
WORHP MULTI-CORE INTERFACE,
PARALLELISATION APPROACHES FOR AN NLP SOLVER

Sören Geffken, Christof Büskens

Universität Bremen, Bremen, Germany

ABSTRACT

The goal of this paper is to present current research activities
aiming at improved efficiency and stability within the ESA
NLP-Solver WORHP. It is designed to solve high dimen-
sional sparse non-linear optimisation problems.
The underlying SQP method is inherently sequential, there-
fore parallelism cannot be exploited straightforwardly.
In order to obtain the best solver performance the parameter
configuration should be adapted accordingly for every prob-
lem itself. An approach running several solver instances using
different parameter sets in parallel has been developed and
proven highly beneficial on a given set of problems. The First-
Across-The-Line approach stops all instances when the first
local optimum has been found, thus improving the solver’s
speed and stability as well. Furthermore, the approach allows
the user to experiment with specialised algorithms within the
optimisation as the threads using basic parameter settings
serve as safeguards guaranteeing the solver to converge as
usual.
In order to improve the solver’s efficiency for one special
problem, the new operational mode can be used to automat-
ically attune the solver’s parameters accordingly. Again the
solver is started with several instances at once, but this time
the Best-Of-All mode is used in order to obtain the best local
optimum and the corresponding parameter settings. Addi-
tionally, the mode enables users to perform parameter sweeps
to further improve the solver’s configuration.
The results presented show the improvement of the solver’s
performance on the state-of-the-art CUTEst test set that has
been solved faster and with more optimal solutions found
compared to the traditional single-core approach. The param-
eter attunement is applied to specific single problems from
the test set as well.

Index Terms— Non-linear Programming, Sequential-
Quadratic-Programming, NLP solver

1. INTRODUCTION

The numerical solution of non-linear optimisation problems is
a crucial technology for many engineering tasks like parame-
ter identification or optimal control problems. Therefore, the
efficiency of the used methods to solve such problems is sub-

stantial for those research fields. The mathematical theory
of these problems is being researched for several years and
different methods like sequential quadratic programming and
interior-point methods have been developed to solve them. As
those methods are based on Newton’s method, they are inher-
ently sequential and offer only limited possibilities to exploit
parallelism. In this paper we present an approach to bene-
fit from multi-core processors as those are available in nearly
every computer today. We use the NLP-solver WORHP, that
has been developed for some years and offers a multitude of
specialisations of the basic SQP algorithm. The parallelism
is used to run several algorithm specialisations in parallel and
take benefit from the multi-core processors. Different appli-
cation scenarios for the multi-core interface aiming at speed
improvements, increased robustness or user comfort are pre-
sented.
This paper is organised as follows. In Section 2 the funda-
mental mathematical theory for non-linear programming is
briefly presented. Section 3 describes the technical details
such as thread management and class hierarchy of the imple-
mentation. The different application scenarios and the corre-
sponding operational modes are presented in Section 4. Nu-
merical results using the new interface to the state-of-the-art
CUTEst test set for non-linear optimisation are shown in Sec-
tion 5.

2. FUNDAMENTALS

Let x ∈ RNx be the vector of optimisation variables and
f : RNx → R denote the objective function,
g : RNx → RNg denote general non-linear inequality con-
straints and h : RNx → RNh general non-linear equality
constraints. Furthermore, let f and g be twice continuously
differentiable. Then

min
x∈RNx

f(x)

subject to g(x) ≤ 0

h(x) = 0

(1)

is called a non-linear program. The goal of non-linear opti-
misation is to find a local minimum and corresponding La-
grangian multipliers (x∗, λ∗) such that first and second order
conditions are fulfilled.

The NLP solver WORHP [1] is designed to solve such prob-
lems even with possibly huge problem dimensions. In order
to handle problems with up to 107 optimisation variables and
up to 109 different general constraints the sparsity structure
of the derivatives must be taken into account.
Within the solver we apply a sequential quadratic program-
ming algorithm (SQP). The basic principle is to approximate
the non-linear problem by a series of quadratic subproblems
of the form

