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Overview

@ Introduction: the Sun-Earth-Moon system
© The Quasi-Bicircular Problem (QBCP)
9 The Parameterization Method in the QCBP

@ The neighborhood of Earth-Moon L »
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Introduction: the Sun-Earth-Moon system Objectives

hy of models
of methods

Framework and objectives

Long term: Near-systematic tool for the motion about & between
the libration points of the Sun-perturbed _

Earth-Moon system. I
Short term: Dynamics about EML; »
in such a model. K
EMLs /
) 1
SEML, | Earth SEML, O
(€] (€]
L EML Sun
! )
| ¢ EML
. Moon e

ICATT 2016, Student Session Dynamics in the center manifold in PPTBPs 3/19



Introduction: the Sun-Earth-Moon system
A hierarchy of models
A variety of methods

A hierarchy of models

(A) Circular Restricted (B) Bicircular Four-Body Model

Three-Body Problem (RTBP)
EML;
ML, ML L SEML: .Earth SEML; Osu"
L] ] L] L] EMLl.
Moon Earth Moon. .
EMLs
L]
(C) Quasi-Bicircular Four-Body Model (QBCP)
v~ Coherent et
v Formally equivalent SENL: o T o
to (B) EML:
®
Moon .EMLZ
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Introduction: the Sun-Earth-Moon system

A variety of methods

A variety of methods in the literature

Numerical methods

(continuation...) Hamiltonian
normal forms

Semi-analytical Parameterization
RTBP
methods methods

- High-order approximation

Linstedt-Poincaré
procedures

of invariant manifolds
- Domain of practical
convergence
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The Quasi-Bicircular Problem (QBCP)

The Quasi-Bicircular Problem (qscp)

Periodic Hamiltonian in the Earth-Moon synodical frame

1
H(z,0) = Sea(pz + Py + pZ) + aa(pox + pyy + p22)
+ a3(pxy — pyx) + aux + asy

Ape Apm ps
y @ 4 the Earth-Moon mass
ratio
/:}f’\ o @ ms the mass of the Sun
o \\“o @ «y trigonometric functions
L e in the variable § = wst
Moon  B.n| ~Earth X @ ws the pulsation of the Sun.
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The Quasi-Bicircular Problem (QBCP)

Earth-Moon L; 5 in the qBcp

2m-periodic dynamical equivalents of the Earth-Moon libration
points Ly 5, in Earth-Moon coordinates.

2e-06- = N\
2e-06-
1le-06-

L e+00- 5 L ge+00- §
- -

—1e-06-
—2e-06-
—2e-06- > 7

-0.8369160 -0.8369155 —0.&]3369150 -0.8369145 -1.155683 -1.155682 -1.15568
s =
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Suitable form for the linearized mot
On for th nter manifold
Solvin quation

The Parameterization Method in the QCBP

Overview

9 The Parameterization Method in the QCBP
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Suitable form for the linearized motion

The Parameterization Method in the QCBP manifold

First step: getting an autonomous diagonal order one

@ J 2m-periodic symplectic change of coordinates of the form:

z = P(0)2 + V(0)
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Suitable form for the linearized motion
The Parameterization Method in the QCBP Ozl s for‘t[ tkay et

Solving

First step: getting an autonomous diagonal order one

@ J 2m-periodic symplectic change of coordinates of the form:

z = P(0)2 + V(0)

. R NN &
In the new coordinates 2 = (%1 % % 1 92 93 )

o Hamiltonian:

i‘\l(i, 0) = wiiXiy1 + wake o + wiixsys + Z /:Ik(i, 9)
k>3

@ The origin becomes a fixed point.
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Suitable form for the linearized motion
The Parameterization Method in the QCBP Ozl s for‘t[ tkay et

Solving

First step: getting an autonomous diagonal order one

@ J 2m-periodic symplectic change of coordinates of the form:

Precision

z=P(0)z+V(0) bottleneck

. R NN &
In the new coordinates 2 = (%1 % % 1 92 93 )

o Hamiltonian:

i‘\l(i, 0) = wiiXiy1 + wake o + wiixsys + Z /:Ik(i, 9)
k>3

@ The origin becomes a fixed point.
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Suitable form for the linearized motion
Overall procedure for the center manifold

The Parameterization Method in the QCBP A b - 8
Solving the invariance equation

Parameterization of the center manifold (1)

@ Linearized vector field: DF(0) = diag(iw:, w2, iws, —iw1, —w2, —iw3).
@ Isolating the center part:

iw; 0 0 0
0 0 0 0
L= 0 w3 0 0
0 0 —iwy 0
0 0 0 0
0 0 0 —iws

L spans the 4-dimensional subspace V! C C° tangent to the
center manifold W, about the origin.
@ Goal: compute
W : C*xR — ce
(s,0) +— W(s,0)
High-order parameterization of V., starting with
Wo(s,8) = 0, Wi(s,0) = Ls.
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Suitable form for the linearized motion
Overall procedure for the center manifold

The Parameterization Method in the QCBP o y s .
Solving the invariance equation

Parameterization of the center manifold (2)

@ Parameterization form: Fourier-Taylor (FT) series.

