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ABSTRACT

Spacecraft re-entering the Earth atmosphere in an uncontrolled man-
ner may get stabilised by restoring aerodynamic torques, if they have
an appropriate shape and mass distribution. While the aerodynamic
force (mainly drag) is usually a second-order effect compared to
the gravitational acceleration by the Earth at altitudes above 150
km, the aerodynamic torques can compete with the Earth gravita-
tion gradient-induced torques sometimes already at altitudes at and
below 250 km. Therefore it is of interest to have an understanding
of how to compute the aerodynamic torques in this altitude regime.

In this paper the theory of the computation of the aerodynamic
coefficients at altitudes above 150 km, where the flow regime is
free-molecular, is revisited and applied for simple geometric shapes
as well as for a composite shape. The idea is to map eventually
arbitrarily-shaped spacecraft onto simple geometric shapes to clas-
sify their aerodynamic attitude behavior by their coefficients.

Index Terms— Free-molecular flow, Aerodynamic coefficients,
Analytical approach

1. INTRODUCTION

The usual approach to compute the aerodynamic coefficients at high
altitudes is to construct a surface model of the spacecraft, where the
surface is either modelled with plane face elements or discretized
into small triangular or quadrangular ”panels”. The aerodynamic
coefficients are then computed for each surface element and summed
up with an Integral or Monte-Carlo method, utilizing that the flow
around the spacecraft can be considered as free-molecular.

While the Monte-Carlo method can give quite accurate coef-
ficients for a given configuration, it does not provide information
on configuration changes. This is different to analytical solutions,
where the geometric dimensions and mass distribution appear as ex-
plicit parameters, and where the influence of configuration changes
on the results are obvious. On the other hand, the possibility to get
analytical solutions is limited to convex geometric shapes. This can
be extended to concave shapes by using some kind of shadowing al-
gorithms, but in this case the additional effort needed to examine the
shadowed areas can foil the advantages of the analytical approach
compared to the numerical analysis.

In any case the combination of different methods can give an
added value. For basic geometries analytical solutions are known.
Comparing these solutions with Monte-Carlo results can serve as a
calibration method for the Monte-Carlo method statistical uncertain-
ties. For more complex geometries the Monte-Carlo method can give
a measure of the effect of shadowing and multiple reflections, which
cannot be considered exactly or not at all in analytical solutions or
integral methods.

Due to the special form of the free-molecular gas-surface inter-
action and its momentum transfer some simplifications are possible
especially for the typical high-speed conditions in orbit, which can
be used to extend the validity of the analytical solutions or at least
extend their approximate range of validity.

2. ANALYTICAL SOLUTIONS

2.1. Basic Equations

Aerodynamic forces and torques acting on a spacecraft are calcu-
lated by integrals over the spacecraft surface area A exposed to the
flow:

~F =

∫
A

~f(~r) dA (1)

~M =

∫
A

(~r − ~rcm)× ~f(~r) dA (2)

where ~f(~r) is the local aerodynamic stress (force per area), and ~rcm
is a moment reference point.

Eqns. (1) and (2) can be nondimensionalized by factoring out the
dynamic free-stream pressure q∞ = ρ∞V

2
∞/2, where ρ∞ and V∞

are the free-stream density and velocity, and introducing reference
values for area Aref and length Lref , and introducing local force
coefficients ~f(~r) = q∞~cf (~r):

~F = q∞Aref ~CF (3)
~M = q∞ArefLref ~CM (4)

~CF =
1

Aref

∫
A

~cf (~r) dA (5)

~CM =
1

ArefLref

∫
A

(~r − ~rcm)× ~cf (~r) dA (6)

For trajectory and attitude propagation problems it is more conve-
nient to use dimensional coefficients:

~CFA =

∫
A

~cf (~r) dA (7)

~CMV =

∫
A

(~r − ~rcm)× ~cf (~r) dA (8)

where the trailing letter in the subscript indicates, that the quantity is
either an area (in ~CFA) or a volume (in ~CMV ). The advantage of us-
ing dimensional coefficients is that there is no need for normalisation



and denormalisation by reference quantities. Then,

~F = q∞ ~CFA (9)
~M = q∞ ~CMV (10)

~CF =
~CFA
Aref

(11)

~CM =
~CMV

ArefLref
(12)

The local force coefficient depends on the gas-surface interaction.
Using the Maxwell model, where it is assumed that a fraction σ of
the molecules impinging on the spacecraft surface is reflected dif-
fusely and the remaining fraction (1−σ) is reflected specularly, one
gets

