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ABSTRACT that a new linearization of the two-body equation can be ob-

In this paper we present new variables to describe the drbit&ined with a similar decomposition when either the ecoentr
motion of a celestial body in the Solar System. The motion i€ the hyperbolic anomaly is the independent variable. Then
the solution of a perturbed two-body problem, where the maif®y @Pplying the variation of parameters we introduce sixvar
perturber can be the Sun or any p|anet. Two sets of generébles that can be used to describe the perturbed motion of the
ized orbital elements are proposed for positive and negatiiPropagated object. The new quantities, together with the to
values of the total energy, respectively. The formeris the s tal energy and the physical time, constitute the state vefto
ject of the paper [1], while the latter is here presentedtier t the special perturbation methods proposed here. We also in-
first time. Numerical tests for perturbed geocentric motiorvestigate the geometrical and physical meaning of the six pa
and close encounters with a planet show that the new coordiameters: they are all related to an intermediate framelwhic

nates are very efficient when compared with both regularizeghares with the local-vertical local-horizontal frame thie
and Cowell's methods. rection of the angular momentum. This slowly moving frame

) ) recalls the ideal frame discovered by the Danish astronomer
Indgx 'I_'erms— orbital propagation, close encounters,p s Hansen in 1857, which plays a key role in Deprit's ([2])
regularization and Pelaez’s ([3]) sets of orbital elements.
The method that works with negative values of the total
1. INTRODUCTION energy is presented in Section 2. The new variables are intro
duced by following a geometrical approach. The connection
Close encounters with massive bodies, such as planets @jth a new linearization of the two-body problem is explaine
Jupiter/Saturn’s satellites, make the orbit of any asteosi i [1]. A similar formulation for positive values of the to-
spacecraft chaotic. Moreover, in the case of subsequent ey energy is presented, for the first time, in Section 3. The
counters the Lyapunov time can become very short. Accuratgerformance of the new formulations has been evaluated for
propagation is required in the orbit determination of clot geocentric motion and for interplanetary orbits with clese

bodies, because it mitigates the exponential divergence @ounters. Some results are reported in Section 4.
nearby orbits. For example, the impact monitoring of ndtura

and artificial objects with the Earth, and the planning ofcgpa
missions with several fly-bys, have to be done with mathe-

matical tools that are able to deal with chaos. One of thesge aqopt throughout this paper non-dimensional quantities

tools is a reliable and accurate orbit propagator. __such that the product of the gravitational constant anctttae t
We propose new methods to accurately compute ellipticn 555 of the two bodies is equal to one. Let us describe the

and hyperbolic motion in the Solar System. Our approaclyynamical state of the propagated body by its positiamd

roots in the regularization of the two-body equation, whichyg|oity v relative to the central body (also called “primary”).

is transformed into a set of linear differential equationthw They are expressed in a coordinate system with the origin at

constant coefficients. This result is obtained by introdg@ ¢ primary’s centre of mass and with fixed axes in space. In

newlindepenQentva}riabIe (also called fi_ctitioustime) aﬂd N general, the moving particle is acted upon by the fdfce
spatial coordinates in place of the position and velocity.

In the Burdet-Ferrandiz linearization the fictitious timse F—_ZL _ U (t, r) +P(tr, V), 1)
the true anomaly, and the new state variables are the ingkrse 3 or
the orbital radius, the radial direction and the angular moem where the disturbing potential enerdfyis assumed to be in-
tum. In this way the motion is decomposed into the radial disdependent on the velocity arf includes any perturbation
placement and the rotation of the radial unit vector. We showhat does not arise from a disturbing potential.

