- ICATT 2016 - Student Session -Dynamics in the center manifold around equilibrium points in Periodically Perturbed Three-Body Problems

Bastien Le Bihan¹, Josep Masdemont², Gerard Gómez ³, Stéphanie Lizy-Destrez ¹

¹ISAE-SUPAERO, Toulouse, France ²IEEC & Departament de Matemàtica Aplicada I, ETSEIB, UPC, Barcelona, Spain ³IEEC & Departament de Matemàtica Aplicada i Anàlisi, UB, Barcelona, Spain

March 15th, 2016

Overview

Introduction: the Sun-Earth-Moon system

- 2 The Quasi-Bicircular Problem (QBCP)
- 3 The Parameterization Method in the QCBP
- 4 The neighborhood of Earth-Moon L_{1,2}

Objectives A hierarchy of models A variety of methods

Framework and objectives

Long term: Near-systematic tool for the motion about & between the libration points of the **Sun-perturbed Earth-Moon** system.

Objectives A hierarchy of models A variety of methods

A hierarchy of models

Objectives A hierarchy of models A variety of methods

A variety of methods in the literature

The Quasi-Bicircular Problem (QBCP)

Periodic Hamiltonian in the Earth-Moon synodical frame

$$H(\mathbf{z},\theta) = \frac{1}{2}\alpha_1(p_x^2 + p_y^2 + p_z^2) + \alpha_2(p_x x + p_y y + p_z z) + \alpha_3(p_x y - p_y x) + \alpha_4 x + \alpha_5 y - \alpha_6 \left(\frac{1-\mu}{q_{pe}} + \frac{\mu}{q_{pm}} + \frac{m_s}{q_{ps}}\right)$$

- μ the Earth-Moon mass ratio
- *m_s* the mass of the Sun
- α_k trigonometric functions in the variable $\theta = \omega_s t$
- ω_s the pulsation of the Sun.

Earth-Moon $L_{1,2}$ in the QBCP

 2π -periodic dynamical equivalents of the Earth-Moon libration points $L_{1,2}$, in Earth-Moon coordinates.

Overview

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

- 2 The Quasi-Bicircular Problem (QBCP)
- The Parameterization Method in the QCBP
- 4 The neighborhood of Earth-Moon $L_{1,2}$

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

First step: getting an autonomous diagonal order one

• \exists 2 π -periodic symplectic change of coordinates of the form:

 $\mathbf{z} = P(\theta)\hat{\mathbf{z}} + V(\theta)$

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

First step: getting an autonomous diagonal order one

• \exists 2 π -periodic symplectic change of coordinates of the form:

 $\mathbf{z} = P(\theta)\hat{\mathbf{z}} + V(\theta)$

In the new coordinates $\hat{\mathbf{z}} = (\hat{x}_1 \ \hat{x}_2 \ \hat{x}_3 \ \hat{y}_1 \ \hat{y}_2 \ \hat{y}_3)'$

• Hamiltonian:

$$\hat{H}(\hat{\mathbf{z}},\theta) = \omega_1 \mathbf{i} \hat{x}_1 \hat{y}_1 + \omega_2 \hat{x}_2 \hat{y}_2 + \omega_3 \mathbf{i} \hat{x}_3 \hat{y}_3 + \sum_{k \ge 3} \hat{H}_k(\hat{\mathbf{z}},\theta)$$

• The origin becomes a fixed point.

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

First step: getting an autonomous diagonal order one

• \exists 2 π -periodic symplectic change of coordinates of the form:

 $\mathbf{z} = P(\theta)\hat{\mathbf{z}} + V(\theta)$ Precision bottleneck

In the new coordinates $\hat{\mathbf{z}} = (\hat{x}_1 \ \hat{x}_2 \ \hat{x}_3 \ \hat{y}_1 \ \hat{y}_2 \ \hat{y}_3)^T$

• Hamiltonian:

$$\hat{H}(\hat{\mathbf{z}},\theta) = \omega_1 \mathbf{i} \hat{x}_1 \hat{y}_1 + \omega_2 \hat{x}_2 \hat{y}_2 + \omega_3 \mathbf{i} \hat{x}_3 \hat{y}_3 + \sum_{k \ge 3} \hat{H}_k(\hat{\mathbf{z}},\theta)$$

• The origin becomes a fixed point.

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

Parameterization of the center manifold (1)

- Linearized vector field: $D\hat{F}(0) = \text{diag}(i\omega_1, \omega_2, i\omega_3, -i\omega_1, -\omega_2, -i\omega_3).$
- Isolating the center part:

$$L = \begin{pmatrix} i\omega_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & i\omega_3 & 0 & 0 \\ 0 & 0 & -i\omega_1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i\omega_3 \end{pmatrix}$$

L spans the 4-dimensional subspace $V^L \subset \mathbb{C}^6$ tangent to the center manifold \mathcal{W}_c about the origin.

