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ABSTRACT

In many space exploration scenarios of great interest, such as
close-range orbits at asteroids and comets, spacecraft motion
cannot be effectively approximated using Kepler’s laws. Fur-
thermore, special dynamical structures such as periodic orbits
are not inherently associated with specific science require-
ments and serve only as a limited framework for facilitating
operations. To broaden the mission design domain for pursu-
ing abstract objectives in non-Keplerian systems, we instead
formulate a reachability analysis tool that maps a subset of
the extended phase space onto a set of high-level outcomes.
As this process can only be conducted with numerical sam-
pling, heuristics are used to guide iterative refinement of map
features or the search for a performance metric’s global max-
imum. The reachability data product can be visualized to aid
preliminary mission design or efficiently computed onboard
the spacecraft to enable opportunistic and robust online plan-
ning. Both modes of use are be demonstrated for planning
scientifically motivated trajectories at the highly irregularly
shaped comet 67/P.

Index Terms— autonomy, mission design, reachability,
heuristic search, sampling-based planning

1. INTRODUCTION

Space exploration missions within dynamical regimes domi-
nated by one nearly uniform gravity field, such as that of the
Sun or a planet, rely heavily upon the conventional trajectory
design techniques derived from Kepler’s laws of orbital mo-
tion. However, ambitious missions to asteroids and comets
face complex dynamics that cannot be adequately addressed
with these techniques [1], motivating instead the considera-
tion of automated algorithmic approaches more traditionally
associated with the fields of robotics and AI planning [2].

Previously, exhaustive search techniques have been ap-
plied to mission design trade spaces such as launch and arrival
dates – two inputs to Lambert’s problem whose solution gives
energy costs to be plotted on a “porkchop plot”. Examples
of numerical exploration of design spaces for non-Keplerian

systems are generally applied to the paradigm case of the cir-
cular restricted three-body problem and focus on aspects such
as phase space connectivity between special structures, e.g.
periodic orbits and their stable/unstable manifolds [3], trajec-
tory divergence rates [4], and more recently upon failure out-
comes such as impact of the central body or escape from its
vicinity [5]. By expending extensive numerical effort to study
large swaths of the full domain of operations, this approach is
naturally intended for preliminary mission design.

Conversely, analytic investigations have been conducted
for the Kepler problem to characterize orbital reachability of
targets from a given initial state with a single impulsive ma-
neuver, key knowledge for quickly planning new operations
in a mission that is already underway [6, 7]. These notions of
reachability and numerical search have previously been com-
bined in a computationally efficient manner to delineate safe
and unsafe regions in the control domain of a spacecraft in a
non-Keplerian system at a given initial state [8].

Recently, we have extended this work to include pursuit of
science objectives in the analysis of reachable spacecraft mo-
tion [9], designed cost-to-go heuristics such that repeated ap-
plication of the single-impulse maneuver design technique ul-
timately results in completion of extensive sets of prescribed
tasks [10], and incorporated uncertainty mitigation through a
balance of robust reachability analysis and reactive receding-
horizon execution [11].

In this paper, we newly apply the heuristic mapping al-
gorithm to temporally-extended control domains, which are
especially appropriate for determining when to maneuver
during online planning, as well as to other phase space sub-
sets of interest for system analysis and preliminary mission
design. Example maps are derived for a topical test case
— motion planning for a close-proximity orbiter of comet
67/P Churyumov Gerasimenko (hereafter referred to simply
as 67/P). Analysis will focus on fundamental issues such as
safety conditions and trajectory divergence rates as well as
upon science goals, consisting of geometric and temporal
requirements for sets of close-range imaging tasks that target
candidate lander deployment sites.



2. PROBLEM

2.1. Equations of Motion

In the test case system, close-proximity orbital motion is gov-
erned primarily by the central body’s non-spherical gravity
field. This force is most naturally expressed in the body-
fixed frame, as are geometric constraints for imaging tasks.
The spacecraft state x, comprising position r and velocity ṙ,
evolves within this frame as:

x = (r, ṙ) =
[
x y z ẋ ẏ ż

]T
(1)

ẋ = (ṙ, r̈) = f (x) (2)
r̈ (r, ṙ) =− ω × (ω × r)− 2ω × ṙ + a (r;µ,Pν) (3)

The body’s angular velocity ω = ωẑ is constant and is ori-
ented about the axis of greatest inertia, the minimum-energy
rotation state; this produces centripetal and coriolis accelera-
tion terms. The gravitational acceleration a of 67/P, and its
Jacobian da/dr, are computed from either a two-ellipsoid
shape model or a polyhedral shape model P defined by a set
of vertices and faces under an assumption of constant den-
sity and total gravitational parameter µ [12]. Unlike a spher-
ical harmonic expansion, these models remains valid within
the circumscribing sphere of the central body and do not in-
volve truncation of high-order terms; instead the computa-
tional costs scale linearly with the number of ellipsoids or the
polyhedron vertex count.