2. GENERALIZED ELLIPTIC MOTION



Let the vectoih be the orbital angular momentum and the
scalarsr andh be the magnitudes aof andh, respectively.
We define therbital frameO = {F; i, j, k} by means of the
orthonormal basis

k-2 i=1, j=kxi, (2
h r

which rotates at the angular velocity

h
WozN%i—i-r—Q

Then, it is straightforward to write the velocity vector as

k. (3)

dr h
=—i+—]. 4
A% 1 + . J (4)
It is convenient to express also the perturbing force veEtor

in the orbital frame:

Fig. 1. The intermediate framfF; x, y, k} as viewed from
thek axis (see 2). The propagated object P occupies one point
of the instantaneous osculating ellipse with centre in C and

_ ERY . one focus in F. The generalized eccentricity ve@deq. 7)
F= <R r2> T+ Nk ©®) coincides with the osculating eccentricity veatanly if i/ =
i o 0. In the casé/ # 0 they share the same direction only if
Finally, the total energy is given by dr — 0. This picture is taken from [1].
1 1
e=-vi—-=+U. (6)
2 r

_ Let us consider the unit vectors
In Section 2 we assume thak 0.

_ _ x =1icosv —jsinv, (12)
2.1. The intermediate frame y = j cosv +1i sinw, (13)
We define the generalized eccentricity vector as
where the vectorg j belong to the orbital framé and
g=—-i+w X, @)
wherew andc denote the generalized velocity and angular v=¢+0-G. (14)

momentum vectors, respectively: . ] )
Next, we introduce thentermediatdrameZ = {F; x, y, k}
dr .

_ar [ . _ ffa o3 wherek = x X y is perpendicular to the orbital plane (see
e art + P €7 ck, e=vh 22U (8) 2). The direction ok locates the departure point from which
the longitude- of the propagated object is measured (see Fig-

The magnitude og, which is computed from (7), (8) by tak- ure 1). The relative angular velocity @fwith respect toO

ing into account of (6), reads

is
g=+V1+2¢ec?, ()] wzoz—i—:k, (15)
with 0 < g < 1. The orientation of on the orbital plane can . )
be represented by the generalized true anoraly and its absolute angular velocity results
2 dr r h dv
‘9:——1, sinf) = ¢ —. 10 = = —1i —_ = — ,
g cos " gsin ¢ (20) wz =wo +wrzo =N 5 + <r2 dt) k (16)

The angled is reckoned fromg up to the radial direction h q . ) q
counterclockwise with respect ko(see Figure 1). In analogy w ere""? andy gre given 'n. (3)an (_5)' )
with the definition of the osculating eccentric anomaly, we  The intermediate framé is not an ideal frame, since the

introduce the generalized eccentric anon@lgs follows: component of the angular velocity; alongk is not identi-
cally zero. Besides, the attitudeBis influenced, in general,

. dr notonly byN, as for the ideal frames developed in [2] and [3]
=1+2e¢r, =rv—2e¢—. 1 T S - ’
geost teer gsinG =r “a (11) but also by the in-plane projectionsBf(i.e. R andT, see 5).



2.2. New orbital elements where

The independent variable is representedglwhich is related r=As0, (27)
to the physical time by
_ o _ ¢
iz r . 17) c, =cosv, §,=sInv, V—cp+2arctan(m+g ,
The first two orbital element3; and A, of the proposed
method are the projections gfalong the vectors andy of
the intermediate frame _n—m 1 _ _
wy = . +m(1+m)[(2u Rr)y(2—o+m)r
A1 =g cos(p—G), (18) +A3¢(e—m)], (29)
A2 =g sin (¢ — G), (29)
and
so that 1 dXs
=— -, 30
g=M X+ Ay. (20) TN dy (30)

An other element is the generalized semi-major axis
o=1—XA;cosp— Agsingp, (¢ = Ajsing — Aacos,

A3 = (21) (31)

—5o
The four Euler parameters,, A5, A\g, A7 are chosen to track

the evolution of the orthonormal basig, y, k). This frame n=+yvm?2—-2X30°U, m=1/1-X -\ (32
shares with the orbital frame the directinof the angular

momentum vector. Therefore, its relative orientation te th Sincer appears only as the argument of trigonometric func-

orbital frame is a rotation arouridof the angler betweenx  tions, it is possible to avoid (28) and directly employ the ex
and the radial unit vectarr Such angle is determined from pressions

the elements\;, A2, A5 and the independent variable. These

quantities also characterize the motion alénghe last miss- ) o CAi
ing information is about the magnitude of the angular mo-2 < = ¥ ~ Mt T v T RmeT Az = +1
mentum. In general, this is a function of the whole set of (33)
elements through the disturbing potential energy. Fingily

set of seven spatial elements is completed by a time elemeMoreover, given the perturbing forde(eq. 1) we have