~CF =
1

Aref

∫
A

(σ~cf,diff (~r)

+ (1− σ)~cf,spec(~r)) dA (13)

~CM =
1

ArefLref

∫
A

(~r − ~rcm)× (σ~cf,diff (~r)

+ (1− σ)~cf,spec(~r)) dA (14)

with [1]

~cf,diff = − 1√
πS2

(
Π(Sn) +

√
π

2

√
TW
T∞

χ(Sn)

)
~n

+
Stχ(Sn)√

πS2
~t (15)

~cf,spec = − 2√
πS2

Π(Sn)~n (16)

where ~n and ~t are the normal and tangential surface unit vectors, Sn
and St are the normal and tangential components of the speed ratio
vector ~S = ~V

√
m/2kT∞, TW and T∞ are the temperature of the

wall surface element and the temperature of the ambient atmosphere,
and

Π(Sn) = Sne−S
2
n +
√
π(S2

n +
1

2
)(1 + erf (Sn)) (17)

χ(Sn) = e−S
2
n +
√
πSn(1 + erf (Sn)) (18)

While the surface normal unit vector ~n is defined locally by the sur-
face geometry, the tangential unit vector depends also on the velocity
direction:

~t ∼ (~V × ~n)× ~n (19)

= (~n~V )~n− ~V (20)
~t = (~n cos θ − ~v)/ sin θ (21)

where θ is the angle between velocity and normal direction, and ~v is
the unit velocity vector. With

Sn = S cos θ, St = S sin θ (22)

(15) can be expressed alternatively in the form

~cf,diff = − 1

2S2

(
1 + erf (S cos θ) +

√
TW
T∞

χ(S cos θ)

)
~n

− χ(S cos θ)√
πS

~v (23)

defining three force coefficients:

~cf,diff = (cn,i +

√
TW
T∞

cn,r)~n+ cv,i~v (24)

For a numerical computation of the aerodynamic coefficients the
body’s surface is partitioned into small surface elements, so that for
each element the surface normal direction can be regarded as approx-
imately constant. The integrals (13) and (14) are then approximated
by sums over the contributions of each surface element, computed
from (15) and (16).

In an analytical treatment analytical closed-form solutions are
sought for the integrals (13) and (14), using (23) and (16) for the
coefficients. Different to the numerical treatment, where only the
values are needed for each surface element, in the analytical treat-
ment the surface geometry is analyzed for possible simplifications,
special cases and symmetries.

For the computation of the coefficients the vectors ~n and ~v have
to be known. ~n is a function of the spacecraft geometry and can be
expressed as function of the surface coordinate:

~n = (nx(x, y, z), ny(x, y, z), nz(x, y, z)) (25)

The velocity direction can be expressed by the aerodynamic angles
of attack and side slip, α and β. Mathematically the aerodynamic
attitude of a body can be described by a rotation about the body-
fixed z-axis (yaw rotation) by an angle −β, followed by a rotation
about the body-fixed y-axis (pitch rotation) by an angle α. This is
equivalent to a pitch rotation about the body-fixed y-axis by angle α,
followed by a yaw rotation about the space-fixed z-axis by angle−β.
In both cases the components of the velocity vector in the body-fixed
frame are

~v = (cosα cosβ, sinβ, sinα cosβ) (26)
An alternative rotation sequence is a pitch rotation by the so-called
total angle of attack about an axis which is in general neither aligned
with a body-fixed axis nor a wind axis, and a roll angle about the
body-fixed x-axis. The total angle of attack is uniquely defined as
the angle between the body-fixed axis and the wind x-axis:

cosαT = cosα cosβ (27)

The roll angle φ can then be determined to be

cotφ = sinα cotβ (28)

Then
~v = (cosαT , sinαT sinφ, sinαT cosφ) (29)

(29) is especially suited for geometries with rotational symmetry.
In the following sections formulas will be derived for the diffuse

reflection part of the force and moment coefficients. According to
[2] it is a reasonable assumption, that the gas-surface interaction is
completely diffuse (σ = 1) at least for flight altitudes below 300 km.
In this case the following considerations are similar to Sentman’s
derivations [3].

