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Irregular shapes and proportionally large external forces complicate 
mission design by producing highly sensitive, non-periodic motion.

Spherical Body
Asteroid Itokawa

(Highly elongated)

Martian moon Phobos

(Strong tidal forces)

NASA GNC Tech Report

� A central need is “the ability to rapidly design efficient and innovative trajectories.”

� “…more complex dynamical models must be used to perform preliminary designs.”



System: Comet 67/P Churyumov-Gerasimenko (highly non-spherical)

Objective: perform close-range imaging of candidate landing sites A, C, and J with 

four different viewing geometries under appropriate solar phasing

Uncertainty in state estimation (10 m, 1 mm/s) and gravity model (64 vs 2500 vertices)

Image credit: ESA



Re-pose motion planning problem as regulation 

of an abstract state by an intermittently acting 

impulsive controller, via:

1. Robust predictive model for abstract outcomes

2. Heuristic search of single-impulse reachable set

3. Reactive receding-horizon implementation
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Reachability
� In lieu of tractable reference solutions, reduce the 

large, complex design space via accessibility

� Naturally facilitates continuous re-planning, 
opportunism, and robustness to uncertainty

Abstraction

� Trajectories are incidental; objectives/constraints are fundamental.

� Separate treatment of two sequential problems can cause nuanced, 
unintuitive solutions to be overlooked (e.g. low-energy lunar transfers).



Kepler problem results (spherical body).

Position on map: selection of initial velocity

Color: safety outcome of resulting trajectory.
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Non-Keplerian system: Asteroid Itokawa (highly elongated)

Desired operation: close-range fly-over of target sites
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Non-Keplerian system: Asteroid Itokawa (highly elongated)

Desired operation: close-range fly-over of target sites
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Non-Keplerian system: Asteroid Itokawa (highly elongated)

Desired operation: close-range fly-over of target sites
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Non-Keplerian system: Martian moon Phobos (strong tides)

Desired operation: close-range fly-over of target sites

Impact
Escape

Goals

ΔvI

ΔvR

Safe

(later)

Impact

Escape

Safe

ΔvI

ΔvR

Non-Kep

System

Adding 

goals



ΔvI ΔvR

ΔvC

Non-Keplerian system: Martian moon Phobos (strong tides)

Desired operation: close-range fly-over of target sites
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For visualization For objective maximization 

during online planning
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Heuristic-guided refinement

� Numerically propagate results of sample control inputs

� Bias distribution of next sample set toward promising areas
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System: Comet 67/P Churyumov-Gerasimenko (highly non-spherical)

Objective: perform close-range imaging of candidate landing sites A, C, and J with 

four different viewing geometries under appropriate solar phasing

Nominal trajectories associated with reachability analysis domains

Rotating Frame
Inertial Frame



Reachability from polar orbit



Reachability from retrograde orbit



Reachability from prograde orbit



Rotating Frame Inertial Frame

Maneuver location

Goal region

Goal arc start/end

Phobos; strong tidal forces

Decision metric: balance new progress within planning horizon 
against heuristic indicators of future prospects



� State Transition Matrix gives a linearized 

description of divergence

� Consider position deviation only

� Describe largest deviation magnitude 

expected under given uncertainty

� Predict the worst-case outcome under 

an anticipated amount of deviation

shrink regions by 

anticipated deviation
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System: Comet 67/P Churyumov-Gerasimenko (highly non-spherical)

Objective: perform close-range imaging of candidate landing sites A, C, and J with 

four different viewing geometries under appropriate solar phasing

Uncertainty in state estimation (10 m, 1 mm/s) and gravity model (64 vs 2500 vertices)



� Heuristics and a black-box predictive model enable a 

sampling-based approach to design complex operations in 

non-Keplerian systems without exhaustive search 

� Single-impulse reachability analyses are useful for 

creating visualizations that aid preliminary mission design 

and analysis

� Receding-horizon implementation can be conducted 

onboard to construct a many-impulse solution profile

� A balance of robustness and feedback can be used to 

mitigate realistic levels of error in such a scenario
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