Ao in order to compute the physical time in a more efficient

C Ao

way. R=F-i, N=F:-k, R,=P-i, T,=P-j, (34)
We collect below the differential equations of the eight

variables of the new method: whereti, j, k are obtained from the new orbital elements as
O shown in sect. 5.2 of [1]. Note that we report only the differ-

dAog _ 3/2 B ential equation of the linear time elemexy,, the one for the
dp g [L+ (Br = 2U)r +243(], (22) constant time element can be found in [1].

d\; . ) The system (22)—(26) holds for negative values of the total

dp (Br—2U)rsing + A [(1+ o) cos — A, energy €). Additionally, we require that the potential(t, r)

(23) satisfiese? > 0, wherec is the generalized angular momen-
dy ) tum (see 8; this issue is discussed in [4], sect. 6). The con-
T (2U = Rr)rcosp+ Az [(1+ 0)sing — A, ditionse < 0, ¢ # 0 imply thatg < 1 (eg. 9), and, since

(24) m? =1 — ¢2 (from 18, 19, 32), we have in particular # 0,

thus avoiding the singularity in (29). Finally, equatio26)
dAs ou i _
2 =92\ (R,, C+Tpn+ — /\3g) , (25) become singular whef = 0.
de gt Remark.In both methods presented in this work and in [4]
A4 A7 cy — X6 Sy As the disturbing potential enerdy is assumed to be indepen-
A x|y r? A6 ¢y + A7 sy w: | =M dent on the velocity. However, this hypothesis could be
de | Xe 2n | —Ascw+ sy 2 A7 |7 relaxed since what we really ask is tliatis independent on
A7 —A1¢ = A5 8 =6 the osculating angular momentum which enters the com-

(26) ponent ofv along the transverse vectpr



3. GENERALIZED HYPERBOLIC MOTION Using (39) and (40) we can write (35) in the following form:
We describe the formulation for positi d?r 1 dAs dr
positive values of the total — _ _ . _ )\, — (Rr —2U) AsT + — —> —,  (41)
energy € > 0). The derivation follows a different approach ~ d? 2X3 dp de
with respect to the previous section. Here we emphasize thghere we have introduced the generalized semi-majonaxis
connection of the orbital elements with a new linearizatibn
the two-body problem. A3 = i (42)
In the Burdet-Ferrandiz linearization the motion is seen 2e
as the composition of the radial displacemeatong the unit  From the well-known relation for the time derivative of the
vectori (r andi are also called “projective coordinates”) with total energy ([5], p. 11, eq. 16, wherdiris replaced by-¢)
the rotation ofi in space. The inverse ofand the components we get
of i obey second-order linear differential equations with con- dA\s 2732 (Povt ou (43)
stant coefficients when the independent variable is switche de 778 " MY
from the phys"’"’?' time to the t.rue anomaly. . with 9/9¢ denoting the partial derivative with respect to time.
The general idea from which we start to obtain the .meth'Note that the right-hand side of equation (43) vanishes when
%’erturbations are not applied @andP are both equal to zero).
We conclude that by introducing the fictitious time
through the differential transformation (36) and exptuiti
3.1. Radial motion the total energy integral in the form provided by relatiof)(4

) . . _we regularized equation (35) at least in the unperturbed par
The Newtonian equation of motion of the propagated body ishjs result lays the ground for introducing the first set of

readily obtained by computing the acceleration from (4) angypital elements of the method proposed for positive energy
considering the force as given in (5). Then, projection glion

yields

composition with a time transformation of Sundman type.

