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ABSTRACT

A sequential algorithm for optimizing low-thrust Earth orbit
transfers in terms of the propellant consumed is proposed.
The dynamical model includes the effect of the Earth shadow
and the J2 effect of the gravitational potential. The algorithm
is based on two steps of growing complexity. In the first step,
a near-optimal solution is obtained using simplified dynamics.
In the second step, a hybrid approach embedded in a direct
collocation scheme is used to consider the optimal coast arcs
out of the Earth shadow. This novel approach is a continua-
tion of a previous work in which the minimum time problem
was solved. The ultimate goal of the work is to develop a ro-
bust and flexible tool that addresses the multi-objective design
of low thrust transfers in Earth orbit. Hence, the user will not
only obtain just point solutions, but will be able to explore the
set of Pareto optimal trajectories for these two objectives.

Index Terms— Low-thrust, Hybrid Optimal Control,
Multiobjective

1. INTRODUCTION

Low-Thrust propulsion is currently considered by all space
actors as a key and revolutionary technology for the new gen-
erations of commercial and scientific satellites. Its major at-
traction lies on the reduction of propellant mass [1] due to its
high specific impulse when compared with chemical propul-
sion. Different electric propulsion (EP) technologies have
been proposed for orbit transfer and station keeping improv-
ing the performance of the current Earth satellites with an all-
electrical platform [2]. Among the EP technologies, Hall Ef-
fect Thrusters (HETs), Ion Thrusters (ITs) and Arcjets have
been already considered as possible candidates for the Earth-
orbit transfer [3, 4, 5]. In fact, the performance of low-thrust
solar EP for deep space scenarios has been tested in actual
missions such as NASA Deep Space 1 [6] and ESA SMART-
1 [7] or even in the most recent Dawn mission to Ceres [8].
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Additionally, in 2015 Boeing launched its 702SP platform,
which has been the first satellite in implementing all-electric
propulsion for orbit raising and station keeping, saving thou-
sands of kilograms of mass and decreasing the satellite price
and its launch by hundreds of millions of dollars [9].

The design of low-thrust trajectories in such scenarios can
be formulated as a Hybrid Optimal Control Problem. How-
ever, finding the control profile and the unknown switching
sequence of coasting/thrust modes that satisfy the mission’s
constraints and minimize a certain cost is still a challenging
open problem for several reasons. Although technology de-
pendent, thrust acceleration is usually much lower than the
gravitational acceleration, and, as a consequence, transfer
times are usually several months for a typical trajectory from
Geostationary Transfer Orbit orbit (GTO) to Geostationary
Earth Orbit (GEO). In addition to this, due to the long time
of flight, perturbing forces of the two-body-problem have
an amplified impact in low-thrust trajectories when com-
pared to impulsive trajectories. Therefore, perturbations due
to oblateness, aerodynamic drag, or third-body may be in-
cluded in the model. Finally, when considering solar EP, the
shadow of the Earth has a significant effect since no thrust
is generated when the spacecraft passes through it. In short,
both low-thrust and long transfer times together with the un-
known burn/coast sequence translate into a very challenging
computational problem.

Historically, the first approaches consisted of “ad hoc” an-
alytical solutions to specific problems. In those works, ei-
ther the control law or the trajectory (even both of them) are
assumed to be known “a priori”. In this line, the seminal
works of Forbes [10], Tsien [11], Lawden [12], Edelbaum
[13], deserve a special mention. After them and extending the
study of different problems, solutions for particular trajectory
shapes were developed, such as the logarithmic spiral by Tsu
[14] or the more versatile exponential sinusoid presented by
Petropoulos [15]. The dynamical description of the problem
is usually given either by averaging techniques or by asymp-
totic analysis. The averaging method has been extensively
used and has proved to be effective [16]. Also Y. Gao [17]
applied the averaging method using a predefined control law
considering Earth J2 and shadow effects. On the other hand,
asymptotic analysis, in particular multiple-scales asymptotic
analysis, has also been an effective way to obtain analytical
solutions for particular problems [18, 19, 20]. The short-



comings of the analytical approaches lie in the compulsory
approximation of the dynamical model and the specificity of
each method.

