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ABSTRACT

The demand for deep space missions and the desire to investi-
gate small space objects like asteroids and comets is increas-
ing constantly. Such exploration missions open up the pos-
sibility to gain further scientific knowledge about the origin
of our solar system as well as to find and eventually mine
rare earth elements that are narrow on Earth or even to dis-
cover novel resources. To realize such missions, trajectory
planning and optimization are of utmost importance. When
flying further into outer space, the spatial distances become
enormously huge while fuel is very limited and signal run-
times are increasing rapidly. These conditions impose an un-
manned and autonomously working spacecraft. The math-
ematical field of optimization and optimal control provides
the foundation for autonomous decisions and facilitates more
safety and minimal resource consume. Solutions may ad-
ditionally be transferred to other, earth-bound applications
like e.g. deep sea navigation and autonomous driving with
minor additional expenses. The aspects investigated in the
present paper focus on the specific challenges of guidance and
control regarding the cruise and approach phase of a space-
craft starting in a parking orbit around the Sun and reach-
ing for an asteroid in the main belt. The underlying opti-
mal control problems are solved using so called direct meth-
ods also known as transcription techniques. Those transform
an infinite-dimensional optimal control problem (OCP) into
a finite-dimensional non-linear optimization problem (NLP)
via discretization methods. The resulting high dimensional
non-linear optimization problems can be solved efficiently
by special methods like sequential quadratic programming
(SQP) or interior point methods (IP). For solving the prob-
lems introduced in this paper the NLP solver WORHP, which
stands for ’We Optimize Really Huge Problems’, is used, a
software routine combining SQP at an outer level and IP to
solve underlying quadratic sub problems. Within this paper
the transcription is performed using the robust method of full
discretization. The trajectory optimization and optimal con-
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trol problems are modeled and solved using low thrust electric
propulsion on the one hand and chemical propulsion on the
other hand for comparison. The movement of the spacecraft is
described through ordinary differential equations (ODE) con-
sidering the gravitational influences of the Sun and the plan-
ets Mars, Jupiter and Saturn as well as the different thrust
commands. Competitive mission aims like short flight times
and low energy consumption can be provided with a weight-
ing factor within the optimization process. The varying chal-
lenges of the two propulsion types are analyzed and compar-
ative solutions and results introduced. Several mission tra-
jectories are compared, optimizing with different weighting
factors for energy cost and flight time duration, in order to in-
vestigate the different possibilities of an asteroid rendezvous
mission. The results show the huge gain of trajectory opti-
mization as input for on-board autonomous decision making
during deep space missions as well as the great increase in
possibilities for flight maneuvers by providing solutions for
changing and contradictory mission objectives. Furthermore,
trajectory optimization can be used to analyze the potentials
of different propulsion systems beforehand.

Index Terms— guidance, low thrust, non-linear opti-
mization, optimal control, trajectory planning

1. INTRODUCTION

Invading deeper into space and exploring the structure of as-
teroids, which exist since the emergence of our universe, may
reveal great insight into the early history of our solar sys-
tem and help understand its formation and evolution. Addi-
tionally, finite resources on earth keep to be wasted, and the
finding of other, extraterrestrial sources for these materials or
even of new ones becomes of increasing interest. The latest
deep space explorations have shown that rare earth elements
as well as materials like iron, nickel, cobalt, methane, water,
and ammonia can be found in many asteroids [1]. In addition
to bringing goods back to earth, some of them, like water or
ice, could be converted into fuel and help expand deep space
missions or could be used as oxygen and drink water supply
for space stations, thus providing necessaries for the expan-



sion of space infrastructure. Therefore, there is a great interest
in deep space explorer missions that provide the opportunity
to obtain detailed knowledge about the composition of aster-
oids. Due to the large spatial distances and flight times, such
missions have to be performed unmanned and autonomously.

