

Assessing Orbit Determination Requirement With Unscented Transformation: Case Study Of A Lunar CubeSat Mission

Dr. Sun Hur-Diaz Dr. Ravishankar Mathur

6th International Conference on Astrodynamics Tools and Techniques (ICATT) 14-17 March 2016

> Emergent Space Technologies, Inc. 6411 Ivy Lane, Suite 303 • Greenbelt MD, 20770 • - 301 345-1535 • FAX - 301 345-1553 http://www.emergentspace.com

Outline

- Motivation
 - Effect of OD error on delta-V budget of a Lunar CubeSat Mission

Methods

- Monte Carlo
- Linear Covariance
- Unscented Transformation
- Simulation and Results

CubeQuest Challenge

- One of NASA's Centennial Challenges
- Winning 6U CubeSats in the competition are offered a launch on the Exploration Mission (EM) 1 mission as secondary payloads

- All such CubeSats will be disposed into a high-energy trajectory that will fly by the Moon
- Most CubeSate will use some form of a low-thrust propulsion system to achieve lunar orbit
- In order to determine the OD strategy for such a mission, the OD accuracy requirement needs to be understood

Nominal Lunar Transfer Trajectory

To Sun Earth L1 Burns 2	Sun-Earth L1 Burns 2					
		Delta-V	Duration			
	Maneuver Name	(m/s)	(days)			
	Pre-Flyby	14.2	2.3			
	Sun-Earth L1	215.9	35.0			
	Lunar Distant Retrograde Orbit (DRO)	43.2	7.0			

Maneuver Change from OD Error

 There are many sources contributing to changes in the nominal maneuver

 In this paper, we focus on the OD error contribution to the maneuver change

 $\partial (\Delta V)_{OD Error}$ = Planned Maneuver – Nominal Maneuver

Maneuver Function

 Nonlinear function utilizing NASA GSFC's open source General Mission Analysis Tool (GMAT)

Goal is to determine the maneuver variation due to OD state estimate uncertainty

$$P_{uu} = E\left[(u - \overline{u})(u - \overline{u})^T\right]$$

Monte Carlo (MC) Method

- Considered most accurate if large number of cases are simulated
- Perform N cases of OD simulation
- Compute the *i*-th maneuver corresponding to each OD solution
- Compute the covariance of the resulting N planned maneuvers

$$\overline{u}(i) = \frac{\sum_{j=1}^{N} u_j(i)}{N}$$
$$\frac{\sum_{j=1}^{N} (u(i) - \overline{u}(i))(u(i) - \overline{u}(i))^T}{N}$$
$$P_{uu}(i) = \frac{N}{N}$$

Linear Covariance (LC) Method

 Linear transformation of the state estimate uncertainty into the variation in the *i*-th maneuver

$$P_{xx} \to P_{uu}(i)$$

 Requires computing the sensitivity matrix (Jacobian) of the maneuver relative to the OD state estimate

$$P_{uu}(i) = \frac{\partial(u_i)}{\partial(\hat{x})} P_{xx} \left(\frac{\partial(u_i)}{\partial(\hat{x})}\right)^T$$

The maneuver function "Black Box" is highly nonlinear with no analytic expression so numerical difference:

$$\frac{\partial(u_i)}{\partial(\hat{x})}(:,j) \cong \frac{u(i,j) - u(i)_{NOM}}{\hat{x}_j - \hat{x}_{j_{NOM}}}$$

Unscented Transformation (UT)

 2L+1 sigma points are generated that statistically represent the OD estimates, where L is the number of states

$$\chi = \begin{bmatrix} \overline{x} & \overline{x} \pm \left(\sqrt{(L+\lambda)P_j} \right) \end{bmatrix} \text{ for } j = \{1, \dots, L\}$$
$$\lambda = \alpha^2 (L+\kappa) - L$$

UT Maneuver Variation

 Weights associated with the OD estimate sigma points are applied to the maneuver sigma points to form the maneuver variation

$$W_0^m = \frac{\lambda}{L+\lambda} \qquad W_0^c = \frac{\lambda}{L+\lambda} + (1-\alpha^2 + \beta) \qquad W_k^m = W_k^c = \frac{1}{2(L+\lambda)}$$

$$\overline{u}_i = \sum_{k=0}^{2L} W_k^m u_{i,k}$$
$$(P_{uu})_i = \sum_{k=0}^{2L} W_k^c \left(u_{i,k} - \overline{u}_i \right) \left(u_{i,k} - \overline{u}_i \right)^T$$

Pre-Flyby Orbit Determination Setup

- 5 US ground stations
- One-way range rate measurements 15 mm/s (1 σ)
- Range rate bias 1 km/s
- 11 hours of tracking @ 1 minute intervals
- Extended Kalman Filter solve for position, velocity, range rate bias
 - NASA GSFC's OD Tool Box (estseq function)

10-Case Monte Carlo Simulation

Actual errors e
Ensemble mean of e
Ensemble 1- to 3-std of e wrt ensemble mean

ICATT 2016

0.6

OD Estimate

 Formal covariance matrix obtained from the Pre-Flyby OD

	0.4	.07	0.6	9×10^{-6}	3×10^{-6}	7×10^{-6}
		0.2	-1	-3×10^{-6}	7×10^{-6}	-1×10^{-5}
$P_{(1)} =$			20	1×10^{-4}	-4×10^{-5}	2×10^{-4}
$I_{xx}(1) -$				6×10^{-10}	-1×10^{-10}	9×10^{-10}
	•				2×10^{-10}	-3×10^{-10}
		•			2~10	2×10^{-9}

• 1- σ uncertainties

 $\delta x = [0.63 \quad 0.49 \quad 4.9]$ km $\delta v = [25 \quad 15 \quad 47]$ mm/s

Position Sigma Points & OD Estimates

Velocity Sigma Points & OD Estimates

15

Simulation Results

Effects of Pre-Flyby OD Uncertainties on the Transfer Maneuvers

Pre-Flyby Maneuver Variations (m/s)

Sun-Earth L1 Maneuver Variations (m/s)

Method	$\delta(\Delta V x)$	δ(ΔVy)	$\delta(\Delta Vz)$	$ \delta\Delta \mathbf{V} $	Method	$\delta(\Delta V x)$	δ(ΔVy)	$\delta(\Delta Vz)$	$ \delta\Delta \mathbf{V} $
MC	0.74	0.04	0.18	0.76	MC	0.36	0.94	0.68	1.22
LC	0.66	0.05	0.17	0.68	LC	0.32	0.85	0.62	1.10
UT	0.73	0.08	0.17	0.75	UT	0.36	0.93	0.68	1.21

- If there is room in the ∆V budget, a lower OD accuracy may be acceptable with a possibility of relaxing the tracking schedule or the number of ground stations to reduce operational cost
- NOTE: A similar analysis should be performed for OD done before the other transfer maneuvers

Conclusions

- Three methods of determining the impact of OD accuracy on the delta-V were presented
- The Unscented Transformation method was shown to match the (10-case) Monte Carlo method better than the Linear Covariance method by about 10%
- The Unscented Transformation is an alternative to the Monte Carlo method for assessing OD requirements for a space mission
 - A larger number of Monte Carlo cases are required to really prove this out

Thank you!

