Low Thrust Trajectory Optimization for Autonomous Asteroid Rendezvous Missions

Anne Schattel, Mitja Echim, Matthias Knauer, Christof Büskens
Optimization and Optimal Control, University of Bremen

6th International Conference on Astrodynamics Tools and Techniques
2016-03-17
Challenges of Trajectory Optimization for Deep Space Missions

- Huge time scales
- Small control variables (low thrust)
- Scaling issues (e.g. Newton vs. AU)

➢ Highly precise and robust optimization method necessary
Outline

• Challenges of Trajectory Optimization for Deep Space Missions
• Mathematical Background
• Numerical Results
 – Electrically powered (continuous) propulsion system
 – Comparism to chemical (impulsive) thrusters
• Summary and Outlook
Optimal Control Problem (OCP)

How do thrust and attitude have to be controlled to get the system fast and with low fuel consumption from a start point to an orbit without overloading?
Optimal Control Problem (OCP)

\[
\min_{u(t)} \quad \int_0^{t_f} g(x(t), u(t)) \, dt
\]

s.t. \quad \dot{x}(t) = f(x(t), u(t))

\quad x(0) = x_0

\quad \Psi(x(t_f)) = 0

\quad C(x(t), u(t)) \leq 0
Non-linear Optimization Problem (NLP)

- **OCP** → transcription techniques (direct approach) → **NLP**

\[
\begin{align*}
\min_z & \quad F(z) \\
\text{s.t.} & \quad G_i(z) = 0, \quad i = 1, \ldots, M_e \\
& \quad G_i(z) \leq 0, \quad i = M_e + 1, \ldots, M
\end{align*}
\]

- Transcription: full discretization of states and controls
WORHP

- “We Optimize Really Huge Problems”
- Finite-dimensional non-linear optimization software
- Combining SQP and IP methods
WORHP

- “We Optimize Really Huge Problems”
- Finite-dimensional non-linear optimization software
- Combining SQP and IP methods
 - Efficient derivative approximation
 - Considers sparsity of derivative matrices
 - Especially efficient for solving high-dimensional problems like those resulting from discretization of OCPs

- Software library TransWORHP used for transcription
Problem Formulation

Dynamic system:

\[
\dot{x} := \begin{pmatrix}
\dot{p}_{sc} \\
\ddot{p}_{sc} \\
\dot{m}_{sc}
\end{pmatrix} = \left(\sum_{i \in I} \mu_i \cdot \frac{\dot{p}_{sc}}{r_i^3} + \frac{T}{m_{sc}} \right)
\]

- \(p_{sc} \) - position vector of spacecraft
- \(\mu_i, i \in \{sun, mars, jupiter, saturn\} \) - gravitational constant of celestial body
- \(r_i \) - direction vector between spacecraft and body
- \(T \) - thrust vector
- \(m_{sc} \) - spacecraft ‘s recent mass
Impulsive Thrust Optimization

- Thrust: constant control over certain period of time
- Three thrust commands
- Two non-thrust phases in between
- Connecting conditions
Objective Function

- Impulsive thrust: $$F = t_f w - m_f (1 - w), w \in [0, 1]$$
- Low thrust: $$F = t_f w + x_{n,7} (1 - w), w \in [0, 1]$$

- Optimization criterions for competitive mission objectives
 - Flight time
 - Energy consumption

- Spacecraft data
 - Impulsive: ISP 318 sec, max. thrust 440 N, min. thrust 340 N
 - Low thrust: ISP 4000 sec, max. thrust 0.154 N
Low Thrust

![Graphs showing parking orbit, asteroid orbit, and optimal trajectory for two different values of w: 0.2 and 0.8. The graphs depict three-dimensional space with axes x, y, and z in AU.]
Impulsive Thrust

- Parking orbit
- Asteroid orbit
- Optimal trajectory ($w = 0.2$)

- Parking orbit
- Asteroid orbit
- Optimal trajectory ($w = 0.8$)
Low vs. Impulsive Thrust
Low vs. Impulsive Thrust

<table>
<thead>
<tr>
<th>Thrust</th>
<th>low</th>
<th>impulsive</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (d)</td>
<td>1289</td>
<td>308</td>
</tr>
<tr>
<td>Fuel (kg)</td>
<td>149</td>
<td>936</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w</th>
<th>0.8</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (d)</td>
<td>840</td>
<td>88</td>
</tr>
<tr>
<td>Fuel (kg)</td>
<td>214</td>
<td>1431</td>
</tr>
</tbody>
</table>
Planets Influence

- Parking orbit
- Asteroid orbit
- Optimal trajectory with planets
- Optimal trajectory without planets
Planets Influence

<table>
<thead>
<tr>
<th>Planets</th>
<th>Thrust</th>
<th>low</th>
<th>impulsive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/</td>
<td>w/o</td>
<td>w/</td>
</tr>
<tr>
<td>Time (d)</td>
<td>1289.23</td>
<td>1319.47</td>
<td>307.53</td>
</tr>
<tr>
<td>Fuel (kg)</td>
<td>148.66</td>
<td>147.38</td>
<td>935.88</td>
</tr>
</tbody>
</table>
Summary and Outlook

• Optimization provides very different trajectories dependent on thrust type and mission objective
• Foundation for autonomous decision making during deep space missions
• Applications like deep sea navigation or autonomous driving
Summary and Outlook

- Optimization provides very different trajectories dependent on thrust type and mission objective
- Foundation for autonomous decision making during deep space missions
- Applications like deep sea navigation or autonomous driving

- Perturbation and parametric sensitivity analysis
- Real-time optimal control
- Multi-node techniques using high-order integration methods
Discussion

Low Thrust Trajectory Optimization for Autonomous Asteroid Rendezvous Missions

Anne Schattel, Optimization and Optimal Control
Center for Industrial Mathematics (ZeTeM), University of Bremen, 28359 Bremen, Germany
phone: +49-(0)421-218-63867, e-mail: ascha@math.uni-bremen.de