Non-Keplerian Trajectory Planning Via Heuristic-Guided Objective Reachability Analysis

David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder



6<sup>th</sup> International Conference on Astrodynamics Tools and Techniques March 16, 2016



Irregular shapes and proportionally large external forces complicate mission design by producing highly sensitive, non-periodic motion.



Spherical Body

Asteroid Itokawa (Highly elongated)

Martian moon Phobos (Strong tidal forces)

#### **NASA GNC Tech Report**

- A central need is "the ability to **rapidly design efficient and innovative trajectories**."
- "...more complex dynamical models must be used to perform preliminary designs."



# **Test Scenario**



System: Comet 67/P Churyumov-Gerasimenko (highly non-spherical)

Objective: perform close-range imaging of candidate landing sites A, C, and J with four different viewing geometries under appropriate solar phasing

Uncertainty in state estimation (10 m, 1 mm/s) and gravity model (64 vs 2500 vertices)









Re-pose motion planning problem as regulation of an abstract state by an intermittently acting impulsive controller, via:

- 1. Robust predictive model for abstract outcomes
- 2. Heuristic search of single-impulse reachable set
- 3. Reactive receding-horizon implementation



## **Key Concepts**



### Abstraction

- Trajectories are incidental; objectives/constraints are fundamental.
- Separate treatment of two sequential problems can cause nuanced, unintuitive solutions to be overlooked (e.g. low-energy lunar transfers).



### Reachability

- In lieu of tractable reference solutions, reduce the large, complex design space via accessibility
- Naturally facilitates continuous re-planning, opportunism, and robustness to uncertainty







Kepler problem results (spherical body). Position on map: selection of initial velocity Color: safety outcome of resulting trajectory.







*Non-Keplerian system:* Asteroid Itokawa (highly elongated) *Desired operation:* close-range fly-over of target sites





*Non-Keplerian system:* Asteroid Itokawa (highly elongated) *Desired operation:* close-range fly-over of target sites





*Non-Keplerian system:* Asteroid Itokawa (highly elongated) *Desired operation:* close-range fly-over of target sites





*Non-Keplerian system:* Martian moon Phobos (strong tides) *Desired operation:* close-range fly-over of target sites





*Non-Keplerian system:* Martian moon Phobos (strong tides) *Desired operation:* close-range fly-over of target sites







### **Heuristic-guided refinement**

- Numerically propagate results of sample control inputs
- Bias distribution of next sample set toward promising areas



#### For visualization

For objective maximization during online planning



System: Comet 67/P Churyumov-Gerasimenko (highly non-spherical)

Objective: perform close-range imaging of candidate landing sites A, C, and J with four different viewing geometries under appropriate solar phasing



Nominal trajectories associated with reachability analysis domains

















Decision metric: balance new progress within planning horizon against heuristic indicators of future prospects





# **Robust Planning**



 State Transition Matrix gives a linearized description of divergence

$$\Phi(t;t_0) = \int_{t_0}^{t} \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} \Big|_{\mathbf{x}(\tau)} \mathrm{d}\tau = \begin{bmatrix} \phi_{\mathbf{rr}}(t) & \phi_{\mathbf{rv}}(t) \\ \phi_{\mathbf{vr}}(t) & \phi_{\mathbf{vv}}(t) \end{bmatrix}$$

Consider position deviation only

 $oldsymbol{\Lambda}(t)=\phi_{f rr}(t;t_0)\delta{f r}(t_0)+\phi_{f rv}(t;t_0)\delta{f v}(t_0)$ 

 Describe largest deviation magnitude expected under given uncertainty

 $\Lambda(t) = \lambda_{max}\left(\phi_{\mathbf{rr}}
ight)\sigma_{r} + \lambda_{max}\left(\phi_{\mathbf{rv}}
ight)\sigma_{v}$ 

- Predict the worst-case outcome under an anticipated amount of deviation
  - $d = \eta \Lambda$  (scaled)  $d = \zeta$  (constant)



shrink regions by anticipated deviation d





System: Comet 67/P Churyumov-Gerasimenko (highly non-spherical)

Objective: perform close-range imaging of candidate landing sites A, C, and J with four different viewing geometries under appropriate solar phasing

Uncertainty in state estimation (10 m, 1 mm/s) and gravity model (64 vs 2500 vertices)









- Heuristics and a black-box predictive model enable a sampling-based approach to design complex operations in non-Keplerian systems without exhaustive search
- Single-impulse reachability analyses are useful for creating visualizations that aid preliminary mission design and analysis
- Receding-horizon implementation can be conducted onboard to construct a many-impulse solution profile
- A balance of robustness and feedback can be used to mitigate realistic levels of error in such a scenario



This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.











### Publications



- [1] **D. A. Surovik** and D. J. Scheeres, "Reactive and robust paradigms for autonomous mission design at small bodies," *Journal of Guidance, Control, and Dynamics,* (submitted).
- [2] **D. A. Surovik** and D. J. Scheeres, "Abstraction predictive control for chaotic spacecraft orbit design," in *IFAC Conference on Nonlinear Model Predictive Control*, Sep. 2015, (67% acceptance rate).
- [3] **D. A. Surovik** and D. J. Scheeres, "Heuristic search and receding-horizon planning in complex spacecraft orbit domains," in *International Conference on Automated Planning and Scheduling*, Jun. 2015, (33% acceptance rate).
- [4] **D. A. Surovik** and D. J. Scheeres, "Adaptive reachability analysis to achieve mission objectives in strongly non-keplerian systems," *Journal of Guidance, Control, and Dynamics*, vol. 38, no. 3, pp. 468–477, Mar. 2015.