• Goal: compute

$$egin{array}{rcl} \hat{\mathcal{W}} & : & \mathbb{C}^4 imes \mathbb{R} & o & \mathbb{C}^6 \ (\mathbf{s}, heta) & \mapsto & \hat{\mathcal{W}}(\mathbf{s}, heta) \end{array}$$

High-order parameterization of \mathcal{W}_c , starting with $\hat{\mathcal{W}}_0(\mathbf{s}, \theta) = 0$, $\hat{\mathcal{W}}_1(\mathbf{s}, \theta) = L\mathbf{s}$.

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

Parameterization of the center manifold (2)

• Parameterization form: Fourier-Taylor (FT) series.

$$\hat{W}^1(\mathbf{s},\theta) = \sum_{k \ge 1} \hat{W}^1_k(\mathbf{s},\theta) = \sum_{k \ge 1} \sum_{r_1 + \dots + r_4 = k} \underbrace{w^1_r(\theta)}_{\text{Fourier series}} s_1^{r_1} \dots s_4^{r_4}$$

• Dynamics on the manifold: $\dot{\mathbf{s}} = f(\mathbf{s}, \theta), f(0) = 0.$

Parameterization method: an iterative procedure

• (\hat{W}, f) satisfy the invariance equation:

$$\hat{F}(\hat{W}(\mathbf{s},\theta),\theta) = D_{\mathbf{s}}\hat{W}(\mathbf{s},\theta)f(\mathbf{s},\theta) + \frac{\partial\hat{W}}{\partial t}(\mathbf{s},\theta)$$
(1)

• At order k: substitute (\hat{W}_{k-1}, f_{k-1}) in (1) and find the k-homogeneous terms that solve $(1)_k$.

Suitable form for the linearized motion Overall procedure for the center manifold Solving the invariance equation

Solving the invariance equation

Computing (\hat{W}_k, f_k) in different *styles* (Haro, 2008):

Graph style: \hat{W}_k as simple as possible.

- ✓ Limit the number of small divisors.
- ✓ Easy projection $\mathbf{s} = \hat{W}_k^{-1}(\hat{\mathbf{z}})$.
- **X** $f(\mathbf{s}, \theta)$ is a full Fourier-Taylor series.

Normal form style: f_k as simple as possible.

- ✓ Possible autonomous f up to a medium order.
- ✗ Numerous small divisors ⇒ divergence rate increased.

Poincaré maps EML₁ case EML₂ case

Overview

- Introduction: the Sun-Earth-Moon system
- 2 The Quasi-Bicircular Problem (QBCP)
- 3 The Parameterization Method in the QCBP
- 4 The neighborhood of Earth-Moon $L_{1,2}$

Poincaré maps EML₁ case EML₂ case

Poincaré maps: basic principle (autonomous case)

- Intersection with a lower-dimensional subspace: z = 0, $p_z > 0$.
- In practice: z(t) is regularly projected on the center manifold.
- In the autonomous case: energy slices. $\delta H_0 = H(\mathbf{z}) H(L_1) = cst$

CRTBP, EML₁, $\delta H_0 = 0.01$

Poincaré maps EML₁ case EML₂ case

QBCP EML_1 case

- Graph style is used.
- Energy no longer constant but bounded.

ICATT 2016, Student Session

Poincaré maps EML₁ case EML₂ case

QBCP EML_1 case

16 / 19

Poincaré maps EML₁ case EML₂ case

QBCP EML₂ case

- Low energy: easily obtained up to $\delta H_0 \sim 0.008$.
- Higher energy: apparent precision decay. Who is to blame?
 More
 - Low-order resonances. more
 - Inherent properties.

Conclusion

Poincaré maps EML₁ case EML₂ case

- Example of parameterization of invariant manifolds in the Sun-Earth-Moon system.
 - Flexibility of the method (*styles*).
 - Work in lower dimension (4) than usual normal form procedures (6).
 - Numerically challenging in the non-autonomous case.
- Compact tool for the description of the neighborhood of EML₂ and extended neighborhood of EML₁.
- Works very well in the SEML case (smaller perturbation).

Questions

EML₂ case

QBCP EML₂ case

- Low energy: easily obtained up to $\delta H_0 \sim 0.008$.
- Higher energy: apparent precision decay $(e_P(t) = |\mathbf{z}(t) \mathbf{z}_P(t)|).$

 $\begin{tabular}{l} \mathsf{EML}_2 & \mathsf{case} \\ \end{tabular} \end{tabular} Low-order \ resonances \end{tabular}$

Resonances about EML₂ in the QBCP

 $2\omega_s$ -resonant orbits around EML₂. From Andreu, 1998.

 $\begin{tabular}{l} \mathsf{EML}_2 & \mathsf{case} \\ \end{tabular} \end{tabular} Low-order \ resonances \end{tabular}$

Resonances about EML_2 in the QBCP

 $2\omega_s$ -resonant orbits around EML₂. From Andreu, 1998.

 $\begin{tabular}{l} \mathsf{EML}_2 & \mathsf{case} \\ \end{tabular} \end{tabular} Low-order \ resonances \end{tabular}$

Accuracy about EML₂ in the QBCP

• Orbital error: $e_O(t, \mathbf{s}_0) = |W(\mathbf{s}(t)) - \mathbf{z}(t)|_{\infty}$.

• There is no miracle!