The optimal control problem is also tackled with classi-
cal direct and indirect methods [21] [22]. Within indirect
methodologies, it is worth noting the approach by Haberkon
et al. [23], which combines a shooting method with a homo-
topic formulation to obtain a suitable initial guess, circum-
venting thus one of the classical drawbacks of indirect meth-
ods, i.e., that of finding an initial guess to lagrange multi-
pliers. Nonetheless, neither a high fidelity dynamical model,
nor the eclipse effect were considered. On the other hand,
a typical strategy to tackle more realistic dynamics and con-
straints is to use the so-called direct methods, which discretize
the continuous optimal control problem to obtain a Nonlinear
Programming problem (NLP). This approach has been ex-
plored since the 90s [24] and recently used by Betts [25], ad-
dressing the challenges of including eclipse constraint within
a high-fidelity dynamical model in large duration transfers.
In his work, he proposed a two level algorithm, in which the
switching sequence is predetermined by a receding horizon
algorithm, and then the optimal trajectory is obtain as the so-
lution of a Multiphase Optimal Control Problem.

However, the previous techniques did not incorporate the
switching required to model coast phases out of the Earth
shadow. As a solution, this problem can be tackle as a Hy-
brid Optimal Control Problem. Several approaches have been
developed such as the hybrid Maximum Principle [26] or the
two stage algorithms [27]. An alternative approach is to re-
lax the binary functions associated to the mode sequence to
obtain a convexification or embedding of binary constraints
[28]. This technique, which is the basis of our methodology,
converts the problem into a classical Optimal Control Prob-
lem, that can be solved as a NLP. Nevertheless, a sufficiently
good initial guess is demanded for a good convergence to the
solution [29].

In this paper, a sequential, yet robust and flexible, al-
gorithm to address the shortcomings above mentioned is
proposed. The problem is formulated as a Hybrid Optimal
Control Problem, that is solved via a embedding technique
using the Hermite-Simpson direct collocation method. In
a similar fashion than in [25], the number and sequence of
shadow/sunlight phases are determined in a previous step.
For that purpose, we obtain the near-optimal control law pro-
posed by Y. Gao [17], which also provides a suitable initial
estimation for the state and control variables, as well as a for
the thrusting/no-thrusting modes during sunlight.

The main contribution of the paper is the application
of the embedding technique to the design of minimum-fuel
Earth-orbit transfers using low-thrust. It allows to include the
coasting mechanism out of the Earth shadow in the solution,
which play a key role in this kind of trajectories.

2. HYBRID OPTIMAL CONTROL PROBLEM

Spacecraft flight dynamics equipped with electric propulsion
systems can be described by a switched dynamical system,
that is, a dynamical system with multiple modes of opera-
tion. These modes denote the switch on/off of the engine
due to the Earth-shadow effect or due to a control decision
to reduce the propellant consumption. Each flight mode is
characterized by a different set of differential equations and
constraints. Our goal is to obtain a numerical solution to the
resulting hybrid optimal control problem, casting the prob-
lem as a nonlinear optimization program (NLP) and employ
off-the-shelf NLP solvers.

Our approach follows the same line as in [30] and can be
summarized in the following steps. First, we introduce bi-
nary control functions for each mode to formulate the hybrid
optimal control problem as a Mixed Integer Optimal Control
Problem (MIOCP) [31]. Next, we relax the binary functions
and include a penalty term on the relaxation, so that as the
weight of the penalty term increases, the relaxed solution con-
verges to a binary function. Finally, we apply a collocation
discretization rule [32] to convert the continuous problem into
an NLP. We use the so-called Hermite-Simpson direct collo-
cation method [32].

