NAVIGATION TOOLS AT ESOC MISSION ANALYSIS SECTION

BEPICOLOMBO NAVIGATION ANAYLSIS

Amedeo Rocchi – GMV contractor at ESOC

Rüdiger Jehn – Mission Analyst at ESOC

© GMV, 2015 Property of GMV All rights reserved

Introduction

BepiColombo Setup

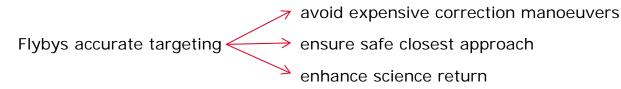
Software Tools: LOTNAV, MANTRA

Simulation Work Flow

Assumptions

Results

Conclusions



INTRODUCTION

gn/

NAVIGATION IMPORTANCE

Crucial for Interplanetary Missions

Several tools available at ESOC Mission Analysis Section

INTNAV, LOTNAV, FASTMOPS, others

Goals:

- Assess guidance and navigation costs
- Select baselines and requirements for orbit determination measurements
- Individuate Critical Phases
- Perform sensitivity analyses

BEPICOLOMBO

ESA/JAXA mission to Mercury

2 spacecrafts Mercury Planetary Orbiter (MPO) Mercury Magnetospheric Orbiter (MMO)

Mercury Transfer Module (MTM)

Page 5

Hybrid propulsion: low-thrust ion electric + chemical

Multiple Flybys of Earth, Venus and Mercury during the interplanetary transfer

BEPI COLOMBO SETUP

SIMULATION SETUP FOR BEPICOLOMBO

Special Mission Requirements:

- Simulate accurately a low thrust interplanetary orbit with major bodies encounters
- Solve guidance problem for hybrid system (low-thrust and instantaneous manoeuvers)
- Account for uncertainties in propulsion performance
- Simulate the full guidance and navigation process

Ad hoc tools and simulation setup to have realistic reproduction of operation strategy that will be used

- Core tool used is LOTNAV
- MANTRA is used for the trajectory re-optimization

OFTWARE TOOLS S

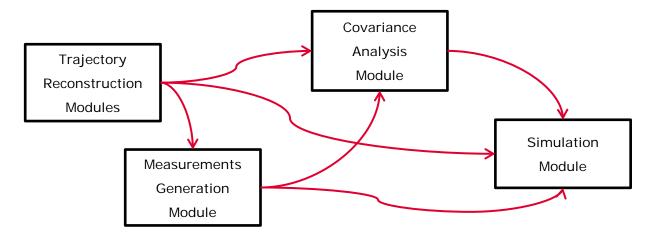
LOTNAV

LOw Thrust NAVigation tool (LOTNAV)

Developed by Deimos Space S. L. under ESA contract

Main Functions:

- reproduction of low-thrust trajectories including encounter with massive and minor bodies
- simulation of measurement systems used for orbit determination
- covariance analysis
- simulation of full Monte Carlo process on the navigation and guidance activities


One or more modules per function

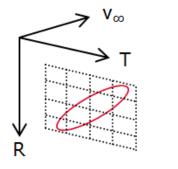
LOTNAV: modules

Core modules only (additional and support modules also present)

- Two modules for trajectory reconstruction (increasing level of accuracy)
- Orbit determination measurements simulated according to different schedules
- Measurments processed with batch-sequential Square Root Information Filter (SRIF)
- Simulation module includes the guidance process

MANTRA

Flight dynamics interplanetary manoeuver optimization software


Key Function: compute during operations the orbit manoeuvers required to reach given orbital targets while satisfying given mission constraints and minimizing a given cost function

Other Functions: mission design and preparation studies (launch window definition or verification, trade-off studies, sensitivity analyses)

Flexibility \leftrightarrow different scenarios simulation

Example: low-thrust interplanetary trajectory re-optimization

study how a different B-plane crossing point at a given flyby affects the optimization of the downstream trajectory

B-plane

SIMULATION WORK FLOW

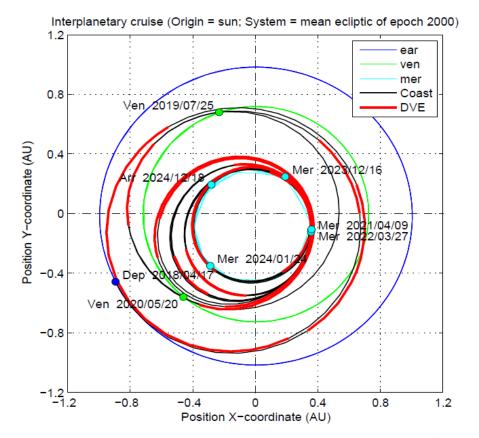
SIMULATION WORK FLOW

- 1. Regeneration of the reference optimized trajectory (LOTNAV internally consistent)
- 2. full guidance and navigation simulation with LOTNAV (assumptions for the orbit determination and guidance)
- 3. [Eventual] re-iteration of the guidance and navigation process (different strategies of guidance targeting, measurements schedule)
- 4. Trajectory re-optimization with MANTRA (given dispersion from step 2/3)
- 5. [Eventual] re-iteration on step 3/4