We note that, crucially, the numerical analysis employed
in this paper can accommodate a “black box” dynamical
model. This allows the potential to include other important
forces as appropriate, such as third body tidal forces (e.g.
in the Phobos system), solar radiation pressure (significant
at very small bodies like asteroid Itokawa), and outgassing
of volatiles as at 67/P during the span of its mission near
perihelion. The first two of these examples can be seen in [9],
and the latter may be a topic of future work — the present
analysis assumes negligible outgassing as was the case dur-
ing the initial rendezvous of the Rosetta spacecraft and the
deployment of its lander Philae.

2.2. Anticipated Deviation

During the propagation of a trajectory, the state transition ma-
trix Φ (t, t0) can also be integrated to provide a linear descrip-
tion of the behavior of neighboring trajectories.

Φ(t; t0) =

∫ t

t0

df

dx

∣∣∣
x(τ)

dτ =

[
φrr(t) φrv(t)
φvr(t) φvv(t)

]
(4)

Using submatrices of Φ, the position deviation δr is expressed
in terms of initial condition deviations:

δr(t) =φrr(t; t0)δr(t0) + φrv(t; t0)δv(t0) (5)

The robustness margin d is defined by parameterizing a worst-
case realization of characteristic initial position and velocity

deviation magnitudes σr and σv , obtained using the maxi-
mum eigenvalues of the position deviation propagation sub-
matrices, with a scaling parameter η.

d(t) =λmax (φrr) ησr + λmax (φrv) ησv (6)

As described at length in [11], this value can be used to pro-
vide guarantees, in the linear sense, that a prospective tra-
jectory will still produce the desired outcome even under an
anticipated amount of positional deviation, e.g. 3σ deviations
by setting η = 3.

2.3. Mission Objectives

To avoid arbitrary reductions to the set of possible solutions,
mission objectives are modeled not as target points xi or ref-
erence trajectories x̃i within state space, but as goal functions
gi (x̃). This abstraction allows the design problem to encom-
pass not only the question of how to reach a science orbit,
but also what the science orbit should be in the first place —
a particularly appropriate approach considering that motion
is in general strongly non-periodic and uncertain. It also al-
lows the implementation of many goal criteria without plac-
ing constraints on the precise sequencing or timing of goal
completion.

The goal vector g tracks the status of a set of ng objec-
tives, whose values may be increased from 0 to 1 — indicating
maximization or completion — by a potentially broad class
of trajectories {x̃}gi . Thus, the abstracted objective space is a
unit cube of dimension ng and when mapped into this space a
successful mission profile g (x̃1, x̃2, . . . , x̃n) traverses from
the “bottom left” corner g = 0 to the “top right” corner
g = 1.

2.3.1. Observation Goals

As in the bulk of our investigations to-date, the objectives gi
are defined for close-range imaging of a set of points of inter-
est Ri located on the body surface. Each i’th task (multiple
tasks may share a target) is defined as the simultaneous ful-
fillment of upper (a+) and lower (a−) bounds of several ob-
jective metrics a (x) for a duration ∆tg . These metrics com-
prise the spacecraft’s target-relative range ρi, co-elevation θi,
azimuth ϕi, and solar phase angle ψi computed from its rela-
tive position ρi = r−Ri and the east-north-up basis vectors
(ê, n̂, û)i of the target’s local frame.

ρi = |ρi (t)|2 (7)

θi = cos−1 (ρ̂i (t) · ûi) (8)

ϕi = tan−1
[
ρ̂i (t) · êi
ρ̂i (t) · n̂i

]
(9)

ψi = cos−1 (ρ̂i (t) · ρ̂s (t)) (10)

As the Sun-pointing vector ρ̂s is approximated as constant
in the inertial frame but periodic in the body-fixed rotating
frame, ψi applies temporal constraints.