This paper describes the solution of a low thrust trajectory
optimization problem, starting at a parking orbit at 2.8 AU
around the Sun and aiming at an asteroid in the main belt. For
comparison, we formulate and solve an analogous optimiza-
tion problem regarding an impulsive thrust trajectory. In con-
trast to applications in other disciplines, long time frames and
badly scaled problems have to be considered. The system dy-
namics incorporate gravitational perturbations from the Sun
as well as the planets Mars, Jupiter, and Saturn. Further-
more, the method we present can be expanded for other sig-
nificant model forces like the gravitational influence of the
asteroid, which becomes of interest during near-asteroid op-
eration phases of a mission, without much effort. We imple-
ment high-precision methods of large sparse non-linear opti-
mization in conjunction with a transcription method using full
discretization to approximate the ordinary differential equa-
tions, providing a highly robust method. The algorithms we
present aim at the support of an autonomous optimal trajec-
tory planning scenario for a space mission, but could easily
be adapted for a wide range of non-linear dynamic systems
concerning on-earth applications like deep sea explorations
or autonomous driving.

The results we present were generated within the context
of the project “KaNaRiA” [2], which develops key technolo-
gies for the realization of a cognitive autonomous deep space
navigation on the example of an asteroid mining mission, in-
cluding the cruise phase and approach as well as the aster-
oid rendezvous, landing, and surface exploration. Here, dy-
namic decisions in complex situations are required. To verify
and test all methods, an interactive, real-time capable simula-
tion system using virtual reality for visualization and allow-
ing for various variations in mission parameter configurations
is developed. For the best of our knowledge, so fare no au-
tonomous on board planning of optimal trajectories has been
performed during a space mission. Recently, all trajectories
are preplanned from Earth.

2. MATHEMATICAL BASIS

An optimal control problem is of the form

min
x,u

F (x, u, t) := g(x(tf ), tf ) +

∫ tf

0

f0(x(t), u(t), t)dt

(1)

s.t. ẋ(t) = f(x(t), u(t), t)

x(0) = x0

Ψ(x0, x(tf )) = 0

C(x(t), u(t), t) ≤ 0.

Herein, x describes the state of the system, and f defines the
dynamic system, which can be influenced via the control u.
Further, g is a continuously differentiable, and f0 a continu-
ously and with respect to x and u continuously partial differ-
entiable function. The control u has to be chosen in such a
way that the constraints C as well as the initial and final con-
ditions Ψ are fulfilled while minimizing the objective func-
tional F . Often, optimal control problems are intended to
guide an initial state x(t0) on a trajectory into a final state
x(tf ). Both, the initial and the final state, can be left open
or be defined, which is specified by the boundary conditions
Ψ. Additionally, the state and the control of the system can
be constrained in each time point by C. A solution is called
feasible, if it fulfills the system and meets the boundary condi-
tions as well as the state constraints and if the control respects
a given range.

To solve Eq. (1), there exist two techniques, so called in-
direct and direct methods [3]. The former are based on the
evaluation of the necessary optimality conditions and gener-
ally lead to a multipoint boundary value problem that has to be
solved numerically. These methods need in-depth knowledge
of optimal control theory and therefore they are not suitable
for complex, application oriented optimal control problems.
In this work, we choose a direct approach, which is based
on the discretization of the infinite dimensional optimal con-
trol problem (Eq. (1)). For this transcription, and therefore to
solve the ODE system, in the presented algorithms we imple-
mented the robust method of full discretization. Herein, all
states and controls are calculated for a chosen number of dis-
crete time points. The resulting high-dimensional optimiza-
tion problems of the form

min
z

F (z) (2)

s.t. Gi(z) = 0, i = 1, ...,Me

Gi(z) ≤ 0, i = Me+1, ...,M

are solved by the NLP solver WORHP [4], which provides
high-precision methods of mathematical non-linear optimiza-
tion using sequential quadratic programming and interior
point methods. By using the sparsity of the derivative ma-
trices (Hessian, Jacobian, Gradient), it is especially efficient
for solving large-scale problems like those resulting from the
discretization of optimal control problems. Thus problems
with more than one billion optimization variables and two bil-
lion constraints can be solved. For the transcription, we use
the software library TransWORHP, which provides implicit
integration methods. The derivatives and derivative structures
of the defining functions can be provided by the user or be
determined automatically. As many practical problems run
in stages, TransWORHP supports the declaration and the
connection of multiple phases. This can be used to optimize
trajectories with changes in the dynamical behavior or so
called bilevel optimal control problems, where one trajectory
is optimized subject to the existence of auxiliary trajectories.