min
d∈RNx

1
2d
>∇2

xxL(x
[k], λ[k], µ[k])d+∇xf(x

[k])>d

unter g(x[k]) +∇xg(x
[k])>d ≤ 0

h(x[k]) +∇xh(x
[k])>d = 0

that are solved using an interior point method based on
Mehrotra’s predictor corrector method for linear program-
ming [2]. The Hessian of the Lagrangian L(x[k], λ[k], µ[k])
can be given analytically, computed by finite differences or
composed either using classic or sparse BFGS algorithms.
Specialised sparsity exploiting algorithms are applied to solve
these subproblems and especially the resulting linear equa-
tion systems are handled efficiently.
The optimal solutions d[k] of those subproblems are used as
search directions in order to generate a converging sequence
of points x[k], k = 0, 1, 2, ... towards a local minimum of
problem (1). The search direction d[k] in the k-th iteration is
used by the solver within its linesearch module to obtain the
next iterate by application of the formula

x[k+1] = x[k] + α[k]d[k].

The linesearch module offers different evaluation strategies
for the computed search directions. Merit function as well
as filter based approaches are implemented within the solver
and can be chosen by the user.
In Figure 2 a schematic overview of an NLP solver using
sequential quadratic programming is given. The main steps
within the algorithm are shown. Within the loop visible in
the figure users are able to control multiple aspects of the
algorithms used within WORHP. These parameters control
different derivative computation methods, variations of the
used linesearch algorithm, special features like feasibility
refinement, the configuration of the integrated solver for
quadratic programs or a great number of floating point pa-
rameters. Thus, the user is able to highly customise the solver
to his special needs.
Unfortunately, most of these parameters require a detailed
knowledge of the implementation and are mostly used with
their default values, thus denying the users to take benefit.
The WORHP Multi-Core Interface presented in this paper
allows the user to test and even heuristically identify those
solver parameters for his special problem.

Check
termination

Solve quadratic
subproblem

Perform
linesearch

Calculate
derivatives

Initial-
guess

Local
minimum

Fig. 1. Schematic view of NLP solver using SQP method

3. TECHNICAL IMPLEMENTATION

The default WORHP interface is based on the reverse-
communication paradigm [3]. The basic idea of this interface
is, that the user implements his model within the reverse-
communication loop of WORHP, that can be implemented
when the solver library is linked against the user code. This
circumstance forbids parallelisation of objective and con-
straint function evaluations in the first place, because the loop
is inherently sequential and duplication of these evaluations
would mean rigorous parallelisation of user code. As that is
not known to the programmers of the WORHP interface and
possibly not thread safe this might lead to possible data races
and thus lead to undefined behaviour. In order to overcome
these technical issues the WORHP multi-core interface is
introduced.
The WORHP multi-core interface consists of two implemen-
tation layers. The upper layer is the NLPSolver class. Within
the solver class the automatic parameter variation module is
included. The NLPSolver class is responsible to handle all
thread related tasks. The lower layer of the interface contains
the implementations of the NLPProblem given by the user.
To keep the implementation effort for the user as small as
possible we chose an object oriented approach for the new in-
terface. Users implement the abstract class NLPProblem that
requires the user to override the problem related functions
and derivatives as depicted in Listing 1.
At least objective and constraint functions always have to be
implemented. If the derivatives are not available the corre-
sponding functions must be overridden by empty functions
to implement the NLPProblem interface and the correspond-

ing parameters must be set accordingly to allow WORHP to
compute the necessary derivatives by finite differences or use
Hessian approximations like BFGS matrices as second order
derivatives.

Listing 1. Interface for problem functions
class NLPProblem {
public :
/* Prototype for evaluation of

* objective function */
virtual void evalF(double *f) = 0;
/* Prototype for evaluation of

* constraints function */
virtual void evalG(double *G) = 0;
/* Prototype for evaluation of

* objective gradient */
virtual void evalDF(double *dfVal) = 0;
/* Prototype for evaluation of

* jacobian of the constraints */
virtual void evalDG(double *dgVal) = 0;
/* Prototype for evaluation of

* hessian of the lagrangian */
virtual void evalHM(double *hmVal) = 0;
...
};

One instance of the concrete user problem is created for each
thread that will be used. All problems to be solved are then
added to the queue within the solver class. The user specifies
a certain number of slots available for the multi-core inter-
face. The number of slots should not exceed the number of
available cores on the system. Additionally, one slot should
be reserved for the solver class.
The NLPSolver class launches the specified number of in-
stances of WORHP in order to solve the user problem with
different parameter settings and afterwards oversees the
progress of all running threads, processes output and con-
trols the workflow according to the chosen operational mode.
The described workflow is sketched in Figure 2. While the
worker threads solve their corresponding problems, on each
iteration a notice containing information about the iteration
progress, current objective value and constraint values is send
to the solver class. As those notices are send by multiple
threads in parallel a lockfree queue is used as multi producer
single consumer container. Similar to an event queue of a
graphical user interface the solver class waits for new notices
and processes them in order to perform several tasks that are
not thread safe like providing output to the user, launching
new threads if slots have become available or handle the final
results.