For ease of formulation the suffix diffuse will be omitted. Refer-
ring to (23) following notation will be used:

~cf = − 1

2S2

(
1 + erf (Sn) +

√
TW
T∞

χ(Sn)

)
~n

− χ(Sn)√
πS

~v (30)

= (cn,i~n+ cv,i ~v) +

√
TW
T∞

cn,r~n (31)

= ~cf,i +

√
TW
T∞

~cf,r (32)



Figure 1 shows the factors in the local coefficients which are
dependent on the normal coefficient of the speed ratio Sn.

1 + erf (Sn) appears only in cn,i. It is bounded by the values
0 and 2. Since there is an additional factor proportional to 1/S2

in this coefficient, this means that at hypersonic speeds (S > 5)
the contribution of the incident molecules to the normal component
in (30) will be generally small. It has to be noted, however, that
there is another contribution in the normal direction by the incident
molecules by the normal component of the velocity.

The function χ(Sn) appears in the contribution of the incident
molecules in the direction of the velocity cv,i as well as in the con-
tribution of the reflected molecules in normal direction cn,r . This
function is less than 1 on the leeside (Sn < 0), but rises linearly
with Sn already at supersonic normal speed ratios (Sn > 1). This
means, that at low to moderate local inclination angle θ the contri-
bution of the incident molecules in velocity direction cv,i becomes
independent of the speed ratio, and only a function of θ. Compared
to this the contribution of the reflected molecules in normal direc-
tion cn,r , which has the same dependence on Sn, is approximately
smaller by a factor of

√
TW /T∞/S.

Fig. 1. Sn-dependence of the local coeffcients

2.2. Flat face

The simplest body of finite size is a single-sided flat face. While
single-sided faces are physically not realistic, they are a helpful con-
cept when constructing body surfaces from flat faces, where the face
backsides are not visible from outside and do not have to be consid-
ered in the calculation of the outer surface coefficients.

2.2.1. Forces

For a flat face the force coefficient is constant over the whole sur-
face, therefore the total force coefficient is just the local coefficient
multiplied the surface area of the flat face AFF

~CFA,FF =

∫
A

~cfdA = ~cfAFF (33)

The local force coefficient is given by (30), with

~cf,i = − 1

2S2
(1 + erf (Sn))~n− 1√

πS
χ(Sn)~v (34)

~cf,r = − 1

2S2
χ(Sn)~n (35)

As an example, a flat face with its surface aligned parallel to the
y-z-plane, ~n = (1, 0, 0), Sn = Sx, and

~CFA,FF,i = −AFF
(

1

2S2
(1 + erf (Sx))~ex

+
1√
πS

χ(Sx)~v

)
(36)

~CFA,FF,r = −AFF
1

2S2
χ(Sx)~ex (37)

with

Sx = S cosα cosβ (38)
= S cosαT (39)

From (39) it is clear that the normal component of the speed ratio
depends only on the total angle of attack, which is in the case of the
flat face identical to the local flow inclination. This means, that the
magnitudes of the coefficients for the flat face depend only on the
total angle of attack.

Figure 2 shows the force coefficients of a flat face as function of
angle of attack.

Fig. 2. Flat face force coefficients. The reference area is 1.

2.2.2. Moments

For a constant cf (8) can be rewritten as

~CMV =

∫
(~r × ~cf )dA−

∫
(~rcm × ~cf )dA (40)

=

(∫
~rdA

)
× ~cf − (~rcm × ~cf )A (41)

= (~rP − ~rcm)× ~CFA (42)

where the notation ~rP = (
∫
~rdA)/A was used. By definition, rP

is identical to the center of area of the face. With (42) the moment
acting on a flat face can be computed from the total force coefficient:

~CMV,FF = (~rP,FF − ~rcm)× ~CFA,FF (43)

The moment reference point ~rcm can be located everywhere, there-
fore no flat face tag was added to it. For the special case rcm =
rP,FF , for example, it follows immediately that the moment about
the center of area of the face is zero, regardless of the magnitude of
the force acting on it.



2.3. Flat plate

A flat plate will be regarded here as a double-sided flat face. This
is a more physical realistic type of shape, except that its thickness is
assumed to be zero.

2.3.1. Forces

For a flat plate, the force coefficients of a flat face have to computed
for both sides and then added. Both sides differ in the direction of
their normals: they are oppositely directed. This means, that in the
coefficient equations ~n changes sign for the opposite face, but also
Sn. Summing up both contributions gives for the force coefficients
of a flat plate

~cf,i = − 1

S2
erf (Sn)~n− 1√

πS
χ+(Sn)~v (44)

~cf,r = − 1

2S2
χ−(Sn)~n (45)

with the definitions

χ+(Sn) = χ(Sn) + χ(−Sn) (46)
= 2 exp(−S2

n) + 2
√
πSn erf (Sn) (47)

χ−(Sn) = χ(Sn)− χ(−Sn) (48)
= 2

√
πSn (49)

The functions χ+(Sn) and χ−(Sn) are shown in Figure 3.