2.1. General Formulation

Let us consider a switched system described by a set of dif-
ferential equations

ẋ(t) = fq(x(t), u(t)), q ∈ Q := {1, 2, . . . , nq}, (1)

where x(t) ∈ Rnx represents the continuous states and
fq : Rnx × Rnu → Rnx represents the dynamics in mode q.
The input u(t) is in a compact set U ⊂ Rnu . For spacecraft
flight, x denotes the dynamic states of the spacecraft e.g., po-
sition and velocity and u denotes the control variables, e.g.,
thrust direction angles.

A switching sequence σ is defined as the timed sequence
of active dynamical systems, or modes, as follows:

σ = [(t0, q0), (t1, q1), . . . , (tN , qN )],

where N represents the number of mode switches (con-
sidering also the final time as a switch), and qi ∈ Q for
i = 0, 1, . . . , N . t0 is the initial time, ti for i = 1, . . . , N ,
with t0 ≤ t1 ≤ · · · ≤ tN ≤ tN+1 are the switching times.
We define tf = tN+1 as the final time. The pair (ti, qi) for
1 ≤ i ≤ N indicates that at time ti the dynamics change from
mode qi−1 to qi. Thus, in the time interval [ti, ti+1), referred
to as the i-th phase/operation, the state evolution is governed
by the vector field fqi . As an illustration, a spacecraft might
be flying coasting and then switch at t1 to a thrusting mode.

The state and control variables must fulfill constraints for
each mode q ∈ Q, compactly represented as

hq(x(t), u(t)) ≤ 0, (2)



where in the above hq : Rnx×Rnu → Rnh . These constraints
are used to capture limiting values, e.g. the maximum thrust
available.

The objective in trajectory planning based on optimiza-
tion is to find a feasible transfer trajectory that minimizes a
desired cost function such as fuel or time of flight. The hy-
brid optimal control problem is thus as follows: given an ini-
tial condition x(t0), find a switching sequence σ and an input
u : [t0, tf ] → U , that fulfill the dynamics (1), the constraints
(2) and minimize a cost function J(σ, u). That is, solve the
following hybrid optimal control problem:

min
u,σ

J(u, σ) := φ(x(tf )) +
∑N
i=0

∫ ti+1

ti
Lqi(x(t), u(t))dt

s.t. x(t0) = x0, and for i ∈ [ti, ti+1], i = 0, . . . , N,
ẋ(t) = fqi(x(t), u(t)),
hqi(x(t), u(t)) ≤ 0.

(3)
In the above, φ is referred to as the Mayer term, denoting
a final cost, and the integral term in J is referred to as the
Lagrange term, denoting a running cost. The final cost can be
used to quantify the deviation from a desired final state, such
as reaching a target orbit or a destination at a given time. The
running cost can denote costs accumulated during the transfer
orbit such as fuel consumption. The initial time t0 is given
while the final time tf can be an optimization variable.

The hybrid optimal control problem defined above is chal-
lenging for several reasons. First, the unknown number of
mode switches, switching sequence and switching times re-
sult in a non-classical Hybrid Optimal Control Problem. Sec-
ond, the spacecraft is subjected to small perturbations during
long transfer times. As a consequence, the dynamics and con-
straints are very non-linear.

2.2. Solution Approach

By adding new binary control variables, constraints and cost
function, the Hybrid Optimal Control can be transformed to
a Mixed Integer Optimal Control Problem. If the binary con-
straints are relaxed through a penalty term, it can be formu-
lated as a classical optimal control problem as follows.

Let wq : [t0, tf ] → {0, 1} denote a binary control func-
tion for each mode q = 1, . . . , nq . Let f̄ : Rnx × Rnu ×
{0, 1}nq be defined as f̄ =

∑nq
q=1 wqfq . By adding the con-

straint
∑nq
q=1 wq(t) = 1, we ensure there is one active mode

at each time t and so the dynamical system is well-defined.
Similarly, define h̄ =

∑nq
q=1 wqhq and L̄ =

∑nq
q=1 wqLq .