For robust planning, the bounds a+ and a− for each
parameter are reduced by an amount such that ǎ−(d(t)) <
a (x) < ǎ−(d(t)) ⇒ a− < a (x + d(t)n̂) < a+ for any
unit vector n̂. In other words, if the nominal path satisfies the
reduced bounds (ǎ−, ǎ+), any path that deviates less than the
margin d(t) will still satisfy the nominal constraint bounds.

2.3.2. Operational Constraints

With ρP = min ρ (x,P) denoting the shortest range to any
face of the polyhedron P or any point on the surface of an
ellipsoid, we define bounds ρ−P < ρP < ρ+P within which op-
erations are permitted for scenarios other than landing. The
lower bound acts as a margin of error against impact, while
the upper bound prevents undesirable excursions away from
the orbit regime of interest. Other concerns such as fuel con-
sumption ∆v and trajectory duration ∆t can be included as
soft constraints in a decision metric, i.e. a function that scalar-
izes the multiple objectives, constraints, and the cost-to-go
into a single function.

2.4. Test Scenario

Comet 67/P is chosen as an illustrative system on account of
its exceptionally irregular shape. Although the black-box dy-
namical model could readily accommodate outgassing forces,
third-body gravitation, and solar radiation pressure, these are
presently omitted for simplicity. The comet has a mass of
1013 kg and mean radius R̄ = 1.7 km, corresponding to a
mean density of 0.47 g/cm3, while its largest dimension spans
4.3 km. Rotation occurs about its axis of greatest inertia,
which has obliquity 52◦, with a period of 2π/ω = 12.4 hr.
This is roughly equivalent to the period of a Keplerian orbit
with semimajor axis equal to 2R̄.

Observation targets correspond to three of the candidate
landing sites considered by for ESA’s Philae lander, namely
the actual target Site J on the smaller lobe of the comet, the
backup Site C on the perimeter of the larger lobe, and an
earlier candidate Site A on the inner surface of the larger
lobe. All observation tasks have range bounds ρ− = 0.85
km, ρ+ = 1.15 km and phase angle bounds ψ− = 30◦,
ψ+ = 60◦, affording close views with moderate shadows to
best reveal surface features. The imaging duration is set at
∆tg = 2 minutes. Four tasks are assigned per site: one from
within θ+ = 20◦ of the surface normal, and three from be-
tween θ− = 30◦ and θ+ = 60◦ with additional azimuthal
constraints producing evenly spaced 60◦ segments. System
geometry is shown in Fig. 1.

3. PHASE SPACE MAPPING

3.1. Domain

Due to factors that are asynchronous with the rotation period
of the body frame — solar phasing in this case, and third body

Fig. 1. Polyhedral shape model of 67/P and observation ob-
jective regions.

gravitation and solar radiation pressure in other systems of
interest — the predictive model is a nonautonomous system
and the extended phase space must be considered. Combin-
ing 3D position r, velocity v, and scalar initial time t, this
space is seven-dimensional, which is not amenable to numer-
ical search or visualization/user comprehension. Thus, both
preliminary mission analysis and online planning must deal
with lower-dimensional subsets of the extended phase space,
M⊂ (X × T ), ideally in two or three dimensions.

These reduced spaces could be defined by a straightfor-
ward combination of a subset of position and velocity axes
with a timing element, e.g. (t, y, vx), with the remaining state
variables substituted from a reference state (t0,x0). Alter-
nately, manifolds could be described via some transformation
T : (t0,x0,ui)→ (t,x) with ui a coordinate along the man-
ifold from within a set U and (t,x) ∈ M. This could be
used to parameterize the search domain in terms of derived
values such as Jacobi energy, osculating orbital element val-
ues, or alternate Cartesian descriptions such as the radial/in-
track/cross-track frame. Some such reduced design spaces
will be investigated in the following sections; first, we will
detail the process for efficient numerical search and mapping
of the domain U .