Fig. 3. Functions χ, χ+, and χ−

The total force coefficients is given by (33):

~CFA,FP,i = −AFP
(

1

S2
erf (Sn)~n

+
1√
πS

χ+(Sn)~v

)
(50)

~CFA,FP,r = −AFP (
1

2S2
χ−(Sn)~n) (51)

Figure 4 shows the force coefficients of a flat face as function of
angle of attack.

2.3.2. Moments

Since for a flat plate the center of areas concide for both faces, (42)
can be applied here as well, using for ~CF the total force coefficient
of the plate:

~CMV,FP = (~rP,FP − ~rcm)× ~CFA,FP (52)

Fig. 4. Flat plate force coefficients. The reference area is 1.

2.4. Box

Flat face and flat plate are defined by their normal direction and sur-
face area. In the following all shapes will be regarded as centered
and aligned w.r.t. a geometric coordinate system. Actually this as-
sumption does not reduce the generality of the results, but gives the
possibility to be more specific in the values.

A box will be defined here as a rectangular body with given size
in x, y, and z-direction and centered around the geometric coordinate
origin. The sizes are called length l, width w, and height h.

2.4.1. Forces

For a box we have three pairs of oppositely oriented faces. Different
to a flat plate they have also different locations.

For the x-faces, ~n = (±1, 0, 0), ~n~v = ±vx, for the y-faces,
~n = (0,±1, 0), ~n~v = ±vy , for the z-faces, ~n = (0, 0,±1), ~n~v =
±vz . Inserting into (50) and (51) and summing up yields

~CFA,B,i = − 1

S2
( erf (Sx)Ax~ex+ erf (Sy)Ay~ey+ erf (Sz)Az~ez)

− 1√
πS

(χ+(Sx)Ax + χ+(Sy)Ay + χ+(Sz)Az)~v (53)

~CFA,B,r = −
√
π

S
(Axvx~ex +Ayvy~ey +Azvz~ex) (54)

The flat plate formulas could be used since the force coefficients
only depend on the normal vectors of the different planes, not on
their position.

Figure 5 shows the force coefficients of a box as function of
angle of attack.

2.4.2. Moments

For the moment coefficients the face positions become relevant since
they determine the lever arm. Therefore we have to refer to the flat
face formulas. In doing so it makes sense to split up the contributions
of the face centers (due to the ~rP s) and the reference point offset
~rcm.

For a box ~rP has the same direction as ~n for each face. Therefore
the ~n-component of the force coefficients does not contribute to the
moments. This means in particular that the reflected molecules do



Fig. 5. Box force coefficients. The box dimensions are l = 2, w =
1, h = 1. The reference area is 1.

not contribute to the moments at all. For the incident molecules

~CMV,B,i =

6∑
i=1

~rP × CF,i (55)

= − 1√
πS

(
χ−(Sx)

Axl

2
~ex + χ−(Sy)

Ayw

2
~ey

+ χ−(Sz)
Azh

2
~ez

)
× ~v (56)

= −V
S
~S × ~v (57)

= 0 (58)
~CMV,B,r = 0 (59)

where V = Axl = Ayw = Azh denotes the box volume. This
means that a box has no moment w.r.t. its geometric center. So for
the total moment of a box

~CMV,B = ~rcm × (~CFA,B,i + ~CFA,B,r) (60)

2.5. Circular cylinder

2.5.1. Forces

Mantle
The local normal vector is

~n = cosφ~ey + sinφ~ez (61)

and

~CFA,CC,m,i = −Rl
(

1

2S2

∫ 2π

0

(1 + erf (Sy cosφ+ Sz sinφ))

(cosφ~ey + sinφ~ez) dφ

+
1√
πS

~v

∫ 2π

0

χ(Sy cosφ+ Sz sinφ) dφ

)
(62)

~CFA,CC,m,r = −Rl 1

2S2

∫ 2π

0

χ(Sy cosφ+ Sz sinφ)

(cosφ~ey + sinφ~ez) dφ (63)

The calculation of these coefficients requires the computation of sev-
eral integrals which are functions of two parameters (Sy and Sz).