4. OPERATIONAL MODES

The multi-core interface can be used to achieve multiple
results. As mentioned above, the solver can be greatly cus-
tomised to the users need, but the default parameter settings
have been configured in order to perform best on the CUTEst

Queue

NLP

NLP

NLP

NLP

Solver

Slots

NLP

NLP

NLP

Fig. 2. Thread organisation through NLPSolver class

and COPS test set in total. Thus, the settings are not spe-
cialised for any special kind of problem, but to improve the
performance of the solver on the majority of the problems.
In their paper about the free lunch theorems Wolpert and
Macready [4] point out, that adapting solver parameters for
one class of problems always leads to a loss of efficiency for
another class. At this point the multi-core interface comes
into play and allows the user to apply different parameter
settings in parallel to his special problem formulation, thus
aiming to increase speed as well as robustness of the solver.
Currently WORHP offers 175 parameters, thus users struggle
to identify relevant ones to adapt to their problem. Therefore,
in order to make the usage of the Multi-Core interface most
practical for the user, the interface offers a preconfigured set
of parameters that can be altered by the different threads.
These different settings have been proven highly beneficial in
various situations in order to improve the solvers performance
with respect to speed, robustness and quality of the solution.
Using automatic code generation realised by a perl script,
parameter variations can be specified and are automatically
incorporated into the parameter variation module of the solver
class. In Listing 2 a short snippet of the default possible set-
tings script is shown.

Listing 2. Possible settings in script language for automatic
code generation of parameter variations
//###################################
// This file is organised as follows:
// (Setting) (optional: Requirement)
//###################################
General Method Parameters
(par->NLPmethod = 3) (par->qp.ipLsMethod == 1)
(par->NLPmethod = 1) ()
Number of Relaxation Variables
(par->MoreRelax = false) (opt->m > 0)
(par->MoreRelax = true) (opt->m > 0)
ScaledKKT for Thoroughness
(par->ScaledKKT = true) ()
(par->ScaledKKT = false) ()

The script language is organised as follows. Parameter set-
tings that can be exchanged against each other are grouped
together and are separated by lines starting with ##. Using a
line starting with ## a new sequence of exchangeable param-
eter settings is commenced. Each line containing a setting
consists of two bracketed parts. The first part contains the pa-
rameter setting to be set and the second part the requirements
that must be met by the problem and the solver in order to
apply the setting in the first part. Multiple requirements or
settings can be paired within the brackets using the boolean
AND operator &&, thus BFGS matrices as second derivatives
can be activated and a specific method chosen at the same
time.
The first block of exchangeable settings, commented with
General Method Parameters changes the linesearch method
from filter (NLPmethod = 3) to merit function
(NLPMethod = 1). But the usage of the filter is only pos-
sible, if the linear solver is able to compute the inertia of the
KKT matrix, thus the linear solver method must be chosen
correctly beforehand (ipLsMethod = 1).
The second block alters the number of used relaxation vari-
ables based on the ideas described by Powell [5]. In order to
relax constraints, obviously the problem must be constrained
(opt->m > 0).
If no requirement is necessary the second bracket will simply
be left empty as shown in the third block.
In the following sections we present different approaches to
use the capabilities of this new multi-core interface.

