

Low Thrust Trajectory Optimization for Autonomous Asteroid Rendezvous Missions

Anne Schattel, Mitja Echim, Matthias Knauer, Christof Büskens Optimization and Optimal Control, University of Bremen

> 6th International Conference on Astrodynamics Tools and Techniques

> > 2016-03-17

Challenges of Trajectory Optimization for Deep Space Missions

- Huge time scales
- Small control variables (low thrust)
- Scaling issues (e.g. Newton vs. AU)
- Highly precise and robust optimization method necessary

Outline

- Challenges of Trajectory Optimization for Deep Space Missions \bullet
- Mathematical Background
- Numerical Results
 - Electrically powered (continuous) propulsion system
 - Comparism to chemical (impulsive) thrusters
- Summary and Outlook

Optimal Control Problem (OCP)

How do thrust and attitude have to be controlled to get the **system fast** and with **low fuel** consumption from a start point to an orbit without **overloading**?

Optimal Control Problem (OCP)

$$\min_{u(t)} \int_0^{t_f} g(x(t), u(t)) dt$$

s.t. $\dot{x}(t) = f(x(t), u(t))$
 $x(0) = x_0$
 $\Psi(x(t_f)) = 0$
 $C(x(t), u(t)) \le 0$

Non-linear Optimization Problem (NLP)

• **OCP** \rightarrow transcription techniques (direct approach) \rightarrow **NLP**

$$\min_{z} \quad F(z) \\ s.t. \quad G_{i}(z) = 0, \ i = 1, ..., M_{e} \\ \quad G_{i}(z) \leq 0, \ i = M_{e} + 1, ..., M$$

• Transcription: full discretization of states and controls

WORHP

- "We Optimize Really Huge Problems"
- Finite-dimensional non-linear optimization software
- Combining SQP and IP methods

WORHP

- "We Optimize Really Huge Problems"
- Finite-dimensional non-linear optimization software
- Combining SQP and IP methods
- Efficient derivative approximation

rsität Bremen*

- Considers sparsity of derivative matrices
- Especially efficient for solving high-dimensional problems like those resulting from discretization of OCPs
- Software library TransWORHP used for transcription

Problem Formulation

Dynamic system:

$$\dot{x} := \begin{pmatrix} \dot{p}_{sc} \\ \ddot{p}_{sc} \\ \dot{m}_{sc} \end{pmatrix} = \begin{pmatrix} \dot{p}_{sc} \\ \sum_{i \in I} \mu_i \cdot \frac{r_i}{\|r_i\|_2^3} + \frac{T}{m_{sc}} \\ -\frac{\|T\|}{g_0 I s p} \end{pmatrix}$$

 P_{sc} position vector of spacecraft
 $\mu_i, i \in \{sun, mars, jupiter, saturn\}$ position vector of spacecraft
 r_i gravitational constant of celestial body
 r_i direction vector between spacecraft and body
T thrust vector
 m_{sc} spacecraft 's recent mass

Impulsive Thrust Optimization

- Thrust: constant control over certain period of time
- Three thrust commands
- Two non-thrust phases in between
- **Connecting conditions**

Center for Industrial

Objective Function

- $F = t_f w m_f (1 w), w \in [0, 1]$ Impulsive thrust:
- $F = t_f w + x_{n.7} (1 w), w \in [0,1]$ Low thrust:
- Optimization criterions for competitive mission objectives
 - Flight time
 - Energy consumption
- Spacecraft data
 - Impulsive: ISP 318 sec, max. thrust 440 N, min. thrust 340 N
 - Low thrust: ISP 4000 sec, max. thrust 0.154 N

Low Thrust

Impulsive Thrust

Low vs. Impulsive Thrust

Low vs. Impulsive Thrust

Thurst	low		impulsive	
W	0.2	0.8	0.2	0.8
Time (d)	1289	840	308	88
Fuel (kg)	149	214	936	1431

Planets Influence

Planets Influence

Thurst	low		impulsive	
Planets	w/	w/o	w/	w/o
Time (d)	1289.23	1319.47	307.53	307.43
Fuel (kg)	148.66	147.38	935.88	936.63

Summary and Outlook

- Optimization provides very different trajectories dependent on thrust type and mission objective
- Foundation for autonomous decision making during deep space missions
- Applications like deep sea navigation or autonomous driving

Summary and Outlook

- Optimization provides very different trajectories dependent on thrust type and mission objective
- Foundation for autonomous decision making during deep space missions
- Applications like deep sea navigation or autonomous driving
- Perturbance and parametric sensitivity analysis
- Real-time optimal control
- Multi-node techniques using high-order integration methods

Discussion

Low Thrust Trajectory Optimization for Autonomous Asteroid Rendezvous Missions

Gefördert durch:

Bundesministerium für Wirtschaft und Eneraie

aufgrund eines Beschlusses des Deutschen Bundestages

Grant no.: 50 NA 1318

Anne Schattel, Optimization and Optimal Control

Center for Industrial Mathematics (ZeTeM), University of Bremen, 28359 Bremen, Germany phone: +49-(0)421-218-63867, e-mail: ascha@math.uni-bremen.de