3.2. Heuristic Search and Mapping

As has been comprehensively detailed in [10], the search
method consists of an iterative refinement process repeatedly
applied after initializing the search with either a random or
evenly-spaced low-resolution sampling of the search domain
U , whose axes correspond to the parameters that defineM:

1. Numerically propagate trajectories resulting from the
newest samples of the search manifold {ui} ∈ U

2. Evaluate mission-relevant outcomes of each trajectory,
e.g. constraint satisfaction and objective completion



3. Use all existing samples ui to recompute a triangula-
tion of the space U as a set of simplices (triangular or
tetrahedral elements) bounded by sample points

4. Designate next sample set probabilistically via the
search heuristic

The heuristic itself consists of a weighting function W com-
puted for each simplex,

νj = {ij,1, ij,2, ij,3, ij,4} (11)

as the product of three characteristic factors:

Wj =volume (νj) ·
(

mean
i ∈ νj

{ti}
)
· S (νj)

P (τ) (12)

Each term serves a specific role in transforming the proba-
bility distribution function that governs selection of the next
sample set. Given in order, these terms represent:

• Simplex volume — normalizing weight by volume
flattens the probability distribution across the continu-
ous control domain

• Mean trajectory lifespan — bias is then applied to
regions that produce longer-lived trajectories, implying
potentially heightened complexity

• Search/partitioning — additional bias is finally ap-
plied to maximize a user-defined function S (ν) de-
signed to draw out the desired details of the map

The final factor is also modulated by an exponent P that in-
creases as a function of the search progress factor τ , which
itself increases from 0 to 1 as the specified search resolution
is approached.. This progressively strengthens the bias of the
search toward high-performing regions in a manner akin to
simulated annealing.

For preliminary mission design and analysis, visualiza-
tions are needed that illustrate the correspondence of u with
various outcome values y (x̃) such as safety status and goal
progression. In this case, the function S (ν) can be designed
to increase in proportion to the variation of specified elements
of y across a given simplex νj . Fig. 2 shows the increased
clarity of features on the U → Y reachability map that can be
attained at a fixed sample count by applying such a heuristic.

Conversely, an autonomously operating spacecraft is less
concerned with global partitioning and instead must merely
strive to maximize some decision function s (u). By defining
s in accordance with mission requirements and performance
considerations, using a function q whose field augments the
U → s map with smooth slopes (for “hill-climbing” search)
and defining the simplex value function as

S (ν) = max
i∈ν

[s (ui) + q (ui)] (13)

much larger values of s can rapidly be located by heuristic
search than is possible with a naive search, as illustrated in
Fig. 3.

(a) Naive search (b) Heuristic search

Fig. 2. Numerical mapping between a phase space domain
and abstract outcome space charting impact and escape sce-
narios (red and yellow) as well as goal progression (blue) —
comparison of computationally inefficient approach based on
uniform sample distribution and efficient approach based on
adaptive sample distribution. Reproduced from [9].

(a) Performance (b) Search sparsity

Fig. 3. Performance of numerical search of a map between
a phase space domain and decision metric space — compari-
son of computationally inefficient approach based on uniform
sample distribution and efficient approach based on adaptive
sample distribution with gradient-climbing component. Plot
(b) shows the vanishingly small portion of U that produces
large values of s. Reproduced from [10].



4. PRELIMINARY MISSION ANALYSIS

As mentioned above, the heuristic mapping of initial con-
dition sets to high-level outcomes can be used during pre-
liminary mission design and analysis to illustrate the unin-
tuitive phenomena that occur in strongly non-Keplerian sys-
tems. The scenario examined here is the use of medium-
proximity orbits as a jumping off point from which to plan
very close proximity trajectories through objective regions.

Objective reachability is mapped from three such orbits
propagated from initial conditions with zero osculating ec-
centricity and a radius 1.75 times that of the extremum of the
central body — one polar orbit, one retrograde orbit (both of
which are nearly periodic), and one prograde orbit (which is
not nearly periodic) all shown in Fig. 4. The 3D control do-
main consists of timing (the selection of an initial point along
the nominal orbit), in-track ∆v, and cross-track ∆v.

(a) Rotating frame (b) Inertial frame

Fig. 4. Nominal prograde, retrograde, and polar orbital trajec-
tories used for defining three reachable domains with timing
elements.

The reachability maps U → Y for these three scenarios
are given in Fig. 5 in two forms: selected simplices of the full
3D domain are shown alongside reduced 2D domains that re-
flect narrower time ranges and zero cross-track ∆v. In all
cases, resonant effects are clearly observed by alternatingly
colored swaths of u values that correspond to impact of the
two different lobes of 67/P. Furthermore, as the 2D sections
reveal and as intuition implies, impact scenarios are only ob-
served when the in-track velocity is decreased, while a suf-
ficient increase uniformly results in escape. Goal fulfillment
is not observed for operations in the equatorial plane as most
goal regions are defined in the northern hemisphere.