4.1. First-Across-The-Line

The principle idea of the First-Across-The-Line (FATL) ap-
proach is to run several instances of WORHP in parallel in
order to obtain an optimal solution as fast as possible. These
instances will be configured with differing parameter sets,
with the assumption that this will enable one instance to out-
perform the others. Once an optimal solution is found, all
other instances are terminated, and the solution is returned to
the user. Neglecting the slight technical overhead for thread
management, startup etc., this approach is never slower than a
usual sequential run, and has the potential to yield remarkable

NLP-Solver WORHP

Worker instances

pr
og

re
ss

x∗

Fig. 3. First-across-the-line: The solver launches multiple
threads towards optimal solution x∗

speed-up.
The FATL-approach basically wants the solver to work on all
threads until one thread finds an optimal solution. WORHP
distinguishes between optimal solutions, acceptable solu-
tions and unsuccessful terminations. Only in the first case
the multi-core interface should stop working, whereas in the
other cases the remaining threads should continue their work.
Figure 3 shows the workflow of the First-Across-The-Line
approach. In the figure one worker instance reached at a
local optimum and thus the remaining worker threads are
terminated.

4.2. Best-Of-All

WORHP is designed to find local minima of the given prob-
lem. Depending on the problem structure the solver is able to
find different local minima with different parameter settings.
The Best-Of-All mode is designed to overcome this caveat.
Again multiple instances of the solver are launched in paral-
lel, but in this case the thread handling solver class waits until
all threads have finished their job and compares the achieved
results. Thus, the best obtained local minimum is returned to
the user. This approach obviously does not focus on speed but
on thoroughness.

4.3. Parameter Identification

The usage of an NLP solver is often an iterative process for
the user. An optimisation run is performed and the result
analysed. Afterwards the underlying mathematical model,
constraints or the objective function are adapted according to
the results achieved. Having adapted everything the solver is
run again in order to improve the previous result and evaluate
the performed changes. This loop is often processed multiple

times.
Therefore, the application of an optimisation tool is per-
formed often. Still the problem to be solved varies only
sligthly from run to run. This motivates the application of the
Parameter Identification operational mode. The user can sup-
ply multiple parameters to be tested within this mode using
the automatic code generation explained in the beginning of
this section.
Similar to the Best-Of-All mode all threads will be finished
first and then the results will be compared. Taking different
criteria into account, parameter suggestions for the solver will
be generated for the user.
A different approach on parameter tuning specifically fo-
cussed on WORHP can be found in the work of Wassel [3].
The predecessor of the parameter identification operational
mode, a parallelisation approach on process level rather than
on thread level is discussed there. The method described
there was used to identify the currently used default param-
eters and focusses on parameter tuning over a given set of
test examples. The application of the new parameter identi-
fication mode is realised by switching simply the operational
mode of the multi-core interface, in contrast to the old tuning
script that required some coding effort and was only used for
internal parameter configurations of the solver.

5. NUMERICAL RESULTS

The proposed parallelisation approaches for the NLP solver
WORHP were tested using the state-of-the-art CUTEst test
set from Gould, Orban and Toint [6] that is specifically de-
signed to be thread safe in comparison to its predecessor the
CUTEr test set, that was part of the default testing environ-
ment of WORHP already. In this section the First-Across-
The-Line mode will be applied to the CUTEst test set and the
results are compared to the current version of WORHPs basic
single thread interface. Furthermore, the parameter identifi-
cation mode will be used to show the potential of parameter
variations on the specific examples.
The CUTEst test set consists of 1149 examples. During our
tests we faced some technical issues with 17 examples, there-
fore the following tests will be performed on the subset of the
remaining 1132 examples. The baseline for the multi-core
interface using the First-Across-The-Line approach is given
by the results achieved by the single threaded interface of
WORHP. The solver is run with its default configuration.
Termination criteria are an optimality and feasibility toler-
ance of 10−6 each and the complementarity tolerance is set
to 10−3. If one of the first two measures is only fulfilled with
a tolerance of 10−3 the minimum is regarded is acceptable.
Analytic derivatives are given and used for all problems. The
results are presented in Table 1.
We considered four available cores as a default configuration

in most desktop computers and therefore have chosen four
parameter settings for the First-Across-The-Line approach in

Quantity Percent
Optimal 1065 94.08

Acceptable 19 1.68
Unsuccessful 48 4.24

Total 1132 100

Table 1. Results of single threaded WORHP on subset of
CUTEst test set

order to improve the results on the CUTEst test set. The first
thread runs with the same configuration as the single threaded
WORHP. The second thread activates the additional feasibil-
ity refinement feature, the third thread uses a merit function
approach instead of the filter during linesearch and the fourth
thread will use BFGS matrices instead of the analytic Hessian
matrix. In order to identify four beneficial parameter settings
some prior knowledge of the solver is required. To overcome
this issue for unexperienced users the parameter identification
mode will be explained later. Table 2 summarises the used
settings in the FATL approach.