2.1. Orbit Mechanics

The fundamentals of orbit mechanics can be found in [5]. The
orbit of a celestial body in the gravity field of a central body
is defined uniquely via six independent parameters. The ec-
centricity ε and the semi-major axis a determine the orbit’s
form, the inclination i, the longitude of the ascending node
Ω, and the argument of periapsis ω define its position in space
relative to a reference system, e.g. the ecliptic, and the time-
dependent parameter mean anomaly M describes the actual
position of the body on the orbit at a specific time. Starting
with a mean anomalyM0 for a certain orbit, the position after
a time t can be calculated via

M = M0 +

√
µc

a3
· t, (3)

with µc being the gravitational constant of the central body,
and a being the semi-major axis of the orbiting body.

To model the movement of celestial bodies on their orbits,
Kepler’s equation, which is based on Kepler’s laws of plane-
tary motion, is needed, that states

M = E − ε · sinE. (4)

To solve Kepler’s equation, E ∈ [0, 2π] has to be determined
for M ∈ [0, π], ε ∈ [0, 1]. Besides Kepler’s solution, there
exists a number of ways to solve this equation, e.g. iterative
methods like Newton’s method and Halley’s method. We use
the latter, in which the root of the function

f(x) = x− ε sinx−M = 0 (5)

has to be found. This leads to the iteration

xi+1 = xi −
xi − ε sinxi −M

1− ε cosxi
. (6)

Since Kepler’s equation needs to be solved very often during
optimization, a lower number of iterations is desirable. In [6],
an initial estimation of

x0 = M +
ε sinM

1− sin(M + ε) + sinM
(7)

is given, which reduces the average number of iterations the
most and which we use for the results presented in Sect. 4.

2.2. Hohmann Transfer Orbit

There exist several ways to bring a spacecraft from one orbit
to another. The Hohmann transfer orbit [5] is a relative simple
way to calculate an orbit transfer, but it is only applicable
under strong constraints. I.e., the two orbits must be circular
and lie in the same plane, but may differ in their radius, and it
is not possible to define side constraints like the gravitational
influence of a further body. A tangential impulse is applied in
the perihelion of the first orbit, which brings the spacecraft on
an elliptical transfer orbit. With another tangential impulse in
the aphelion of the ellipse, the second orbit is reached. By
using these two thrusts, this transfer is energy minimal.

3. PROBLEM FORMULATION

In the following, we define the dynamic system and the ob-
jective function according to Sect. 2 for our concrete problem
formulation. The parking orbit, from which the spacecraft tra-
jectories start, is located within the asteroid main belt at 2.8
AU around the Sun.

The dynamic system of the optimal control problem
(Eq. (1)) describes the movement of the spacecraft due to
gravitational influences of the Sun, Mars, Jupiter, and Sat-
urn as well as the thrust commands through the ordinary
differential equations

ẋ :=

 ṗsc
p̈sc
ṁsc

 =


ṗsc∑

i∈I
µi

ri
‖ri‖32

+ T
msc

− ‖T‖g0Isp

 . (8)

In the ODE system, psc describes the position vector of the
spacecraft, µi, i ∈ {sun,mars, jupiter, saturn} the grav-
itational constant of the according celestial body, and ri the
direction vector between spacecraft and body, T = u(t) =
(u0(t) u1(t) u2(t))T defines the thrust vector, msc the space-
craft’s recent mass, Isp its specific impulse in seconds, and
g0 the gravitational constant of Earth. For stability reasons
within the optimization, we define an eighth equation

ẋ7 = ‖T‖2. (9)

