

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

Computer Graphics for Space Debris

Piyush M. Mehta¹, Gonzalo Blanco Arnao², Davide Bonetti², Edmondo Minisci¹, Massimiliano Vasile¹

¹University of Strathclyde ²

²Deimos Space S.L.U

6th International Conference on Astrodynamics Tools and Techniques (ICATT) 14-17 March 2016

Outline		

- \checkmark Introduction
- $\checkmark~$ Methodology
- $\checkmark~$ Test Cases
- $\checkmark~{\rm Results}$
- $\checkmark\,$ Conclusions and Future Work

Introduction $\bullet 000$		
N <i>T</i> 1 • 1 •		

Motivation

- $\checkmark\,$ Re-entering objects post a risk on ground through:
 - \star Direct impact
 - $\star~$ Radioactivity
 - * Chemical (e.g unused hydrazine)
- $\checkmark\,$ Re-entering objects will rise due to increased space activity
- $\checkmark\,$ End-of-life analysis model re-entry and determines the risk on the ground
 - $\star\,$ Compliance with NASA and ESA regulations for future missions

Artist's impression of satellite re-entry

Introduction $0 \bullet 00$			
Motivation	1		

- \checkmark Atmospheric re-entry is complicated by the large uncertainties in the trajectory of an object as it re-enters.
- \checkmark The involved uncertainties require a probabilistic approach
 - * Probabilistic analysis is accurate but expensive
 - Accurate but quick estimation of the aerodynamics and \star aerothermodynamics is necessary for such analysis

Introduction 0000		Conclusions/Future Work o

Problem Description

- ✓ Goal: To develop a tool for quick and accurate estimation of aerodynamic and aerothermodynamics for re-entry of debris objects.
- $\checkmark\,$ Existing re-entry tools can be classified as either object-oriented or spacecraft oriented
 - $\star\,$ Both use primitive shapes such as sphere, boxes, cylinder, and cones to create complex geometries

Introduction		Conclusions/Future Work
0000		

Problem Description

- $\checkmark\,$ Object-oriented tools assume total break-up at a certain altitude
 - $\star\,$ Break-up altitude is either pre-defined or is condition based
 - $\star\,$ Primitives are tracked individually and combinations of primitives are not modeled
- $\checkmark\,$ Shading and visibility analysis is required for aerodynamic and aerothermodynamic computations

Monte Carlo analysis performed with the DEBRIS suite

	Visibility Analysis •000		
Mesh-based			
Ray Trace	r		

- $\checkmark\,$ The standard choice of tool for visibility analysis is the Ray-Tracer
 - $\star~$ Computationally expensive
 - $\star\,$ Highly dependent on mesh resolution
- $\checkmark~$ True C_D values for calculating errors are computed using standard ray-tracer
 - $\star\,$ Analytical model for aerodynamics and aerother modynamics are applied to visible triangles

	Visibility Analysis o●○○		Conclusions/Future Work o
Mesh-based			
Pixelator			

- $\checkmark\,$ The method uses 2D pixel data to determine visible part of the object
 - $\star\,$ Assign randomly generated unique colors in the RGB spectrum to each triangular facet
 - $\star\,$ Take screen-shot to obtain c.data
 - $\star\,$ Triangles with colors in c.data are visible
- $\checkmark\,$ Limited by number of unique colors in RGB spectrum
- $\checkmark\,$ Implemented in MATLAB, takes only a fraction of a second
 - $\star\,$ Standard ray-tracer in C language takes between 1-2 seconds

	Visibility Analysis ○○●○		
Voxel-based			
Voxelator			

- $\checkmark\,$ A novel method for visibility analysis (based on Voxelization) has been developed
- $\checkmark\,$ Voxelization is derived from state-of-the-art computer graphics methods
 - $\star~$ Voxels are 3D equivalent of pixels in 2D images
- $\checkmark\,$ Voxelization avoids the complex process of mesh generation

	Visibility Analysis ○○0●		Conclusions/Future Work o
Voxel-based			
Voxelator			

- $\checkmark\,$ Voxelized primitives are used to create complex shapes
 - $\star\,$ Primitives currently modeled are a sphere, a box, a cylinder, and a cone
- $\checkmark\,$ The tool computes visibility factors for each primitive
 - $\star\,$ Visibility factor is defined as the fraction of an object visible based on the projected area

$$\star C_{D_{total}} = \sum_{i=1}^{N} V_i C_{D_i}$$

- $\checkmark\,$ Assumptions include:
 - $\star~$ random tumbling
 - $\star\,$ pre-computed aerodynamic and aerothermodynamic databases for primitives

Flow Direction along +ve X: left to right

	Test Cases	Conclusions/Future Work
	00	

Generic Spacecraft

Flow Direction along -ve X: right to left

12/17

	Results	Conclusions/Future Work
	0000	

Upper Stage: Visibility Factors

- $\checkmark\,$ Contour map of the visibility factors for 6 primitives as a function of attitude
- $\checkmark\,$ Figure titles represents the primitive and its location

	Results 0●00	Conclusions/Future Work o

Upper Stage: C_D Error

 $\checkmark~C_D$ computed with standard ray-tracer are assumed to be 'true' values

Mean Error: 3.47%

	Results 00●0	

Generic Spacecraft: Visibility Factors

	Results	Conclusions/Future Work
	0000	

Generic Spacecraft: C_D Error

Mean Error: 4.96%

		Conclusions/Future Work
		•

Conclusions and Future Work

$\checkmark\,$ Conclusions:

- * A new tool based on voxelization has been developed for quick estimation of aerodynamic and aerothermodynamic properties during re-entry
- $\star~$ The mean error in the computed total C_D is less than 5%
- $\checkmark~$ Future Work
 - $\star~$ Addition of more primitive shapes
 - * Porting over to a faster language such as C/C++. Expected improvement in computational time is between 1-2 orders of magnitude
 - $\star\,$ Develop the databases for the primitives used. The error in this case will also depend on the interpolation technique used