The multi-core interface was able to improve the solvers

Setting Thr. 1 Thr. 2 Thr. 3 Thr. 4
Feas. Ref. Off On Off Off
Hessian Analytic Analytic Analytic BFGS
Method Filter Filter Merit fun. Filter

Table 2. Used settings in four thread configuration of First-
Across-The-Line mode

performance significantly. 1084 examples were solved to op-
timal tolerances, thus 19 results were improved. The number
of unsuccessful runs was reduced by 8 and the number of ac-
ceptable solutions by 11 examples. Consequently, the quality
of the found local minima was increased from acceptable to
optimal tolerance in these cases. The results are shown and
compared to the single thread results in Table 3.
In order to yield the best results the chosen settings should

Quantity Change Percent Change
Optimal 1084 +19 95.76 +1.68

Acceptable 8 −11 0.71 −0.97
Unsuccessful 40 −8 3.53 −0.71

Total 1132 100

Table 3. Results of multi threaded WORHP on subset of
CUTEst test set using First-Across-The-Line approach in
comparison to single threaded results

enable different solver instances to perform best. Table 4
shows the distribution of the first terminating threads with
the given settings. The First-Across-The-Line approach has

Thread 1 Thread 2 Thread 3 Thread 4
290 236 244 362

Table 4. Number of problems solved fastest by each thread

two different goals. On the one hand the parallel usage of
multiple parameter settings is aimed at increasing the quality
of the achieved local minima or finding one at all, as shown
above. On the other hand the interface is applied in order
to yield a speed up of the optimisation run as all threads are
terminated upon successful termination of the first thread.
The local minima of the single- and multi-threaded WORHP
were compared for all examples within the CUTEst test set
and for the following timing analysis only optimisation runs
finding the same local minimum in both cases will be con-
sidered. Deviations of 2 percent of the final objective value
were chosen as threshold to determine two results as the same
local minimum. From the initial 1132 examples, the single-
and multi-thread interface find the same local minimum in
784 cases. The elapsed time of the parallel runs is calculated
as user time, not taking cumulative clocks of parallel threads
into account. Thus, the FATL approach solves the complete
test set in 207 minutes, while the single thread WORHP re-
quires 279 minutes. Therefore, a speed-up factor of 1.3478 is
achieved. The results are summarised in Table 5.
The parameter identification mode is applied to the DTOC6

Multi Thread (FATL) Single Thread Speed-up factor
207 min. 279 min. 1.3478

Table 5. Timing results and speed-up factor for First-Across-
The-Line approach in comparison to single threaded WORHP

example. This test problem consists of 10001 variables and
5000 constraints. The multi-core interface is configured to
vary the linesearch method, use analytic Hessian or a BFGS
like alternative and activate the feasibility refinement. Thus,
8 different settings can be combined. Table 6 gives a short
overview on this configuration. The user can determine a

Setting Value 1 Value 2
Linesearch method Filter Merit function

Feasibility Refinement On Off
Hessian Analytic BFGS

Table 6. Possible values for different settings and any combi-
nation thereof for parameter identification mode

number of simultaneously runnable threads according to his
system specification. All problems assigned to the solver
are solved. Upon termination of all tasks, the solver evalu-
ates the results with respect to different criteria. Currently

the parameter identification mode is configured to provide
the configuration with the least number of required major
iterations which correlates directly to the number of deriva-
tive evaluations necessary and quadratic subproblems to be
solved. Furthermore, as WORHP is a local optimisation soft-
ware the settings leading to the best objective function value
are determined by the parameter identification mode.

Listing 3. Snipppet of results from parameter identification
mode for DTOC6 example

WMCI parameter i d e n t i f i c a t i o n mode
Least major i t e r a t i o n s required by t h e s e s e t t i n g s

Thread 2 :
−−−−−−−−

par−>NLPmethod = 1 ;
par−>UserHM = t r u e ;
par−>R e f i n e F e a s i b i l i t y = 2 ;

F i n a l v a l u e s a f t e r i t e r a t i o n 7 :
F i n a l o b j e c t i v e v a l u e 1 .4290199970E+05
F i n a l c o n s t r a i n t v i o l a t i o n 1 .1559653998E−07
F i n a l KKT c o n d i t i o n s 9 .2700494022E−09
S u c c e s s f u l t e r m i n a t i o n : Opt imal S o l u t i o n Found .