Wi(s,0) => Wis,0)=>_ > wl(f) sp... s
k=1 k2l n+-tn=k Fomws

@ Dynamics on the manifold: § = f(s,8), f(0) = 0.

Parameterization method: an iterative procedure

o (W, f) satisfy the invariance equation:

F(W(s.0).0) = W (s.0)F(s,0) + 2 (0) (1)

o At order k: substitute (Wk_l, fk—1) in (1) and find the
k-homogeneous terms that solve (1)x.
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Suitable form the linearized motion

The Parameterization Method in the QCBP Ovev:a\l proce . . manifold
Solving the invariance equation

Solving the invariance equation

Computing (W, f) in different styles (Haro, 2008):

Graph style: W, as simple as possible.
v/ Limit the number of small divisors.
v Easy projection s = VAVk_l(i)
X f(s,0) is a full Fourier-Taylor series.
Normal form style: f, as simple as possible.
v/ Possible autonomous f up to a medium
order.
X Numerous small divisors = divergence
rate increased.
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The neighborhood of Earth-Moon L o

Overview

@ The neighborhood of Earth-Moon L »
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Poincaré maps
EML; case
EML; case

The neighborhood of Earth-Moon L; »

Poincaré maps: basic principle (autonomous case)

@ Intersection with a lower-dimensional subspace: z =0, p, > 0.
@ In practice: z(t) is regularly projected on the center manifold.

@ In the autonomous case: energy slices. Hy = H(z) — H(L1) = cst

002 o1 1 0% 001 003 002 oo, 00 001 002

CRTBP, EML;, 6Hy = 0.01 CRTBP, EML;, 6Hy = 0.015
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Poincaré maps
EML; case
EML; case

The neighborhood of Earth-Moon L; »

QBCP EML] Case

@ Graph style is used.
@ Energy no longer constant but bounded.
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§Ho = H(z,0) — H(Ly,0) = 0.0025 §Ho = 0.005
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Poincaré maps
EML; case

The neighborhood of Earth-Moon L; » Ellp ceea

QBCP EML; Case
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Poincaré maps
EML; case

The neighborhood of Earth-Moon L o ElLp ceea

QBCP EMLp case

@ Low energy: easily obtained up to dHy ~ 0.008.
@ Higher energy: apparent precision decay. Who is to blame?

o Low-order resonances.
o Inherent properties.
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Poincaré maps
EML; case

The neighborhood of Earth-Moon L o ElLp ceea

Conclusion

@ Example of parameterization of invariant manifolds in the
Sun-Earth-Moon system.
o Flexibility of the method (styles).
@ Work in lower dimension (4) than usual normal form
procedures (6).
¢ Numerically challenging in the non-autonomous case.
@ Compact tool for the description of the neighborhood of EML;
and extended neighborhood of EML;.

@ Works very well in the SEML case (smaller perturbation).
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Poincaré maps
EML; case

The neighborhood of Earth-Moon L o ElLp ceea

Questions

Thank you for your attention! L7
Questions? 0
EMLs J
) 1
SEML X SEML
ML q Earth ML, O
Sun
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EML; case

QBCP EMLp case

@ Low energy: easily obtained up to dHy ~ 0.008.

@ Higher energy: apparent precision decay

(ep(t) = |2(t) = zp(1)]).

118 116 114 112 117 BTy 113
Xt Xt

ep(t) < 1076, GHo = 0.01 ep(t) < 1078, §Hy = 0.012
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Low-order resonances

Resonances about EML, in the qscp
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2ws-resonant orbits around EML,. From Andreu, 1998.
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Low-order resonances

Resonances about EML, in the qscp
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Low-order resonances

Accuracy about EML, in the qBcp

@ Orbital error: eo(t,sp) = |[W(s(t)) — z(t)|co-
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Normal form style Graph style

@ There is no miracle!
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