Now, let us relax wq(t) by allowing it to belong to [0, 1]
instead of {0, 1}. Then, we define βq : [t0, tf ] → [0, 1] for
q = 1, . . . , nq , as a vector of auxiliary optimization variables,
with βq(t) = wq(t)(wq(t) − 1). We define a penalty cost
function l : [0, 1] → R≥0, where l is strictly monotonically
decreasing and l(1) = 0. With the relaxation and the penalty

term, we formulate a classical optimal control problem as:

min
u,w,β

J(u,w, β) = φ(x(tf ))

+
∫ tf
t0

(
L̄(x(t), u(t), w(t)) + α

∑nq
q=1 l(|βq(t)|)

)
dt

s.t. x(t0) = x0, and ∀t ∈ [0, tf ]
ẋ(t) = f̄(x(t), u(t), w(t)),
h̄(x(t), u(t), w(t)) ≤ 0,
βq(t) ∈ [0, 1], q = 1, . . . , nq,
βq(t) = wq(t)(wq(t)− 1), q = 1, . . . , nq∑nq
q=1 wq(t) = 1.

(4)
The control variables in the transformed problem are the input
u(t), the auxiliary inputs βq(t), the switching law wq(t) for
t ∈ [t0, tf ], q ∈ Q and the final time tf . The constant α is a
design parameter. While integer constraints are not explicitly
added, the penalty term ensures that in practice for sufficiently
large α, the optimized solution would approach |βq(t)| = 0
and consequently, wq(t) ∈ {0, 1} for each q ∈ Q.

3. DYNAMICAL MODEL

The motion of a spacecraft of negligible mass in orbit around
a central body can be described by a system of second-order
ordinary differential equations:

r̈ + µ
r

r3
= ad (5)

where the radius r = ||r|| is the magnitude of the inertial po-
sition vector r, µ is the standard gravitational parameter of
the central body and ad is defined as the disturbing accelera-
tion. The differential equation (5) is usually formulated using
the classical set of orbital elements (a, e, i,Ω, ω,M) to define
the state vector. However, these elements exhibit singularities
for e = 0, and i = 0 ◦, 90 ◦, which are both cases of inter-
est for trajectories arriving to or departing from geostationary
orbits. In order to avoid this singularities, Betts [25] uses a
set of modified equinoctial elements as presented by Walker
[33]. Following them, the dynamical system can be described
in terms of the state variables

x̃ = [p, f, g, h, k, L] (6)

the control variables

u = [u1, u2, ω] (7)

and the parameters p resulting in

˙̃x = A(x̃)ad + b = f̃(x̃,u,p, t) (8)

The equinoctial dynamics are defined by the matrix
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0
2p
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1
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√
p
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√
p
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1
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√
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√
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and the vector

bT =

[
0 0 0 0 0

√
µp

(
q

p

)2 ]
(9)

where

q = 1 + f cosL+ g sinL (10)

s2 = 1 + h2 + k2 (11)

Equation (8) can be better expressed considering the True
Longitude L as the independent variable, instead of the phys-
ical time t, given that low-thrust transfer are characterized by
very long times [34]. Physically this represents an angle in
the orbit plane and consequently one complete orbit revolu-
tion corresponds to a change of 2π in the variable L.

Thus, the new equation of motion can be expressed as a
function of the system in (8)

f(x,u,p, L) = f̃(x̃,u,p, t)/τ (12)

τ = f̃6(x̃,u,p, t) (13)

with the new set of dependent variables

x = [p, f, g, h, k, t] (14)

3.1. Perturbing and Thrust accelerations

The disturbing acceleration ad can be expressed as

ad = ag + a3b + aT (15)

with contributions due to oblate Earth effects ag , sec-
ondary bodies a3b, and thrust aT . A more detailed descrip-
tion of these perturbations is given in [34].

