- ICATT 2016 - Student Session -
 Dynamics in the center manifold around equilibrium points in Periodically Perturbed Three-Body Problems

Bastien Le Bihan ${ }^{1}$, Josep Masdemont ${ }^{2}$, Gerard Gómez ${ }^{3}$, Stéphanie Lizy-Destrez ${ }^{1}$
${ }^{1}$ ISAE-SUPAERO, Toulouse, France
${ }^{2}$ IEEC \& Departament de Matemàtica Aplicada I, ETSEIB, UPC, Barcelona, Spain ${ }^{3}$ IEEC \& Departament de Matemàtica Aplicada i Anàlisi, UB, Barcelona, Spain

March $15^{\text {th }}, 2016$

Overview

(1) Introduction: the Sun-Earth-Moon system
(2) The Quasi-Bicircular Problem (QBCP)
(3) The Parameterization Method in the QCBP

44 The neighborhood of Earth-Moon $L_{1,2}$

Framework and objectives

Long term: Near-systematic tool for the motion about \& between the libration points of the Sun-perturbed Earth-Moon system.

Short term: Dynamics about $\mathrm{EML}_{1,2}$ in such a model.

SEML 2

Earth
$E M L_{1}$

Moon

A hierarchy of models

(A) Circular Restricted

Three-Body Problem (RTBP)

(B) Bicircular Four-Body Model

(C) Quasi-Bicircular Four-Body Model (QBCP)
\checkmark Coherent
\checkmark Formally equivalent to (B)

Introduction: the Sun-Earth-Moon system
The Quasi-Bicircular Problem (QBCP)
The Parameterization Method in the QCBP The neighborhood of Earth-Moon $\mathrm{L}_{1,2}$

A variety of methods in the literature

The Quasi-Bicircular Problem (QBCP)

Periodic Hamiltonian in the Earth-Moon synodical frame

$$
\begin{aligned}
H(\mathbf{z}, \theta)= & \frac{1}{2} \alpha_{1}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\alpha_{2}\left(p_{x} x+p_{y} y+p_{z} z\right) \\
& +\alpha_{3}\left(p_{x} y-p_{y} x\right)+\alpha_{4} x+\alpha_{5} y \\
& -\alpha_{6}\left(\frac{1-\mu}{q_{p e}}+\frac{\mu}{q_{p m}}+\frac{m_{s}}{q_{p s}}\right)
\end{aligned}
$$

- μ the Earth-Moon mass ratio
- m_{s} the mass of the Sun
- α_{k} trigonometric functions in the variable $\theta=\omega_{s} t$
- ω_{s} the pulsation of the Sun.

Earth-Moon $L_{1,2}$ in the QBCP

2π-periodic dynamical equivalents of the Earth-Moon libration points $L_{1,2}$, in Earth-Moon coordinates.

Overview

(1) Introduction: the Sun-Earth-Moon system
(2) The Quasi-Bicircular Problem (QBCP)
(3) The Parameterization Method in the QCBP

44 The neighborhood of Earth-Moon $\mathrm{L}_{1,2}$

First step: getting an autonomous diagonal order one

- $\exists 2 \pi$-periodic symplectic change of coordinates of the form:

$$
\mathbf{z}=P(\theta) \hat{\mathbf{z}}+V(\theta)
$$

First step: getting an autonomous diagonal order one

- $\exists 2 \pi$-periodic symplectic change of coordinates of the form:

$$
\mathbf{z}=P(\theta) \hat{\mathbf{z}}+V(\theta)
$$

In the new coordinates $\hat{\mathbf{z}}=\left(\hat{x}_{1} \hat{x}_{2} \hat{x}_{3} \hat{y}_{1} \hat{y}_{2} \hat{y}_{3}\right)^{T}$

- Hamiltonian:

$$
\hat{H}(\hat{\mathbf{z}}, \theta)=\omega_{1} i \hat{x}_{1} \hat{y}_{1}+\omega_{2} \hat{x}_{2} \hat{y}_{2}+\omega_{3} i \hat{x}_{3} \hat{y}_{3}+\sum_{k \geq 3} \hat{H}_{k}(\hat{\mathbf{z}}, \theta)
$$

- The origin becomes a fixed point.

First step: getting an autonomous diagonal order one

- $\exists 2 \pi$-periodic symplectic change of coordinates of the form:

$$
\mathbf{z}=P(\theta) \hat{\mathbf{z}}+V(\theta) \quad \begin{gathered}
\text { Precision } \\
\text { bottleneck }
\end{gathered}
$$

In the new coordinates $\hat{\mathbf{z}}=\left(\hat{x}_{1} \hat{x}_{2} \hat{x}_{3} \hat{y}_{1} \hat{y}_{2} \hat{y}_{3}\right)^{T}$

- Hamiltonian:

$$
\hat{H}(\hat{\mathbf{z}}, \theta)=\omega_{1} i \hat{x}_{1} \hat{y}_{1}+\omega_{2} \hat{x}_{2} \hat{y}_{2}+\omega_{3} i \hat{x}_{3} \hat{y}_{3}+\sum_{k \geq 3} \hat{H}_{k}(\hat{\mathbf{z}}, \theta)
$$

- The origin becomes a fixed point.