We define the thrust vector T in a spacecraft fixed reference
frame. The main direction d0 of the thrust vector is diametri-
cally opposed to the main thruster and therefore corresponds
to the direction of the spacecraft’s velocity vector ṗsc. The
second direction d1 is perpendicular to the recent orbital plane
of the spacecraft, spanned by the velocity vector ṗsc and the
position vector psc, and the third direction d2 lies in the or-
bital plane, perpendicular to the first two directions:

d0 =
ṗsc
‖ṗsc‖

, d1 =

psc

‖psc‖ × d0∥∥∥ psc

‖psc‖ × d0
∥∥∥ , d2 = d0 × d1 (10)

We define the objective function as

F = wtf −mf (1− w), (11)

wherein tf is the total flight time and mf the spacecraft’s fi-
nal mass, which considers the competitive overall mission ob-
jectives to minimize the fuel consumption and flight duration
during transfer via the weighting factor w ∈ [0, 1]. Note that
the energy demand is considered in terms of fuel consump-
tion, as these two are equivalent or at least proportional for
most of the propulsion systems.

4. NUMERICAL RESULTS

At first, we define some spacecraft data and optimization fea-
tures. The spacecraft’s start mass for each transfer is 3000 kg,



its low mass 1500 kg. To calculate optimal trajectories us-
ing an electrically powered propulsion system, the Isp of the
spacecraft is set to 4000 seconds with a maximal thrust of
0.154 Newton. By contrast, for using impulsive thrust the Isp
is set to 318 seconds with a thrust magnitude limited to 340 to
440 Newton.

Within the optimization, we calculate the orbital elements
of the destination asteroid by analytically solving Kepler’s
equation (Eq. (4)). The boundary condition is to meet the po-
sition and velocity of the asteroid within a certain range suffi-
cient for a cruise phase. We provide the analytical derivatives
of the objective function, the ODE system, the constraints,
and the boundary conditions. Hereby, the numerical problems
of finite differences can be avoided, which usually produce
numerical inaccuracies that spread within the optimization
process. Since WORHP produces quadratic problems based
on the Hessian matrix of the Lagrangian function, the second
derivative is needed as well. Here, we use an estimation by
finite differences. Additionally, we give the structure of all
derivative matrices within the implementation.

As we use iterative methods, it is necessary to supply an
initial guess for the problem formulation, in this case the NLP
variables as well as the grid distribution. The quality of the
initial estimation has a big influence on the convergence ve-
locity as well as the quality of the solution. Since orbit trans-
fers are known to often have many locally optimal solutions,
the solution is strongly dependent on the initial estimation
chosen for the optimization. To give an estimate of the space-
craft’s position, velocity, and mass at each discrete time point
for low thrust trajectories is a very complex and challenging
task. Here, we use a very simple approximation by assuming
zero thrust accelerations, where the mean anomaly M̃i for the
i-th discrete time point, with i ∈ {0, ..., dis−1}, is calculated
according to Eq. (3) via

M̃i = M0 +

√
µc

a3
· i

dis− 1
· tf , (12)

where tf is the total flight time. The robustness of the full
discretization provides the advantage that this simple approx-
imation is sufficient as initial guess. For the grid of discrete
time points, we choose an equidistant distribution.

4.1. Low Thrust Trajectories

We compare solution trajectories aiming at the same asteroid
using different weighting factors w within the objective func-
tion Eq. (11). The destination is asteroid 42937 (1999 TU28)
with a = 2.737AU , ε = 0.076, i = 1.669◦, Ω = 354.562◦,
ω = 137.914◦, and M = 9.292◦.1 For the discretization
of the optimal control problem, a grid point number of 81
points is chosen. Figs. 1 to 4 illustrate four optimal trajec-
tories under low thrust using the weighting factors w = 0.2,

1Taken from the Jet Propulsion Laboratory (JPL) Small-Body Database,
URL: http://ssd.jpl.nasa.gov/sbdb.cgi.
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Fig. 1. Optimal trajectory using low thrust for weighting fac-
tor w = 0.2 according to Eq. (11), defining priority between
fuel- and time-optimality. Black dot denotes start point on
parking orbit, gray dot denotes final position of asteroid. Note
the different scaling of the z-axis for illustration purposes.
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Fig. 2. Optimal trajectory using low thrust with weighting
factor w = 0.4 according to Eq. (11). (Detailed description
see Fig. 1.)