3.1.1. Thrust acceleration

The thrust steering law is completely determined by the time
varying angles u1 and u2. Here u1, is the thrust pitch angle
measured in the orbital plane off the circumferential direc-
tion, positive away from the center of mass, and u2 is the
thrust angle measured off the orbital plane and perpendicu-
lar to it, positive in the direction of the angular momentum

vector. With this formulation, the thrust acceleration can be
expressed projected in the Radial Reference Frame (̂i, ĵ, k̂)

aT = aTω[cosu2 sinu2 î + cosu2 cosu1̂j + sinu2k̂] (16)

where the unit vectors are

î =
r

r
, k̂ =

r × v
||r × v||

, ĵ = k̂× î (17)

Also, ω is a binary variable with two possible values
{0, 1}. It controls the spacecraft modes. When ω = 0, en-
gines are off, whereas ω = 1 means that spacecraft is in burn
phase. The parameter aT measures the magnitude of the ac-
celeration that the thruster can provide. It is a function of the
input power P , the thruster efficiency η, its specific impulse
Isp, the Earth gravitational acceleration at sea level g0 and
the spacecraft mass m.

aT =
2ηP

mg0Isp
(18)

Note that, the mass flow rate ṁ is constant and can be
expressed as

ṁ = − 2ηP

(g0Isp)2
(19)

To reduce the wrapping in the control due to the periodic-
ity of the angular variables, we restrict the angles to

−π ≤ u1 ≤ π (20)
−π/2 ≤ u2 ≤ π/2 (21)

Other alternatives to define the control are possible [25],
such as the thrust-unitary-vector projections onto the Radial
Orbital frame, but this formulation increases the size of the
problem, as it incorporates one additional variable and a path
constraint.

3.2. Eclipse Contraints

To accurately model the solar electric propulsion system it
is necessary to model the trajectory as it passes through the
shadow of the Earth, because no thrust is generated (aT = 0).
The location of the eclipse is a function of ss which is the
vector from the Earth to the sun, with norm ss = ||ss||. Let
us define the solar unit vector ŝ as

ŝ =
ss
ss

(22)

and the projected spacecraft position that is given by

r̄ = (rT ŝ)ŝ (23)

and the auxiliary vector



δ = r − r̄ (24)

Under the cylindrical shadow model [35], the eclipse con-
straint can be computed according to the following rules:

Rule 1: A shadow terminator can only be encountered if rT ŝ <
0 and ||δ|| = Re

Rule 2: The spacecraft will be in sunlight if ||δ|| > Re

Rule 3: The spacecraft will be in shadow if ||δ|| < Re

4. SEQUENTIAL OPTIMIZATION ALGORITHM

The proposed approach can be used to solve both, minimum-
time and minimum-fuel problems. However, the phase struc-
ture for each problem is different. In the former, the simplifi-
cationw = 1, can be done, as the thrust will be always applied
out of the Earth shadow. Thus, a simplified phase structure as
in Fig. 1 can is assumed . In the former, w can take different
values between, resulting in a more complicated phase struc-
ture as it can be seen in Fig. 2. A detailed description on how
to solve the minimum-time problem was done in [36]. Thus,
we will focus on the minimum-fuel problem hereafter, being
the objective function

J =

∫ tf

t0

ṁdt+ α

nq∑
q=1

l(|βq(t)|)
)
dt (25)

Burn Burn

ShadowSunlight Sunlight

Coast

Fig. 1. Burn/coast arcs in the minimum-time problem

Burn Burn Burn
Coast Coast

Burn

ShadowSunlight Sunlight

Coast

Fig. 2. Burn/coast arcs in the minimum-fuel problem

4.1. Initial guess generation

From this step we obtain the number and sequence of shadow/
sunlight phases as well as a sufficiently good initial estimate
of the control and state variables. The method applied relies
on the work of Y. Gao [17], who defined three control laws
that are only applied over an arc within each orbital revolu-
tion. Within this model, the effect of propellant consump-
tion, the constraint of non-thrusting along the Earth-shadow,
the Earth-oblateness effect due to J2 and the discontinuous
thrusting during sunlight are included. As a result, he ob-
tained an analytical expression for the Gauss’s variational
equations averaged over an orbital revolution. In this way, the
trajectory propagation time is greatly reduced while satisfac-
tory solution accuracy is maintained.

