0 - func(p0)/derivative(p0)
if abs(p - p0) < tol

return p
end
p0 = p

end
error("Not converged.")

end

Julia supports higher-order functions and closures. A short-
hand syntax for defining new functions in the form of f(x)
= xˆ2 is available.

function mean2ecc(M::Float64,
ecc::Float64)↪→

kepler(E::Float64) = E - ecc*sin(E)
- M↪→

kepler_der(E::Float64) = 1 -
ecc*cos(E)↪→

return newton(M, kepler, kepler_der)
end

3.3 Solution of Lambert’s Problem
In this example we have implemented the algorithm for solv-
ing Lambert’s problem which was proposed by Bate, Mueller,

and White [8] with adaptions by Vallado [9]. Apart from the
differences in mathematical notation outlined above the im-
plementations are very similar and the example serves mainly
as a performance benchmark for iterative algorithms. Please
refer to section 4 for the results.

3.4 Runge-Kutta Orbit Propagation
The final example tests how well legacy code written in For-
tran 77 can be integrated into the candidate languages. We
chose the DOP853 8th-order Runge-Kutta integrator with
Dormand-Prince coefficients that was described by Hairer
[10].

The example is quite complex since the function that rep-
resents the right-hand side of the differential equation, which
is written in one of the other candidate languages, must be
passed to and called by the Fortran code.

We use the code to solve Newton’s equation for a uniform
gravitational field.

Fortran
While it is obviously possible to directly call Fortran 77 code
from modern Fortran it is advisable to define an explicit in-
terface for the legacy code. This allows the compiler to check
the type of the arguments and prevent errors that would oth-
erwise cause memory corruption, e.g. by erroneously passing
a scalar argument instead of an array argument.

We have also implemented a thin wrapper that uses
the ISO_C_BINDING module to make the Fortran rou-
tine callable from C. This wrapper is also used by all other
implementations. For C++ and Java a C/C++ header file is
also required.

C++
Together with the Fortran 90 wrapper and the header file the
DOP853 integrator can be called like any other C++ function.
Since Fortran uses pass-by-reference pointer arguments need
to be used when calling Fortran from C++.

Java
The Java version uses the Java Native Interface (JNI) to call
the Fortran code through the wrapper. In this case 50+ ad-
ditional lines of glue code in C that handle the conversion
between Java and C/Fortran data types are required. These
data type conversions also impose a performance penalty due
to the necessary additional memory allocations (see section
4).

Matlab
Matlab can call C and Fortran code through its MEX inter-
face. Like in the Java example significant amounts of glue
code are required for data conversions. The development of
MEX extensions requires great care because the environment

is rather unforgiving and programming errors can crash the
Matlab IDE.

A MEX implementation could not be completed in time
for the publication of this paper but the results will be pub-
lished to the online repository at a later time.

Python
The reference implementation of Python is written in C thus
a multitude of options for extending Python with native code
exist. The Python extension could also not be completed in
time and will be published online.

Julia
Similarly to C++ the DOP853 can be directly called from Ju-
lia via the ccall function.

One additional step is necessary to convert a Julia func-
tion reference to a C-compatible function pointer like shown
below.

cfcn = cfunction(gravity!, Void,
(Ptr{Cint}, Ptr{Cdouble},
Ptr{Cdouble}, Ptr{Cdouble},
Ptr{Cdouble}, Ptr{Cint}))

↪→

↪→

↪→

4 BENCHMARK
The benchmark was conducted on a machine equipped with
an Intel Core i5-2557M CPU with 1.70GHz. The follow-
ing software versions of compilers and runtime environments
were used:

• Fortran: Intel Fortran 16.0.1 with flag -O3

• C++: Clang 7.0.2 with flag -O3

• Java: JDK 1.8.0-74

• Matlab: Release 2015a

• Python: 3.5 with Numba 0.23.1

• Julia: 0.5-dev

All code were executed and timed 100,000 times and the av-
erage runtime was compared to the Fortran version as shown
in table 1 and figure 1. Please note that the y-axis is a log
scale.