3.2. Orbital elements\;, A2, A3
d2r _ h? 1 3
=53 2 Th (3% |n absence of perturbations equation (41) reduces to the lin

a2~ 3 g2
We want to transform (35) into a linear differential equatio ear differential equation of an harmonic oscillator of anjt
frequency perturbed by the constant texm

and then apply the variation of constants technique. To this

end let us first introduce a new independent variable through d3r
the time transformation d—LpQ =7+ s (44)
der (36) Therefore, we seek a solution of (44) in the form
-
vooV2e r =3 (A cosh + Agsinhp — 1), (45)
The total energy is expressed by means of (4) and (8) as d
oy P y “) ®) d_r = A3 (A1 sinh ¢ + A9 cosh ¢), (46)
¥
dr\ 2 c\2 2 ) .
2e = o + (—) - -, (37) where); and ), are integration constants. From the latter
" " relation, by using the former one, we obtain the following
wherec? = h? + 272 U. In the case of Keplerian motion the condition
quantityy represents the hyperbolic anomaly up to an addi- di dAg _ 0 dAs
tive constant. The radial velocity and acceleration become dy coshep + de sinhp = Az dp’ (“7)
& VIE dr where, for convenience, we introduce the auxiliary qugintit
— = —, 38
dt r dy (38) 0= A1 coshy + Aysinhp — 1. (48)
9 9 2 Moreover, according to the method of variation of constants
d_g = 2_2‘5 ld_z ! (ﬁ) ] % dr % (39) we can substitute the solution given by (45) and (46) into
de re o lde? o \de r? dp dy equation (41) regarding the coefficients as unknown funstio
Next, equation (38) is employed into (37) and after reanrangOf . We obtain
ing the terms we find the useful relation
dAr . dAg
Esmhcp—i— I coshp = (RA30 — 2U) N30

dr\? s T2 .
) e+ - 5o (40) — Az (A1 sinhp + Aa coshp), (49)



whereA; was defined in (30). The system of equations (47)where the function géiz) denotes the Gudermannian of

(49) can be solved with respect to the derivativesodnd ),

([6], p. 165). We have

to have 1
(cosay, sina) = — (A1, A2), tana = tanh (F — o),
%:—(Rr—2Z/{)rsinhcp+A3[(1—g)coshgo—)\1], Y
de (60)
(50)
ds . where
E:(Rr—?bl)r coshp + As (0 — 1)sinh p — Ao], o= /)\%—i—)\%. 61)
(51) Then, the vectog can be written as
where we have replaced o with r. g
The quantities\;, A2, A3 are chosen as state variables of g= ; (AMx+A2y), (62)

the new formulation. By use of (4), (38), (46) we
equation (43) in
s _

dy
whereR, =P -i,7T, =P - j, and

ou
25/2 Ry (Va4 Tpht |

¢ = Ay sinh ¢ + A5 cosh .

The generalized angular momentum can be obtained from the

compact formula (from 40 with the aid of 45, 46)
02:)\3()\%—/\3—1),
so that for the osculating angular momentuwe have

h* =23 (A} — A3 —1—2UX307).

Note thath depends also ointhrough the disturbing potential

energyi/ (t, ri).

In order to completely determine the dynamics of the/\4 As, Mg, M.
propagated body we need to compute the vedtensdj of ot e 1

the orbital frame.

3.3. The intermediate frame

The definitions of the generalized eccentricity vegioand
of the true anomaly provided in (7) and (10), respectively,
still hold fore > 0. In particular, we note that > 1 (see 9).
Moreover, we recall that is the angle reckoned fromto the

radial directioni, counterclockwise with respect o

Let the generalized hyperbolic anomdiybe defined by

dr

gcoshFF =1+ 2¢r, gsinh F'=2¢e —.
de

Then, from (45), (46), and using (56) these expressionsifor

and)\, can be found:

A1 = g cosh (F — ),
A2 = g sinh (F — ).

We introduce the angle

a= %gd(2F—2<p),

convert
wherex andy are two orthonormal vectors. Assume that

x X y = k, with k defined in (2). As in the case < 0

(52) Wwe consider the intermediate frafie= {F; x, y, k}. The
orientation of this frame with respect to the orbital frarse i
set by the angle

vr=0+a« (63)

(53) through the projections

i-x=cosv, i-y=sinv. (64)

Therefore, the angular velocity df relative to the orbital
frame has the same expression shown in (15) wheésenow
taken from (63).