In the reachability map of the polar orbit domain, the
abundance of goal regions near the extrema of the timing
axis indicates that goal reachability is maximal when maneu-
vers are executed above the south pole of the central body.
This reflects the large degree of control over phasing that can
be achieved by rotating the orbit plane about the polar axis,
combined with the fact that all goals are defined north of the

(a) Polar orbit

(b) Retrograde orbit

(c) Prograde orbit

Fig. 5. Reachable sets under timing, in-track, and cross-track
impulsive control authority from three different nominal tra-
jectories. Left images show 3D structure of sets that cause
impact of either central body lobe (red, orange) or satisfaction
of mission goals (blue). Right images show high-detail re-
sults in small 2D regions, with additional light blue and white
regions indicating safe boundedness while yellow regions in-
dicate escape. In lieu of substantive goal fulfillment regions,
green regions indicate relative stability.



body’s equator. Similarly, the corkscrew shape of the impact-
ing sets further reflects the misalignment of the spacecraft or-
bit plane with the central body’s rotation plane.

Conversely, the impact set for the retrograde orbit shows
fast periodicity along the time axis, indicating that several or-
bits are completed in the body-fixed frame even though only
one is complete in the inertial frame — this also demonstrates
stability as perturbing effects are rapidly averaged out. The
modulation of the goal set along this axis with period one
reflects the influence of the solar phasing requirement in the
science specifications. Lastly, the prograde orbit reachabil-
ity map shows less regularity of structure due to the strong
non-periodicity of the nominal orbit.

5. AUTONOMOUS ONLINE PLANNING

The heuristic reachability analysis tool is appropriate for plan-
ning a single impulsive maneuver based upon a given ini-
tial state or nominal trajectory. However, an extensive set of
mission objectives would require many such maneuvers, and
consideration of the likelihood that a prospective trajectory
will ensure further opportunities for progress in the next plan-
ning cycle. Given the complexity of planning even a single
maneuver, this decision-making process is made tractable by
planning one maneuver at a time in an autonomous, receding-
horizon approach characteristic of Model Predictive Control
— preferably implemented onboard the spacecraft itself in or-
der to avoid communication resource usage and delays.

As described in [10, 11], a key component in enabling this
mode of operation is the formulation of an effective prospect
heuristic hp, similar to a cost-to-go function. A simple im-
plementation of hp has been designed based upon analyses
such as that of Fig. 5(a) as well as Keplerian intuitions. The
implementation from [11] includes two components, such
that hp (x(t)) peaks when the spacecraft orbit radius crosses
the value used for the reference orbits of the previous section,
and also when the latitude approaches −90◦ — a combina-
tion of factors that the reachability map indicated to broaden
prospects. This value is then included in the formulation
of the decision metric s to balance goal progression against
longer-term concerns such as these and to determine the time
at which to begin the next planning cycle.

s (u) = max
t ∈ Tsafe

[∆g (x̃ (t)) + hp (x (t))] (14)

Notably this value also enforces additional constraints via
the timespan Tsafe such that subsequent maneuvers may not
happen too rapidly nor too late, allowing time for convergence
of state estimation and the computation of a subsequent plan
but without lingering long enough to approach a failure sce-
nario or the end of the predicted trajectory. When Tsafe is
empty, safety violations would occur more quickly than a new
plan could be formulated; in these cases s = 0 is enforced.

Combined with the robustness criteria from section 2.2,
complete mission profiles are produced as seen in Fig. 6.
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Fig. 6. Example mission profile generated by receding-
horizon application of autonomous robust reachability-based
maneuver planning. Reproduced from [11].



6. CONCLUSION

Enabled by appropriate calibration of a search heuristic and
a black-box predictive model that includes high-level mis-
sion outcomes, numerical reachability analysis appears to be
a compelling tool for mission design in unintuitive, strongly
non-Keplerian systems. This method could be applied dur-
ing preliminary design and analysis in order to elucidate the
effects of challenging phenomena such as highly inhomoge-
neous gravity fields, orbit resonances, and solar phasing of
observations.

Alternatively, the method could also be applied online to
produce sequences of maneuvers that ultimately fulfill large
sets of mission goals all while mitigating uncertainty via
robustnes considerations and reacting to unacceptably off-
nominal conditions. Both modes of analysis are appropriate
for an objective-based mission design philosophy that centers
upon exploitation of the strongly perturbed natural dynamics
of the system rather than continuously expending guidance
efforts upon merely overpowering them.
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