Fortran and C++ defend their reputation as high perfor-
mance languages. It is notable that C++ seems to be signif-
icantly faster in the elements. We suspect that this might be
a measurement error at the expense of Fortran because the
resolution of Fortran’s timing functions is not high enough.
Java is generally the slowest of the compiled languages but
still orders of magnitude faster than the interpreted languages
Matlab and (pure) Python. The Julia language and just-in-
time compiled Python with Numba provide excellent results.

Table 1. Average Runtime Relative to Fortran out of 100000
Runs

Problem Elements Kepler Lambert Dopri
C++ 0.42 0.2 1.46 1.28
Java 7.54 0.7 3.2 19.22
Julia 2.29 0.71 1.1 2.97
Python 251.41 25.85 133.23 N/A
Python+Numba 5.57 N/A 1.56 N/A
Matlab 186.41 282.96 196.89 N/A

Fig. 1. Benchmark Results

With the slowest Julia example being a factor 3 slower and
the slowest Python+Numba example being a factor 6 slower
they offer a viable alternative if only very good performance
and not the “best” performance is required.

5 CONCLUSION

The recent additions to classical compiled languages such as
lambda expressions and closures in C++ and Java and object-
oriented features in Fortran have greatly improved their ex-
pressivity and made them easier to work with. Dynamically
interpreted languages on the other hand have offered these
features for long time but were severly lacking in numerical
performance. We have compared Fortran, C++, Java, Mat-
lab, Python, and Julia through the implementation and bench-
marking of astrodynamics problems. Statically compiled lan-

guages still offer best-in-class performance but to utilize it the
user must deal with their inherent complexities such as setting
up build systems. While purely interpreted languages such as
Matlab and pure Python are still several orders of magnitude
slower than compiled languages, JIT-compiled dynamic lan-
guages such as Python with Numba or the Julia language have
reached a competitive level of performance while still offer-
ing the advantages of lower complexity and better program-
mer productivity.

6 References
[1] Lutz Prechtelt, “Two Comparisons of Programming

Languages,” in Making Software: what really works,
and why we believe it, Andy Oram and Greg Wilson,
Eds., pp. 239–258. O’Reilly, Sebastopol, California, 1st
edition, 2011.

[2] Michael Metcalf, John Reid, and Malcolm Cohen, Mod-
ern Fortran explained, Numerical mathematics and sci-
entific computation. Oxford University Press, Oxford,
New York, 2011.

[3] Bjarne Stroustrup, The C++ programming language,
Addison-Wesley, Upper Saddle River, NJ, fourth edition
edition, 2013.

[4] Benjamin J. Evans, Java in a Nutshell, O’Reilly, Se-
bastopol, California, sixth edition, 2015.

[5] Nathan Marz and James Warren, Big data: principles
and best practices of scalable real-time data systems,
Manning, Shelter Island, New York, 2015.

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Vi-
ral B. Shah, “Julia: A Fresh Approach to Numerical
Computing,” Nov. 2014, arXiv: 1411.1607.

[7] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P.
Chue Hong, Matt Davis, Richard T. Guy, Steven H. D.
Haddock, Kathryn D. Huff, Ian M. Mitchell, Mark D.
Plumbley, Ben Waugh, Ethan P. White, and Paul Wil-
son, “Best Practices for Scientific Computing,” PLoS
Biology, vol. 12, no. 1, pp. e1001745, Jan. 2014.

[8] Roger R. Bate, Donald D. Mueller, and Jerry E. White,
Fundamentals of Astrodynamics, Dover Publications,
New York, 1971.

[9] David A. Vallado and Wayne D. McClain, Fundamen-
tals of Astrodynamics and Applications, Microcosm
Press, Hawthorne, Calif., 2013.

[10] E. Hairer, S. P. Nørsett, and Gerhard Wanner, Solv-
ing ordinary differential equations I: nonstiff problems,
Number 8 in Springer series in computational mathe-
matics. Springer, Heidelberg, London, 2nd rev. edition,
2009.

	INTRODUCTION
	METHODOLOGY

	CANDIDATE LANGUAGES
	ASTRODYNAMICS APPLICATIONS
	Calculating the Keplerian Elements
	Solving Kepler's Equation
	Solution of Lambert's Problem
	Runge-Kutta Orbit Propagation

	BENCHMARK
	CONCLUSION
	References