(54)

(55) 3.4. Orbital elements\y, A5, \g, A7

We represent the orientation of the intermediate frameth
respect to a fixed reference frame by the Euler parameters
They obey first-order differential equations
that have the same form reported in (26), whete= m? —

2 \30° U and
m=+/g%—1, g=1/A2 —)\3. (65)
Moreover, we have
sl,:sinl/zL [A2(m® — o) + Ay m(], (66)
o749
cuzcosuzi[Al(mz—g)—/\zmﬁ], (67)
o9
(56) and the quantity
dt
w, = @ (wz - k), (68)
(57) is computed by the formula
(58) n—m T 1 m
w, = . —E(RT—QU)[l—i-(Q—i—l)(?—F?)]
o—1 1 0
N I



It could be proved that the elements, A5, \g, A7 are “at- 1

tached” to an other set of four Euler parameters, which obe 10
linear first-order differential equations. ’c:,;
We conclude that the evolution of the radial and trans: g 10°
verse vectorsi( j) can be determined from the seven orbital £
elements\;, ¢ = 1...7. This information together with the 8
motion alongi allow to track the position and velocity of the g0
propagated body with respect to a known reference frame. 3
% 107
3.5. Time element '-1;]
The physical time can be obtained by (numerical) integnatio §. 1073
of equation (36). An other possibility, which is described i Z
this section, is to employ a time element. We write (36) as
q 2016 2026 2036 2046 2056
= AY2,. (70) Time (year)

In the case of pure Keplerian motion, Az, and); are con-  Fig. 4. Evolution of the distange between Apophis and the
stants, and integration of (70) by separation of variabigilsly ~ Earth throughout 40 years starting from January 1, 2016.

t=Doe+AV2(A sinh ¢ + Aa coshp — ) . (72)
* s ? ) We investigate the relation between the accuracy in the
The constand . can be regarded as a time element. If theposition at a given epoch and the computational cost. The se-
motion is perturbed, . changes withp, and its derivative is  lected numerical integrator is the Runge—Kutta (4, 5) phir o
Dormand and Prince, hereafter called DOPRI54. An impor-
dAo e it ize i
Oc _ )\g/z A3 (3o —20) — (Rr—2U)r].  (72) tant feaFure of it is that the length of the stepsize is cph!nio
dp by relative and absolute tolerances. The computational cos
is measured by the total number of evaluations of the right-
hand side of the differential equations (functions callsgt
N \3/2 23 us pick a time of propagation corresponding to a final posi-
0,0 = A0,e — P A - (73) " tion close to the farthest point from the Earth of the fiftieth
Either the “constant”X, ) or the “linear” (\¢ ;) time element revolution. F|gqre 2 displays the variation n the positerm
. : . o ror as the relative tolerance of DOPRI54 is modified inside
can be included among the state variables instead of the phys _ . . .
. S a suitable range thus producing a consequent variatioreof th
ical time itself. . .
number of function calls. The proposed method is the most
efficient since it requires the smallest computationalréffor
4. RESULTS a given accuracy.

h Its benchmark orobl he fi The performance in a long-term propagation, here of five
We report the results for two benchmark problems. The firsfy,  ,s4nq periods of the initial Keplerian ellipse, is shawn

one is a geocentric motion along an highly eccentric orbit unFigure 3. In this test we chose multistep methods with fixed
der gravitational perturbations. The second one is an heliqstepsize (more informations are given in [1], sect. 7.2Js It
centric orbit characterized by a deep close encounter With t notable that at the end of the propagation New is more ac-
Earth. The formu_lation for negative value_s of the total 9YET  curate than the Kustaanheimo-Stiefel (KS) regularizadioah
has *?ee” extensively tested in [1], and, in fact, the results the set of elements of Stiefel and Scheifele (Sti&Sche) ef on
Section 4.1 are taken from that paper. and two orders of magnitude, respectively.

) ) A much more detailed description of the two numerical
4.1. Geocentric motion tests can be found in [1]. In particular, we refer to sect. 7.1
and table 1 for the formulations compared to the new one.