w = 0.4, w = 0.6, andw = 0.8, which increase the weight of
time-optimality while decreasing that of fuel-optimality. We
observe that the total mission duration is reduced constantly,
while there is a faster change in the inclination i of the solu-
tion trajectory. The latter causes a higher fuel consumption,
while ensuring a more rapid adoption of the asteroid’s orbital
course. In Tab. (1), the results for the four different weighting
factors w are compared in values. It can easily be seen that
the flight time is reduced constantly, while the fuel consump-
tion is constantly increased. On the whole, changing w from
0.2 to 0.8, the flight time decreases from 1289 to 840 days, a
reduction of 449 days or 34,8%, while the fuel that is needed
increases from 149 to 214 kg, an increment of 65 kg or 43.6%.



−2
0

2

−2
0

2

−5

0

5

·10−2

x [AU]y [AU]

z
[A

U]
Parking orbit
Asteroid orbit
Optimal trajectory (w = 0.6)

Fig. 3. Optimal trajectory using low thrust with weighting
factor w = 0.6 according to Eq. (11). (Detailed description
see Fig. 1.)
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Fig. 4. Optimal trajectory using low thrust with weighting
factor w = 0.8 according to Eq. (11). (Detailed description
see Fig. 1.)

Table 1. Comparison of flight time in days and fuel consump-
tion in kg using low thrust for different weighting factors w
according to Eq. (11) (see Figs. 1 – 4).

w 0.2 0.4 0.6 0.8
flight time (d) 1289 981 883 840
fuel consumption (kg) 149 173 193 214

4.2. Comparison to Impulsive Thrust Trajectories

In accordance to the restrictions of a Hohmann transfer orbit
described in Sect. 2.2, we developed an application-adapted
model for impulsive thrust optimization. This implementa-
tion allows for a transfer calculation between elliptical or-
bits with deviating inclinations while considering further in-
fluences like the gravitational influences of the planets Mars,
Jupiter, and Saturn. To integrate the discrete instantaneous
impulsive thrust commands in the continuous problem for-
mulation more appropriately, we model an impulsive thrust
command as continuous but constant in relation to the space-
craft fixed reference frame (Eq. (10)) over a certain period of
time. For a cruise phase, a maximum of three impulsive thrust
commands may be applied, one at the beginning of a transfer
trajectory, one at the end and one at an optimized time point
in between. If a command is not needed to achieve an opti-
mal solution, the time frame of the respective phase is set to
zero during optimization. The three commands are sufficient
regarding the long time frame of the flight without greater
perturbation forces. Additionally, it takes longer to perform a
multiple burn transfer [7]. The first thrust control is restricted
by boundary conditions, i.e., the initial state of the spacecraft,
the last one is restricted by the final conditions. The second
thrust control has no further constraints and therefore allows
for enough freedom in thrusting. The phases have to be con-
nected by additional constraints at the phase boundaries to en-
sure continuity in the state across the phase boundaries. For
each of these phases the system’s dynamics are applied.

Again, we compare four solution trajectories, aiming at
the same asteroid and using the same weighting factors w as
defined in Sect. 4.1. For the discretization of the optimal con-
trol problem, a grid point number of 5 times 21 equidistant
points was chosen. The solutions can be seen in Figs. 5 to 8
and Tab. (2). While we increase the weighting factor w from
0.2 over 0.4 and 0.6 to 0.8, the length of the trajectory is again
reduced constantly due to a faster change in the inclination i,
leading to a higher consumption of fuel. With 936 kg of fuel
and a total flight time of 308 days, the trajectory regarding the
weighting factor w = 0.2 needs 495 kg or 52.9% of fuel less
but 220 days or 71.4% longer than the trajectory for w = 0.8.