−−−
Best o b j e c t i v e va lue ach ieved by t h e s e s e t t i n g s

Thread 1 :
−−−−−−−−

par−>NLPmethod = 3 ;
par−>UserHM = t r u e ;
par−>R e f i n e F e a s i b i l i t y = 2 ;

F i n a l v a l u e s a f t e r i t e r a t i o n 1 8 :
F i n a l o b j e c t i v e v a l u e 1 .3485126076E+05
F i n a l c o n s t r a i n t v i o l a t i o n 7 .0624611073E−07
F i n a l KKT c o n d i t i o n s 4 .5137218774E−10
S u c c e s s f u l t e r m i n a t i o n : Opt imal S o l u t i o n Found .

−−−

In Listing 3 the results for the parameter identification
mode applied to the DTOC6 example are shown. In order
to reduce the number of major iterations as efficiently as pos-
sible, the user should use a merit function approach with an-
alytic Hessian and use the additional feasibility refinement.
In this case only seven iterations are required. This speed-up
comes at the cost of a slightly higher objective function value
of 1.429 · 105, whereas the multi-core interface was able to
identify five settings leading to an objective function value of
1.349 · 105 with at best 18 necessary major iterations.

6. CONCLUSION AND OUTLOOK

We presented a straight forward parallelisation approach for
the NLP solver WORHP. Multiple problem instances are run
in parallel and depending on the users choice the parallelism
can be used to achieve different goals. In order to decrease
the time necessary to obtain a local minimum all remaining
threads can be terminated, when the first local minimum is
found. Alternatively, the user can apply the multi-thread in-
terface to increase the thoroughness of the optimisation run,
as the interface waits for all running threads to terminate
and pick the best obtained local minimum afterwards. This
Best-Of-All approach can be extended to do some parameter
identification for the solver for an user given particular prob-
lem. Again all threads continue until they finish. Afterwards
all results are analysed and different parameter settings are

suggested to the user regarding different criteria, like speed,
quality and low iteration counts.
In addition to the variation of parameters the multi-core in-
terface could be used to vary initial guesses and thus offer
an easily accessible way to globalisation methods. Similar
approaches are used for mixed integer problem formulation
and could be integrated into the interface.
Due to its flexible structure the interface can easily be ex-
tended to solve different problems in parallel and could thus
be used to identify pareto fronts or perform reachable set
analysis for optimal control problems. Furthermore, a direct
integration into WORHP’s companion transcriptor method
TransWORHP [7] could be performed. In the optimal control
context beside the parameters presented in this paper further
settings like e.g. discretisation schemes could be customised
for each thread.

7. REFERENCES

[1] C. Büskens and D. Wassel, “The ESA NLP Solver
WORHP,” in Modeling and Optimization in Space Engi-
neering, Giorgio Fasano and Jnos D. Pintr, Eds., vol. 73
of Springer Optimization and Its Applications, pp. 85–
110. Springer New York, 2013.

[2] S. Mehrotra, “On the implementation of a primal-dual
interior point method,” Siam Journal Optimization, vol.
2, pp. 575–601, 1992.

[3] D. Wassel, Exploring Novel Designs of NLP Solvers,
Ph.D. thesis, Universitt Bremen, 2013.

[4] David H. Wolpert and William G. Macready, “No free
lunch theorems for optimization,” IEEE Transactions on
evolutionary computation, vol. 1, 1997.

[5] M. J. D. Powell, Numerical Analysis: Proceedings of
the Biennial Conference Held at Dundee, June 28–July
1, 1977, chapter A fast algorithm for nonlinearly con-
strained optimization calculations, pp. 144–157, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1978.

[6] N. I. M. Gould, D. Orban, and P. L. Toint, “Cutest: a con-
strained and unconstrained testing environment with safe
threads for mathematical optimization,” Computational
Optimization and Applications, pp. 1–13, 2014.

[7] C. Büskens M. Knauer, “From worhp to transworhp,”
Proceedings of the 5th International Conference on As-
trodynmaics Tools and Techniques, 29.05.-01.06.2012,
Noordwijk, Netherlands.