The main reason to use this method lies on its capability
of including discontinuous thrusting out of the Earth shadow.

4.2. Control and State Discretization

Let us define the switching sequence σ as the sequence of
shadow/sunlight modes as a function of the true Longitude L.

σ = [(L0,1, q0), ..., (Lk,1, qk), ..., (LN,1, qN )] (26)

where N is he known number of phases and qk are
the known modes of operations, i.e. qk = shadow for
k = 1, 3, 5, ..., N , and qk = sunlight for k = 2, 4, 6, ...N .

Let us define the discrete state xk,i and control uk,i for i =
1, ..., nk, where nk is the number of grid points within each
phase k. Note that, the burn/coast phases during sunlight are
determined by the relax binary variable wk,i, which is only
defined for k = 2, 4, 6, ..., N .

Let us define the node spacing ∆φk as the angular dis-
tance between two adjacent nodes

∆φk =
Lk+1,1 − Lk,1

nk
(27)

An initial estimation for Lk,1 and Lk+1,1 is known before
defining the grid, as they correspond to the shadow entrance
and exit locations. Using this information, we can define a
grid in which the node spacing ∆φk is proportional to the
arc length. Thus, the number of nodes for each phase can be
computed as:

nk =
Lk+1,1 − Lk,1

2π

∣∣∣∣ ||r̄k|| − ||r̄||||r̄|||

∣∣∣∣N (28)

where r̄k is the mean value of r during phase k and r̄ is
the mean value of r during the whole trajectory.
N is a user-defined parameter that means the number of

nodes in a phase that covers a complete revolution in which
r̄k = r̄ is satisfied.



In the following section, results are presented as a func-
tion of the mean node spacing

∆̄φ =

∑N
k=1 ∆φk
N

which is consider as a representative value of the fineness of
the grid.

5. NUMERICAL RESULTS

In this section a test case scenario is defined to illustrate
the performances and stability of the method proposed. The
minimum-fuel transfer trajectory from a geostationary trans-
fer orbit (GTO) to a geostationary equatorial orbit (GEO) is
considered. The classical orbital elements of the departure
and arrival orbits are presented in Table 1. Also the spacecraft
characteristics, such as the input power P , thruster efficiency
η, specific impulse Isp, and they initial spacecraft mass m0

are summarized in Table 2. Note that the engine parameters
correspond to those of a Ion Thruster (IT), because a Hall
thruster is characterized by a lower Isp and a higher thrust.

Table 1. Departure and Arrival Orbits Parameters

Orbits a/Re e i (deg) Ω (deg) ω (deg)
GTO 3.820 0.731 27 99 0
GEO 6.6107 10−4 10−4 – –

Table 2. Spacecraft Parameters

P (kW) Isp(s) η m0 (kg) T/(m0g0)

5 3300 0.65 450 4.55 · 10−5

The initial date is set for 1 January 2008 for all the simu-
lations, which are performed using a Intel Core i7 (2,5GHz).
Also, the resulting large scale NLP have been solved using the
Interior-point method IPOPT [37]. Note that all the solutions
presented in this section have to be regarded as local optimal
solutions, as no global search is done.

5.1. Pareto Front

Several minimum-fuel optimal control problem are solved for
different fixed time of flights. Propellant masses and transfer
times for all the cases are presented in Table 3 and in Fig. 3,
where it is indicated that the fuel consumption decrease with
the increasing of the transfer times. However, the propellant
masses decreasing rates become smaller as the transfer times
become longer, e.g. increasing transfer times from 75 to 100
days save about 22.5% of propellant mass, whereas and in-
crement from 100 to 200 days saves only 4%.