Due to the special form of the integrals it appears possible to trans-
late them into a one-parameter form, which simplifies their evalu-
ation. Defining Syz =

√
S2
y + S2

z , the integrals can be re-written
as

~CFA,CC,m,i = −Rl
(

1

2S2

∫ 2π

0

(1 + erf (Syz sin(φ+ φ0)))

(cosφ~ey + sinφ~ez) dφ

+
1√
πS

~v

∫ 2π

0

χ(Syz sin(φ+ φ0)) dφ

)
(64)

~CFA,CC,m,r = −Rl 1

2S2

∫ 2π

0

χ(Syz sin(φ+ φ0))

(cosφ~ey + sinφ~ez) dφ (65)

with φ0 = arccos(Sz/Syz) = arcsin(Sy/Syz). With the re-
definition φ→ φ+ φ0:

~CFA,CC,m,i = −Rl
(

1

2S2

∫ 2π

0

(1 + erf (Syz sinφ))

(cos(φ− φ0)~ey + sin(φ− φ0)~ez) dφ

+
1√
πS

~v

∫ 2π

0

χ(Syz sinφ) dφ

)
(66)

= −Rl
(

1

2S2

∫ 2π

0

(1 + erf (Syz sinφ))

((cosφ cosφ0 + sinφ sinφ0)~ey

+ (sinφ cosφ0 − cosφ sinφ0)~ez)dφ

+
1√
πS

~v

∫ 2π

0

χ(Syz sinφ) dφ

)
(67)

~CFA,CC,m,r = −Rl 1

2S2

∫ 2π

0

χ(Syz sinφ)(cos(φ− φ0)~ey

+ sin(φ− φ0)~ez) dφ (68)

= −Rl 1

2S2

∫ 2π

0

χ(Syz sinφ)(cosφ cosφ0

+ sinφ sinφ0)~ey

+ (sinφ cosφ0 − cosφ sinφ0)~ez)dφ (69)

Using the identities∫ 2π

0

sinφdφ = 0 (70)∫ 2π

0

cosφdφ = 0 (71)∫ 2π

0

erf (x sinφ) cosφdφ = 0 (72)∫ 2π

0

χ(x sinφ) sinφdφ = π3/2x (73)∫ 2π

0

χ(x sinφ) cosφdφ = 0 (74)

(75)

and naming the remaining irreducible integrals as

I1(x) =

∫ 2π

0

erf (x sinφ) sinφdφ (76)

I2(x) =

∫ 2π

0

χ(x sinφ)dφ (77)



Eqns. (67) and (69) can be expressed in the form

~CFA,CC,m,i = −Rl
(

(sinφ0~ey + cosφ0~ez)
1

2S2
I1(Syz)

+
1√
πS

~v I2(Syz)

)
(78)

~CFA,CC,m,r = −Rl(sinφ0~ey + cosφ0~ez)
1

2S2
π3/2Syz (79)

In cartesian coordinates this gives

~CFA,CC,m,i,x = −Rl 1√
πS

cosαT I2(S sinαT ) (80)

~CFA,CC,m,i,y = −Rl sinφ0(
1

2S2
I1(S sinαT )

+
1√
πS

sinαT I2(S sinαT )) (81)

~CFA,CC,m,i,z = −Rl cosφ0(
1

2S2
I1(S sinαT )

+
1√
πS

sinαT I2(S sinαT )) (82)

The integrals I1 and I2 are non-standard mathematical func-
tions, but they are well-behaved, and they could be considered as
defined by these definitions. It is possible to express these functions
by modified Bessel functions, but this is not considered here, since
the modified Bessel functions do not have the desired asymptotic
behaviour for small and large arguments x.

End faces

~CFA,CC,e,i = −Ae
(

1

S2
erf (Sx)~ex +

1√
πS

χ+(Sx)~v

)
(83)

~CFA,CC,e,r = −Ae
√
π

S
~ex (84)

where Ae = πR2 is the end face area.
Figure 6 shows the force coefficients of a cylinder as function of

angle of attack.

Fig. 6. Cylinder force coefficients. The cylinder dimensions are:
l = 2, r = 1/

√
π. The reference area is 1.

