

Universidad Carlos III de Madrid www.uc3m.es

A Sequential Method to Compute Multiobjective Optimal Low-Thrust Earth Orbit Transfers

David Morante Manuel Sanjurjo Manuel Soler

Universidad Carlos III de Madrid

David Morante González

OUTLINE

Universidad Carlos III de Madrid www.uc3m.es

(1) INTRODUCTION.

- 2 OPTIMAL HYBRID CONTROL PROBLEM.
- **③ SEQUENTIAL ALGORITHM.**
- **4 NUMERICAL RESULTS.**
- **5** CONCLUSIONS.
- **6 FUTURE WORK.**

1. INTRODUCTION

Universidad Carlos III de Madrid www.uc3m.es

MOTIVATION

- Propellant savings.
- Maturity and reliability for EP systems: NASA Deep Space 1 and ESA SMART 1.
- All-electric satellite in GEO.

PROBLEMS

- T / W << 1 (Large times)
- Perturbations have an amplified impact (Oblateness, Third body ...).
- Earth-Shadow effect.

David Morante González

1. INTRODUCTION

David Morante González

2. HYBRID OPTIMAL CONTROL PROBLEM

Universidad Carlos III de Madrid www.uc3m.es

David Morante González

3. SEQUENTIAL ALGORITHM

$$n_k = \frac{L_{k+1,1} - L_{k,1}}{2\pi} \left| \frac{||\bar{r_k}|| - ||\bar{r}||}{||\bar{r}|||} \right| \mathcal{N}$$

David Morante González

4. NUMERICAL RESULTS

Universidad Carlos III de Madrid www.uc3m.es

Time of Flight (days)

GTO-GEO TEST CASE

Orbits	a/R_e	e	i (deg)	Ω (deg)	ω (deg)
GTO	3.820	0.731	27	99	0
GEO	6.6107	10^{-4}	10^{-4}	_	_

SPACECRAFT PARAMETERES

$P(\mathbf{kW})$	$I_{sp}(s)$	η	m_0 (kg)	$T/(m_0g_0)$
5	3300	0.65	450	$4.55 \cdot 10^{-5}$

Transfer Time $(days)$							
66.7	75	100	100 120		200		
Propellant mass (Kg)							
36.50 31.27		28.29	27.58	27.27	27.13		

David Morante González

4. NUMERICAL RESULTS

k	${oldsymbol{\Delta}}ar{{oldsymbol{\phi}}}(rad)$	Obj.(kg)	Iter.	Variables	Constraints	CPU time(s)	$arepsilon_{min}$	$arepsilon_{max}$	$arepsilon_{3body}$
1	0,8690	27,4910	176	19829	15971	188,03	0,1584	0,6028	0,6131
2	0,5085	27,3059	223	33885	26730	413,27	0,0710	0,3244	0,3359
3	0,3599	27,2787	231	47873	37445	601,58	0,0525	0,2211	0,2323
4	0,2792	27,2729	257	61928	48212	875,37	0.0409	0,1708	0,1821
5	0,2280	27,2492	346	75919	58924	1442,36	0,0316	0,1285	0,1549
6	0,1924	27.2414	364	89900	69632	1798,44	0,0311	0,1003	0,1282
7	0,1665	27,2399	345	103860	80319	1974,34	0,0268	0,0857	0,1127
8	0,1466	27,2350	372	117972	91134	2384,36	0,0241	0,0857	0,0992
9	0,1185	27,2322	526	145956	112563	4276,58	0,0201	0,0704	0,0824

David Morante González

4. NUMERICAL RESULTS

Universidad Carlos III de Madrid www.uc3m.es

David Morante González

5. CONCLUSIONS

Universidad Carlos III de Madrid www.uc3m.es

- A sequential method for solving the Low-thrust orbit transfer HOCP has been successfully implemented.
- It has been successfully applied to a GTO-GEO transfer problems.
- The method is:
- The suitability and applicability of the control law have been tested.
- This method will be useful for preliminary mission design.

6. FUTURE WORK

- Apply this method to the **more complex scenario**
- Account for the suitability of the control law in a high fidelity dynamical system.
- The ultimate goal is to enhace flexibility according to detail-level requirements, to improve robistness and tho head for automatization in optiming low-thrust transfer trajectories.

Universidad Carlos III de Madrid www.uc3m.es

Thank you for your attention.

David Morante González