Table 3. Propellant masses vs transfer times

Transfer Time (days)

66.7 75 100 120 150 200

Propellant mass (Kg)

36.50 31.27 28.29 27.58 27.27 27.13

Note that two limiting values can be highlighted in Fig. 3.
On the one hand, no feasible solutions exist for shorter trans-
fer times than 66.7 days, which corresponds to the minimum-
time solution, which means continuos thrusting during sun-
light.

On the other hand, there is a minimum propellant mass
required for the transfer. As the time of flight increases, the
duration of the burn arcs is reduced. When transfer times are
considerably long, the duration of the burn arcs will be negli-
gible and the less possible propellant will be consumed. Thus,
this transfer can be modeled as an impulsive maneuver but
considering the Isp of the IT. This maneuver consists on the
combined maneuver to change velocity and the orbit plane in
one impulse. The required ∆V can be obtained as

∆V =
√
V 2
A + V 2

F − 2VAVs cos(∆i) (29)

where VA is the velocity in the Apogee of the GTO, VF the
velocity in GEO and ∆i refers to the required inclination
change. Given the rocket equation

mf,min = m0e
−∆V/(g0Isp) (30)

the fuel consumption mf,min

mf,min = 24.4kg (31)

The time histories of the classical orbital elements, i.e. the
semimajor-axis, eccentricity and inclination for 75, 100, 120,
150 days are plotted in Figs. 4,5 and 6 respectively. Addi-
tionally, the 3 dimensional trajectory for 150 days is shown
in Fig. 8, where blue, red and black arcs correspond to burn,
coast and shadow arcs respectively. Note the importance of
taking coast into account, as it covers most of the trajectory.

5.2. Performance analysis

The algorithm should be robust and efficient. Robust means
that it should be numerically stable. Efficient means that
the algorithm should render accurate results with low time-
consumption. For the sake of brevity, only the results for 150
days will be shown.

On the one hand, numerical stability for Direct Transcrip-
tion or Collocation Methods for solving Optimal Control
Problems, implies that the discrete solution should approach
the continuos one, as the grid becomes finer. In other words,
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stability ensures that the problem is well-posed. As a con-
sequence, a deep analysis of the solution is performed for
different grid sizes, i.e. for different ∆φ̄.

The computational performance of the optimization algo-
rithm for 9 different grid sizes are shown in Table 4. The
number of variables and constraints illustrates the size of the
problem. In Fig. 7 it can be seen that, as the grid becomes
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Fig. 6. Time histories of inclination for GTO-GEO transfers

finer, the better the objective value but the higher the com-
putational cost, as the size of the problem increases. As an
illustration, to obtain a reduction of 0.94% in the objective,
the number of variables is increased by 7 and the computa-
tional time is 20 times higher.

The parameter Obj%,k shown in Fig. 7 measures the dif-
ference between the objective and best objective obtained.

Obj%,k = 100
Objk=9 −Objk

Objk=9
for k = 1...9 (32)
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Fig. 7. Performances of the Algorithm for 150 days

5.3. Stability Analysis

Whereas we have completely determined the switch-on/off
instants at shadow terminators, which are provided by the op-
timal solutions for Lk,1, it is not for the switch-on/off instants
during sunlight, due to the discretization scheme. As an ex-
ample, let suppose that wk,2 = 0 and wk,3 = 1 as it is il-
lustrated in Fig. 10(a). Thus, the optimal switching could be
located at any location within the interval [Lk,2 ,Lk,3], whose
amplitude is equal to ∆φk. In Figure ?? it can be appreci-
ated the accuracy in the determination of the control law as a
function of the grid sizes used in this example.