An alternative time elemen, ; can be defined by

The osculating eccentricity and inclination at the iniggbch
are about 0.95 and 30 degrees, and the spacecraft occupies th

perigee of the orbit at a distance of 6800 km from the Earth's; 5 - Heliocentric orbit with planetary close encounters

centre of mass. Two perturbations are active: the Earth’s

oblateness and the Moon'’s gravitational attraction. TRis e We analyze the effect on the orbital propagation accuracy of
ample has been used by several authors and, as far as e close encounter between the asteroid (99942) Apophis
know, it first appears in [5] (p. 118). and the Earth on April 13, 2029. The estimated minimum
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distance, available in the NEODyS website, is almost 0.000&ethod. Table 1 reports the total number of function calts fo

astronomical units (au). We decided a time interval of irdeg each propagation. It is notable that with a comparable com-

tion of 40 years, starting from January 1, 2016. In our simpleutational cost the new propagator is 6 orders of magnitude

dynamical model the asteroid is acted upon by the gravitamore accurate than Cowell's method at the end of the integra-

tional attractions of the Sun and the Earth, which is on a cirtion. Moreover, even by increasing the number of function

cular orbit. calls of a factor 4, Cowell is still less accurate than Newe Th
The following strategy is applied with the two new for- methods proposed in this work can reach the same accuracy

mulations. When the Earth-Apophis distance is bigger thaas KS with slightly less function calls.

0.018 au, the Earth is the perturbing body. Otherwise, the

primary body is switched from the Sun to the Earth, so that

the former becomes the perturber. We expect that the formuraple 1. Function calls of the propagations shown in Figure 5
lation working fore < 0 (Section 2) is used in the helio-

centric phase, and the other one (Section 3) in the geocentri Method 10~°  1071®

arc of trajectory. Cowell's method and the Kustaanheimo- New _ 12544
Stiefel regularization [5] are also considered in our asialy KS _ 13658
For these methods we do not change the primary which re- Cowell 15083 45249

mains always the Sun. The numerical integrator is a multi-
step implicit Adams-Moulton scheme with variable stepsize
and order [7].

An accurate integration was carried out with Cowell’s
method in quadruple precision and with tight values of the
absolute and relative tolerances. We checked that only i#-3. Total energy transitions
the close encounter of 2029 the minimum distance goes be-
low 0.018 au (see Figure 4). This propagation provided us &he performance of the formulations presented in Sections 2
“reference” orbit for computing the error. Moreover, it@ls and 3 can deteriorate for values of the energjose to zero.
allowed us to determine the initial position and velocity of This situation happens for examplesifchanges its sign. A
the asteroid and the Earth in order to reproduce the clogeossible solution is to include in the propagator a third for
encounter on April 13, 2029. mulation that works for any value of the energy. A good can-

In Figure 5 we show the error in the heliocentric positiondidate is represented by the method Dromo ([3], [4]). In prac
throughout the whole time span of propagation. Two differtice, whene| is smaller than a given threshold the propagation
ent settings of the numerical integrator are taken for Cksvel is carried out by Dromo.




5. CONCLUSIONS

New formulations of the perturbed two-body problem are pro-
posed. One method, which was published in [1], holds for a
negative total energy of the propagated body. An other fermu
lation, presented here for the first time, works for positiak

ues of the total energy. The position and velocity are reqglac

by seven spatial elements and a time element. The new quan-
tities root in a new linearization of the two-body problem.
This is achieved by combining the projective decomposition
approach adopted in the Burdet-Ferrandiz regularizatitin

a time transformation of order one instead of two (here “or-
der” refers to the exponent of the orbital radius). We show
that the seven spatial variables can be defined by means of
an intermediate frame, which shares with the local-vdrtica
local-horizontal frame the direction of the angular momen-
tum vector. Two numerical tests, for geocentric motion and
for a heliocentric orbit with close encounters, show theyver
good performance of the new formulations when compared
to Cowell's method and other regularized schemes both based
on elements and on coordinates.
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