Major Assumptions:

- Negligible difference in trajectory after re-optimization (for navigation analysis purposes)
- Clean-up after flyby simulated in LOTNAV not accounted in total budget (re-optimization instead)

ASSUMPTIONS


Assumptions: trajectory

Baseline Bepicolombo trajectory

Launch in April 2018

Flybys sequence: dep-V-V-M-M-M-arr

Arrival in December 2024

NAVIGATION TOOLS AT ESOC MISSION ANALYSIS SECTION – BEPICOLOMBO NAVIGATION ANALYSIS

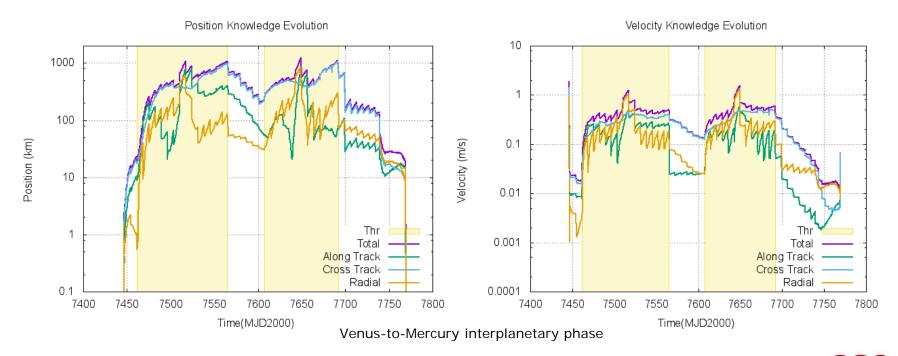
Assumptions: Measurements

OD Measurements types:	range, Doppler, ΔDOR		
Ground stations:	Cebreros (range and Doppler),		
	Cebreros-New Norcia + possibly Cebreros-Malargüe (ADOR		
Ground station availability:	one pass per week (interplanetary phases)		
	one pass per day (last 30 days before each flyby)		
	minimum elevation of 10° (15° for ΔDOR)		
Schedule:	range and Doppler sampled every 60 and 10 min		
	ΔDOR once every four days		
Ground station location error:	considered bias in all direction, 0.3 m		

Measurements errors:

Туре	Noise (1σ)	Bias
Range	10 m	2 m
Doppler	0.3 mm/s	
ΔDOR	0.2 m	

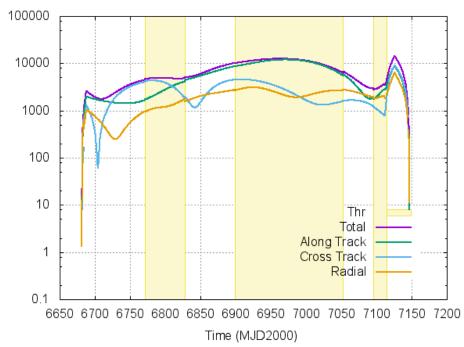
Assumptions: Orbit Determination and Guidance


Initial Knowledge and Dispersion:	from launcher performance data
Spacecraft residual acceleration:	ECRV, 1 σ steady state covariance of 10 ⁻¹¹ km/s ² , autocorrelation time 1 day
Guidance baseline scheme:	low-thrust guidance whenever possible during thrust arcs
	1 clean-up TCM after each flyby (+5 days, not accounted in budget)
	3 TCMs before each flyby (-20, -10, -2 days)
Low thrust guidance:	delay in guidance upload of 14 days (conservative)
	0.5 days unavailability at beginning and end of each thrust arc
	error in execution as ECRV, 1 σ steady state covariance of 1% in modulus and 0.5° in direction, autocorrelation time 1 day
Chemical guidance manoeuvers:	error in execution as Gaussian, 1 σ of 1% in modulus and 0.5° in direction

Assumptions: low-thrust arcs constraint

Considered in trajectory optimization (MANTRA) but related to navigation:

30 days coasting before each flyby imposed —> better spacecraft state knowledge for more precise TCMs


NAVIGATION TOOLS AT ESOC MISSION ANALYSIS SECTION – BEPICOLOMBO NAVIGATION ANALYSIS

RESULTS

Guidance strategy, example

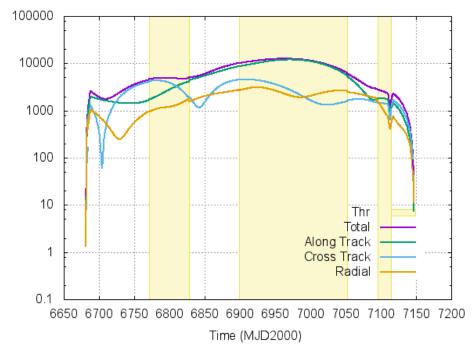
Earth-to-Venus phase, standard guidance strategy:

Position Dispersion Evolution

low-thrust guidance in all thrust arcs 3 TCMs

TCM epoch	TCM magnitude [m/s]
V1-20.9 d	38.900
V1-10.9 d	0.949
V1-2.9 d	0.173

Total > 40 m/s



NAVIGATION TOOLS AT ESOC MISSION ANALYSIS SECTION – BEPICOLOMBO NAVIGATION ANALYSIS 20

Position (km)

Guidance strategy, example

Earth-to-Venus phase, modified guidance strategy:

Position Dispersion Evolution

low-thrust guidance in all thrust arcs

3 TCMs + 2 additional

(1 before and 1 after last low-thrust arc)

TCM epoch	TCM magnitude
V1 – 54.7 d	3.130
V1 – 29.4 d	11.129
V1 - 20.9 d	0.852
V1 - 10.9 d	0.080
V1 - 2.9 d	0.156

Total < 16 m/s

Position (km)

Guidance strategy, targeting

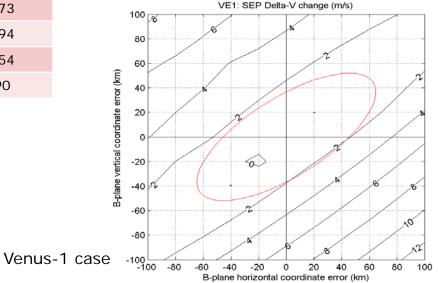
Targeting parameters:

- Spacecraft state at given epoch
- B-plane parameters at flyby epoch

Targeting epoch:

- Strongly affects the total navigation cost
- Optimum choice related to trajectory dynamics and not trivial

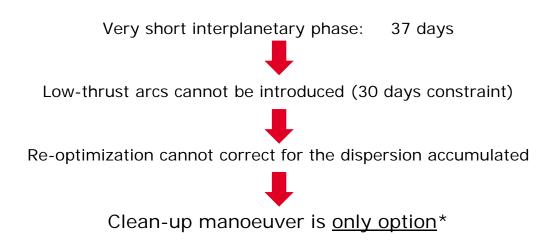
Example: Earth-to-Venus-1 interplanetary phase, targeting epoch influence


Targeted parameters time (epoch [MJD2000])		First TCM before M2 [m/s]	
SOI entrance	(7145.8)	14.287	
End of last thrust arc	(7114.1)	11.129	

Dispersion at B-plane

Flyby	Semi- major axis, 3σ [km]	Semi- minor axis, 3σ [km]	Semi-major axis angle [°]
Venus-1	77.035	30.791	36.398
Venus-2	17.565	8.857	58.322
Mercury-1	41.923	5.274	-84.073
Mercury-2	55.953	17.256	-57.994
Mercury-3	21.434	10.769	-88.654
Mercury-4	32.392	6.105	-0.590

- Always acceptable levels of dispersion
- No need of second ΔDOR baseline to reduce the knowledge error



 Very cheap re-optimization in most cases can be used instead of reducing dispersion via direct clean-up

NAVIGATION TOOLS AT ESOC MISSION ANALYSIS SECTION – BEPICOLOMBO NAVIGATION ANALYSIS 2010

Mercury-3-to-Mercury-4 re-optimization

Clean up at M3 + 5.04 days selected as baseline: 3 sigma cost = 9.557 m/s

*Normally discarded since low-thrust re-optimization is much less expensive (in mass terms)

Total Navigation Cost

Phase	Low-thrust	Low-thrust Chemical TCMs Re-optimization		n / clean-up cost [m/s]
Phase	Guidance [m/s] [m/s]	Elec.	Chem.	
DepV1	13.726	26.782	-	-
V1-flyby	-	-	< 15	0
V1-V2	6.638	5.504	-	-
V2-flyby	-	-	< 15	0
V2-M1	5.931	4.125	-	-
M1-flyby	-	-	< 15	0
M1-M2	15.109	8.882	-	-
M2-flyby	-	-	< 15	0
M2-M3	17.020	3.635	-	-
M3-flyby	-	-	0	9.557
M3-M4	0	0.474	-	-
M4-flyby	-	-	< 15	0
M4-Arr.	24.597	0	-	-
TOTAL	83.021	49.402	<75	9.557

Total low-thrust $\Delta V = 158.021$ m/s Total chemical $\Delta V = 58.959$ m/s

Close to pre-allocated value if all losses taken into account

All values are at 3 σ confidence

CONCLUSIONS

Conclusions

General remarks:

• Current software setup is considered reliable and coherent

BepiColombo navigation analysis:

- Selected measurement schedule is sufficient
- Most of the interplanetary arcs required additional TCM to lower the overall cost
- Critical phases individuated (Dep-to-V1, M3-to-M4)
- Total chemical ΔV is close to limit but still acceptable

THANK YOU

GNV BLOG f ヒ S+ 品 in ふ

Assas De