Table 4. Performances of the Algorithm for 150 days

k ∆φ̄(rad) Obj.(kg) Iter. Variables Constraints CPU time(s) εmin εmax ε3body

1 0,8690 27,4910 176 19829 15971 188,03 0,1584 0,6028 0,6131
2 0,5085 27,3059 223 33885 26730 413,27 0,0710 0,3244 0,3359
3 0,3599 27,2787 231 47873 37445 601,58 0,0525 0,2211 0,2323
4 0,2792 27,2729 257 61928 48212 875,37 0.0409 0,1708 0,1821
5 0,2280 27,2492 346 75919 58924 1442,36 0,0316 0,1285 0,1549
6 0,1924 27.2414 364 89900 69632 1798,44 0,0311 0,1003 0,1282
7 0,1665 27,2399 345 103860 80319 1974,34 0,0268 0,0857 0,1127
8 0,1466 27,2350 372 117972 91134 2384,36 0,0241 0,0857 0,0992
9 0,1185 27,2322 526 145956 112563 4276,58 0,0201 0,0704 0,0824

Fig. 8. GTO-GEO transfer trajectory for 150 days
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Fig. 9. Control modes as a function of the node spacing

Our goal is to measure the effect of this indetermination
and thus to prove the suitability and applicability of the opti-
mal control law proposed. Thus, we use the precise numerical
integration, in particular a Runge-Kutta 7(8), to simulate the

transfer trajectories following the obtained control law. We
characterize this suitability by a minimum and a maximum
error , which are εmin and εmax respectively. The error is de-
fined as the difference between the integrated final conditions
and the target ones in terms of the classical orbital elements.

ε =

∣∣∣∣a(tf )− a∗(tf )

a∗(tf )

∣∣∣∣+

∣∣∣∣e(tf )− e∗(tf )

∣∣∣∣+

∣∣∣∣i(tf )− i∗(tf )

∣∣∣∣
(33)

The minimum values of the error are found when the
switch is performed at the midpoint of the interval (Fig.
10(b)), whereas the maximum one is located when the switch-
ing instants are located at the edges of the interval (Fig. 10(c)
and Fig. 10(d)). As it is expected, the finer the grid is,
the lower the error, as well as the difference between the
maximum and the minimum ( Fig.11). However, a finer
grid implies a larger size of the problem and thus a higher
computational cost.

In addition, a propagation considering 3rd perturbations is
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Fig. 10. Definition of the switching instants

done, including both, the moon and sun influence. As a result,
we obtain that the deviations ε3bodythat we obtain from the
discretization of the control, are of the order of those obtain
when they are not included. Thus, is reasonable not to include
these perturbation in our model. However the same analysis
should be carried out considering other perturbations.
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Fig. 11. Deviations from the targeting conditions

6. SUMMARY AND CONCLUSIONS

A sequential scheme have been presented for constructing op-
timal low-thrust orbit transfer that addresses the impact of
eclipse regions, including also the coasting mechanism during
sunlight. The approach is illustrated by computing different
minimum-fuel transfers to a Geosynchronous orbit for differ-
ent Time of flights, obtaining the set of solutions that define

the Pareto Front. Moreover, the stability of the algorithm is
assed by testing each case for different grid sizes.

The precise numerical integration is used to simulate the
transfer trajectories following the obtained control law, using
both, the same dynamical model and including third-body
perturbations. The results obtained by the Nonlinear Pro-
gramming solver and by the integration differs from each
other, as a result of the control discretization. In order to in-
crease the matching between the solutions, a finer grid should
be used. In addition, the error could be minimize by setting
the switching instants between modes at the midpoint of the
interval between the nodes where they are defined.

Future work will explore its application to a more com-
plex scenario such as a LEO-GEO case.We will also analyze
the suitability of the method including a dynamical model of
higher fidelity.

The ultimate goal of this tool is to enhance flexibility ac-
cording to detail-level requirements, to improve robustness
and to head for automation in optimizing low-thrust transfer
trajectories.
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