When we now look at Figs. 1 to 4 compared against
Figs. 5 to 8, the most obvious difference is the much longer
transfer duration using low thrust. On the other hand, when
we compare Tab. (1) to Tab. (2), it is immediately noticeable
that the low thrust trajectories need fare less fuel and therefore
mass, the most valuable and expensive good in deep space.
In this example, the mostly time optimal low thrust trajectory
(w = 0.8) needs 752 days longer, but whole 1217 kg less fuel,
while the mostly energy optimal trajectory (w = 0.2) using
impulsive thrust still needs 787 kg of fuel more than using
low thrust. It has to be taken into account that by optimizing
the start point of the spacecraft on the orbit, the long time
frames using low thrust may be reduced.
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Fig. 6. Optimal trajectory using impulsive thrust with weight-
ing factor w = 0.4 according to Eq. (11). (Detailed descrip-
tion see Fig. 5.)
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Fig. 7. Optimal trajectory using impulsive thrust with weight-
ing factor w = 0.6 according to Eq. (11). (Detailed descrip-
tion see Fig. 5.)
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Fig. 8. Optimal trajectory using impulsive thrust with weight-
ing factor w = 0.8 according to Eq. (11). (Detailed descrip-
tion see Fig. 5.)

Table 2. Comparison of flight time in days and fuel consump-
tion in kg using impulsive thrust for different weighting fac-
tors w according to Eq. (11) (see Figs. 5 – 8).

w 0.2 0.4 0.6 0.8
flight time (d) 308 181 125 88
fuel consumption (kg) 936 1070 1207 1431

4.3. Planets’ Gravitational Influence on Transfer Trajec-
tories

Since our trajectory optimization approach provides the
means to consider the gravitational influence of planets, we
analyze its impact on the previously calculated optimal trans-
fer trajectories using low thrust as well as impulsive thrust.
The planets Mars, Jupiter, and Saturn are considered due
to their distance-related relevance. The results presented in
Figs. 9 and 10 and Tab. (3) show first and foremost that their
gravitational influence has a relatively strong impact on the
low thrust trajectory, for which in fact only 1.28 kg more fuel
are needed, but which duration is shortened by 30.24 days. In
contrast, the impact on the impulsive thrust trajectory only
resides in a saving of 0.75 kg of fuel and a gain of 0.1 days
of flight time. These results are owed to the total transfer

Table 3. Planets’ gravitational influence on flight time in days
and fuel consumption in kg for low and impulsive thrust (see
Figs. 9 – 10).

flight time (d) fuel cons. (kg)
low thrust w/ planets 1289.23 148.66
low thrust w/o planets 1319.47 147.38
impulsive w/ planets 307.53 935.88
impulsive w/o planets 307.43 936.63
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Fig. 10. Influence of planets’ gravitation (Mars, Jupiter,
Saturn) on optimization results using impulsive thrust with
w = 0.2 according to Eq. (11). (Detailed description see
Fig. 9.)

duration. For low thrust trajectories, which take relatively
long to perform, the planets’ gravitational influence makes
a difference, whereas it is not that relevant for the relatively
short flight times of impulsive transfer trajectories.

5. CONCLUSION

In this paper, we presented an optimization approach for low
thrust long-distance trajectories. Additionally, we formulated
the corresponding optimization problem for impulsive thrust
trajectories. Each problem formulation allows for any desired
weighting between the mission objectives minimizing the
flight time and energy consumption and is able to consider ad-
ditional conditions like the gravitational influence of planets.
First, the solution trajectories for both thrust types showed
strong differences according to the chosen objective priori-
ties. This makes it possible to save significant mission time or
fuel according to the mission’s needs and allows for various
and considerably different decisions within an autonomously
working spacecraft system during deep space missions. Si-
multaneously, different and even opposite mission objectives
can be considered. Secondly, the trajectory analysis showed
the major advantage of using low thrust engines in contrast
to impulsive ones for deep space missions. The enormous
reduction of fuel demand and therefore payload mass to per-
form a mission on the one hand crucially reduces its cost,
while on the other hand it raises the capabilities for long term
space missions. Furthermore, the algorithms we developed
may be adapted for earth-bound applications like deep sea
navigation or autonomous driving with minor expenses.
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