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Introduction Motivation

The problem of space debris
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Introduction Motivation
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Introduction Motivation

Density of debris in different regions

Spatial density of objects
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sy
HAMR objects

e High Area-to-Mass Ratio (HAMR) objects
have been discovered in the early 2000s (Schildknecht et al.)

e Coming from thermal insulation layers (MLI) wrapping certain
components of satellites that could have been detached from defunct
satellite breakups, or from impact by smaller debris on said satellites

@ Area-to-mass ratio (%) can be thousands of times higher than regular
satellites : 0.01 m?/kg — 30 m?/kg

@ HAMR objects can reach very high eccentricity (up to 0.7) in a few
months and this may lead to reentry

@ Short terms and secular effects appear on the eccentricity and
inclination
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Introduction Subject

Research and topic overview

@ Analytical modeling of the GEO region via the application of
canonical pertubation theory, to give insights in the dynamical
evolution of objects in this region over long time scales with
applications to space debris

@ A specific focus is set on the recently discovered debris with high area
to mass ratios since they exhibit peculiar dynamical behavior
@ In this work :

o The true nature of the forced equilibrium for space debris is shown.

e Analytical formulas for elements describing the motion of objects at
GEO (valid for HAMR objects)

o Derivation and final expression using cylindrical coordinates (no
expansion using eccentricity and inclination function)

Fabien Gachet (U. Rome Tor Vergata) ICATT 2016 March 15, 2016 8 /38



State of the art

S. Valk et al. | Advances in Space Research 41 (2008) 1077-1090

0.4

0351

031

0.25

0.2

e sin(w+Q)

o 200 400 600 800 1000 1200 1400
Time [Days]

bien Gachet (U. Rome Tor Vergata)

ICATT 2016

02 Ty o
1600 04 -035 -03 -025 -02 -015 -0.1 -0.05

e cos(®+Q)

March 15, 2016

9/38



Hamiltonian model

© Hamiltonian model
@ Forces modeled
e Full Hamiltonian
@ Normal form procedure

Fabien Gachet (U. Rome Tor Vergata) ICATT 2016 March 15, 2016 10 / 38



Hamiltonian of the system

@ Hamiltonian

1 .
o Kinetic energy T = 5m (,0'2 + p?®2 + 2'2)

o Conjugated
momenta

H(p,®,z,py, po, pz, t) =
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H=T+V

pp = mp
po = mp*®
pz = mz
P’ | Po°
2 2p?
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¢ =9+ Qqpt

longitude in the
non-rotating frame

Qq = 7.292115 x 10~ °rad/s

p2
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Forces modeled
Perturbations at GEO
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Hamiltonian model Forces modeled

Forces modeled

@ Geopotential : up to order and degree 2

r

@ Sun : at order 2 in the small ‘é‘ ratio ( ol = 0.00024),
eccentricity (e ~ 0.016709) and inclination (i =~ 23.44 deg)

r

T

@ Moon : at order 2 in the small ‘r«r' ratio ~ 0.094),

eccentricity (e ~ 0.0055) and inclination (i ~ 5.1 deg)

@ Solar radiation pressure : same as the Sun since directly dependent
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e
Gravitational potential of the Earth

Veeo, = V(p,p,2) =

ke V5C0ue R B 3V5GoonaR2z?  V/15C apia R? 22 cos(2¢p)
it 22 20+ 22) 2(p? + 22)3/2 2(p? + 22)5/2
B V15Coopa R? cos(2¢) V15 R2 55222 sin(2¢p) B V1515 R2 S, 5 sin(2¢)
2(p? + 22)3/2 2(p? + 22)5/2 2(p? + 22)3/2

Study of the system with just the Geopotential reveals the existence of four basic
equilibria of the system, located at p = pgeo, z=0:

Stable Unstable
@ ¢ =75.07 deg @ ¢ = 165.07 deg
@ ¢ = —104.93 deg @ ¢ = —14.93 deg
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Hamiltonian model Forces modeled

Lunisolar potential

1 r-r
V( :—Gm@ + (3
r—rcl  rc|

1 r-rop
Vo = —G
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Hamiltonian model Forces modeled

Lunisolar potential

1 r-r
V( :—Gm@ + C(3
r—rcl  rc|

1 r-rop
Vo = —G
© ’"@<\r—r@\+\r@\3>

pcos pcos(¢ + ¢E)
r=| psin® | = psin(p+pE)
V4 V4
v =gt
Qg = 7.292115 x 10 °rad/s
Associated period: 1 day
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Hamiltonian model Forces modeled

Sun and Moon vector expansions
ro,r-ro = f(Mg)

@ Mg: Sun’s mean anomaly
Me = f(pm)
om = QM -t
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Hamiltonian model Forces modeled

Sun and Moon vector expansions

o, I reo = f(Mg)

@ Mg: Sun’s mean anomaly
Me = f(pm)
om = QM -t
Qu = 35999°.049/centuries,

associated period: 1 year
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Lo: Moon’s mean longitude
Ig : Moon’s mean anomaly
Ig : Sun’s mean anomaly