Parameterization of the center manifold (1)

- Linearized vector field: $D \hat{F}(0)=\operatorname{diag}\left(\mathbf{i} \omega_{1}, \omega_{2}, \mathbf{i} \omega_{3},-\mathbf{i} \omega_{1},-\omega_{2},-\mathbf{i} \omega_{3}\right)$.
- Isolating the center part:

$$
L=\left(\begin{array}{cccc}
\mathbf{i} \omega_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \mathbf{i} \omega_{3} & 0 & 0 \\
0 & 0 & -\mathbf{i} \omega_{1} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\mathbf{i} \omega_{3}
\end{array}\right)
$$

L spans the 4-dimensional subspace $V^{L} \subset \mathbb{C}^{6}$ tangent to the center manifold \mathcal{W}_{c} about the origin.

- Goal: compute

$$
\begin{array}{rccc}
\hat{W}: \mathbb{C}^{4} \times \mathbb{R} & \rightarrow & \mathbb{C}^{6} \\
& (\mathbf{s}, \theta) & \mapsto & \hat{W}(\mathbf{s}, \theta)
\end{array}
$$

High-order parameterization of \mathcal{W}_{c}, starting with $\hat{W}_{0}(\mathbf{s}, \theta)=0, \hat{W}_{1}(\mathbf{s}, \theta)=L \mathbf{s}$.

Parameterization of the center manifold (2)

- Parameterization form: Fourier-Taylor (FT) series.

$$
\hat{W}^{1}(\mathbf{s}, \theta)=\sum_{k \geq 1} \hat{W}_{k}^{1}(\mathbf{s}, \theta)=\sum_{k \geq 1} \sum_{r_{1}+\cdots+r_{4}=k} \underbrace{w_{r}^{1}(\theta)}_{\text {Fourier series }} s_{1}^{r_{1}} \ldots s_{4}^{r_{4}}
$$

- Dynamics on the manifold: $\dot{\mathbf{s}}=f(\mathbf{s}, \theta), f(0)=0$.

Parameterization method: an iterative procedure

- (\hat{W}, f) satisfy the invariance equation:

$$
\begin{equation*}
\hat{F}(\hat{W}(\mathbf{s}, \theta), \theta)=D_{\mathbf{s}} \hat{W}(\mathbf{s}, \theta) f(\mathbf{s}, \theta)+\frac{\partial \hat{W}}{\partial t}(\mathbf{s}, \theta) \tag{1}
\end{equation*}
$$

- At order k : substitute $\left(\hat{W}_{k-1}, f_{k-1}\right)$ in (1) and find the k-homogeneous terms that solve $(1)_{k}$.

Solving the invariance equation

Computing (\hat{W}_{k}, f_{k}) in different styles (Haro, 2008):
Graph style: \hat{W}_{k} as simple as possible.
\checkmark Limit the number of small divisors.
\checkmark Easy projection $\mathbf{s}=\hat{W}_{k}^{-1}(\hat{\mathbf{z}})$.
$X f(\mathbf{s}, \theta)$ is a full Fourier-Taylor series.
Normal form style: f_{k} as simple as possible.
\checkmark Possible autonomous f up to a medium order.
x Numerous small divisors \Rightarrow divergence rate increased.

Overview

(1) Introduction: the Sun-Earth-Moon system
(2) The Quasi-Bicircular Problem (QBCP)
(3) The Parameterization Method in the QCBP

4 The neighborhood of Earth-Moon $\mathrm{L}_{1,2}$

Poincaré maps: basic principle (autonomous case)

- Intersection with a lower-dimensional subspace: $z=0, p_{z}>0$.
- In practice: $\mathbf{z}(t)$ is regularly projected on the center manifold.
- In the autonomous case: energy slices. $\delta H_{0}=H(\mathbf{z})-H\left(L_{1}\right)=c s t$

CRTBP, $\mathrm{EML}_{1}, \delta H_{0}=0.01$

CRTBP, $\mathrm{EML}_{1}, \delta H_{0}=0.015$

QBCP EML1 case

- Graph style is used.
- Energy no longer constant but bounded.

QBCP EML1 case

QBCP EML2 case

- Low energy: easily obtained up to $\delta H_{0} \sim 0.008$.
- Higher energy: apparent precision decay. Who is to blame?
- more
- Low-order resonances.
- Inherent properties.

Conclusion

- Example of parameterization of invariant manifolds in the Sun-Earth-Moon system.
- Flexibility of the method (styles).
- Work in lower dimension (4) than usual normal form procedures (6).
- Numerically challenging in the non-autonomous case.
- Compact tool for the description of the neighborhood of EML 2 and extended neighborhood of EML_{1}.
- Works very well in the SEML case (smaller perturbation).

Questions

Thank you for your attention!
Questions?

QBCP EML2 case

- Low energy: easily obtained up to $\delta H_{0} \sim 0.008$.
- Higher energy: apparent precision decay

$$
\left(e_{P}(t)=\left|\mathbf{z}(t)-\mathbf{z}_{p}(t)\right|\right) .
$$

$e_{P}(t)<10^{-6}, \delta H_{0}=0.01$

$$
e_{P}(t)<10^{-6}, \delta H_{0}=0.012
$$

Resonances about $E M L_{2}$ in the QBCP

$2 \omega_{s}$-resonant orbits around EML 2 . From Andreu, 1998.

Resonances about EML ${ }_{2}$ in the QBCP

$2 \omega_{s}$-resonant orbits around EML 2 . From Andreu, 1998.

Accuracy about EML_{2} in the QBCP

- Orbital error: $e_{O}\left(t, \mathbf{s}_{0}\right)=|W(\mathbf{s}(t))-\mathbf{z}(t)|_{\infty}$.

Normal form style

Graph style

- There is no miracle!