2.5.2. Moments

Mantle

~CMV,CC,m,i =− R2l√
πS

∫ 2π

0

~n× χ(Sy cosφ+ Sz sinφ)~v dφ(85)

=− R2l√
πS

(∫ 2π

0

χ(Sy cosφ+ Sz sinφ)

(cosφ~ey + sinφ~ez) dφ)× ~v (86)

With the same substitutions as applied for the force coefficients the
integral can be reformulated

~CMV,CC,m,i = −R2l
1√
πS

(∫ 2π

0

χdφ(Syz sinφ)

(cosφ cosφ0 + sinφ sinφ0)~ey (87)
+ (sinφ cosφ0 − cosφ sinφ0)~ez))× ~v (88)

which finally gives, using (73) and (74)

~CMV,CC,m,i =− R2l√
πS

(
π3/2Syz(sinφ0~ey + cosφ0~ez)

)
×~v(89)

= −πR2l sinαT (sinφ0~ey + cosφ0~ez)× ~v (90)
= −πR2l sinαT cosαT (cosφ0~ey − sinφ0~ez)(91)

End faces

~CMV,CC,e,i=−πR2l cosαT sinαT (− cosφ0~ey + sinφ0~ez)(92)

Total
The total moment coefficients are then again zero in the sym-

metric case (rcm = 0)

~CMV,CC,i = ~CMV,CC,m,i + ~CMV,CC,e,i (93)
= 0 (94)

~CMV,CC,r = 0 (95)

In the general case,

~CMV,CC = ~rcm × (~CFA,CC,i + ~CFA,CC,r) (96)

3. APPLICATION TO A REAL SATELLITE

As an application case of the analytical approach the GOCE satellite
will be used. For this satellite a surface panel model had been cre-
ated earlier with the ANGARA software [4]. With this software the
free-molecular aerodynamic and the solar radiation pressure induced
force and torque coefficients can be calculated for arbitrarily shaped
spacecraft. Figure 7 shows a view of the GOCE panel model.

The shape of the satellite consists essentially of an octacon-
shaped main body in x-direction (front/back) with wings in z-
direction (down/up) and flaps in y-direction (below/above) in the
back.

For an analytical approach it seems reasonable at first to con-
struct a simplified model consisting of a cylindrical main body with
two flat plates modelling the wings. The problem with such a model
is that one will get strong effects by shadowing and multiple reflec-
tions, which cannot be considered in the analytical approach, at least
not in an easy way.

The results of the analytical considerations in the previous sec-
tions show, that for hypersonic speeds the local aerodynamic coef-
ficients are mainly directed in velocity direction and therefore the



Fig. 7. GOCE surface panel model

projected area is of major importance. So it appears reasonable to
approximate the GOCE satellite just by a box with appropriately se-
lected dimensions. An added value is that one gets automatically rid
of shadowing and multiple reflection problems.

In the following the aerodynamic coefficients of the complete
GOCE model as computed with the ANGARA software will be
compared with the corresponding coefficients of a simple box with
roughly similar overall dimensions as computed with an analytical
formula (cf. Sec.2.4). The selected dimensions were: length l = 5
m, width w = 0.7 m, height h = 2 m. Compared are only the
contributions of the incident molecules.

Figure 8 shows the results of the computation of the axial and
normal force coefficients Cx and Cz as well as of the pitching mo-
ment Cm for GOCE and for the box as function of angle of attack
(no side-slip).

Fig. 8. Aerodynamic coefficients of GOCE, computed with the
Monte-Carlo method, compared with a similar-sized ”equivalent
box”, computed analytically, as function of angle of attack (no side-
slip)

Figure 9 shows the results of the computation of the axial and
side-force force coefficients Cx and Cy as well as of the yawing
moment Cn for GOCE and for the box as function of side-slip angle
(no angle of attack).

Fig. 9. Aerodynamic coefficients of GOCE, computed with the
Monte-Carlo method, compared with a similar-sized ”equivalent
box”, computed analytically, as function of angle of side slip (no
angle of attack)

4. CONCLUSIONS

In this paper analytical solutions for the aerodynamic coefficients of
simple-shaped bodies in free-molecular flow have been derived. The
approach used differs from previous approaches in the use of a more
symbolic notation, which makes it possible to find more compact ex-
pressions for the coefficients, and a different consideration of normal
and tangential components.

The advantage of a more manageable form of the coefficients is
the possible application to real satellites. This was demonstrated in
the paper for the GOCE satellite, where with a simple surrogate box
model the coefficents of the full model calculated by a Monte-Carlo
method could be quite accurately reproduced by an analytical calcu-
lation. This could be a first step to classify the aerodynamic prop-
erties of arbitrarily-shaped spacecraft by mapping them onto simple
geometric shapes.
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