Fq : mean angular distance of the
Moon from the ascending node

D¢ : difference between the mean
longitudes of the Sun and the Moon

(L07l, //, F(( ,D( ) = f(‘pM,SOMp7§0Ma7§0M5)
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Hamiltonian model Forces modeled

Sun and Moon vector expansions

o, I reo = f(Mg)

@ Mg: Sun’s mean anomaly
Me = f(pm)
om = QM -t
Qu = 35999°.049/centuries,

associated period: 1 year

Qu, = 477198°.86753 /centuries,
associated period ~ 1 month

Qum, = 4069°.01335/centuries,
associated period ~ 8.85 years

Qug = 1934°.13784 /centuries,

associated period ~ 18.6 years
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Hamiltonian model Forces modeled

Solar radiation pressure potential

Vsrp = C, P, AU? A1
m |r—rg]
o C,: reflectivity coefficient (1 < C, < 2), here C, =1
e P, =14,56x10"° N/m2: radiation pressure for an object located at
AU the astronomical unit of distance
° %: the area-to-mass ratio
@ and the same expressions are used for rg than for the Sun's potential
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Hamiltonian model Full Hamiltonian

Full Hamiltonian model

H=T+ Veeo + Vo + V¢ + Vsrp
= H(p7 P, Z, @E?QOM:QDMNSOMW(pMsvppap<p7pZ7JE7JM7JMaaJMP7JM5)
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Hamiltonian model Full Hamiltonian

Full Hamiltonian model

H=T+ Veeo + Vo + V¢ + Vsrp
= H(p7 P, Z, @E?‘)OM:QDMNSOMpa(pMsvppap<p7pZ7JE7JM7JMaaJMP7JM5)

py? P> o
= A + ~ 5 - 9 A + 72 + V 9 727 9 ) 29 9
> 2r2sin2 0 (p, 0,2, 0E, oM, M, PM,, PMs)

— Qgpy + Qg Je + QMJM + Qum,JIu, + QMPJMP + Qg Ims
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T
Expansions and change of variables

H(P, ©sZ, PE; PM> PM,» PMpr PMs, Pps Py, Pz, JE) JM7 JMau JMP) JMS)

8 DOF system, 5 DOF for the motion of Sun+Moon instead of just ¢
— 5 new frequencies in the system (Qg, Qm, Qm,, Qm,, Qi)

@ Expansion of this Hamiltonian around p = pgeo and z =0

e dp=p— pgeo, dz =z, and J, = p, — pceo With pgeo = QapZeo
@ Expansion up to order 8 in dp and dz
°

numbers of monomials in the Hamiltonian ~ 300 —~ 600
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Hamiltonian model Full Hamiltonian

Epicyclic action-angles variables

2 with
dp = 2 sin (¢,) where
\/ %
b d?Vgeo

27, Ko =\ TS Vg, = PGEO 4y
dz =/ —sin(p;) dp? GEOer — o2 GEOq
Kz He
d?Veeo VGeo,(r) = ——
pp = \/2kpdycos(0,) Ky = % o (1) p

Pz = \/2J,k; cos (pz)

The Hamiltonian now contains terms of the following form, (m;, k;) € Z:

Pyt Py Pz3Jm4Jm5Jm6Jm7JM cos(kipptkop+kspz+kape+kspm+keomatkromp+kspums)
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Hamiltonian model Full Hamiltonian

A taste of normalization
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Before
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Hamiltonian model Full Hamiltonian

Normalization process

@ Procedure of canonical perturbation theory
o Around a given region of phase space (here GEO), through canonical
transformations, find a Hamiltonian of the kind :
e H= 27+ R where Z is 'simple’ to analyze and R, the remainder is of a
smaller order and induces only minor modifications to the dynamics
® Recursive normalization algorithm, to refine H
o Define which terms should be allowed in Z (definition of the module):

@ e.g. have the form of a pendulum, or harmonic oscillator at order 0.
@ Then Z will be easier to analyze

o H=Hy+ \H; + )\2/‘/2 + )\3H3...
o HD = Zy + NZy + N2Z, + ... + )\’“HEQI
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Hamiltonian model Normal form procedure

Normalization process

@ Canonical transformations made through the use of Lie series :

° (‘PaJLp) — ((pnew’JLgeW) via X(gonew,_lsgew)
. ) d
o H™ = exp(L,)H with L, = {.,x} and {f, g} =>"; g; 5 — g;_ e
o exp(Ly) =375, %L;(c
Computed easily (sum, products of derivatives) up to a given order
e The process is easy to implement :

@ Replace the old variables by the new ones
o Compute H™" = exp(Ly)H(new variables)
@ no need to find inverse functions and to use compositions

@ How to find x giving the canonical transformation that we want?

o By solving the homological equation {Z,x} = —H, where H represents
the terms not belonging to the module.

@ To pass back to the original variables: (¢, J,) = exp(Ly)("", J3)
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Hamiltonian model Normal form procedure

First Normalization

@ Before normalization, the Hamiltonian contains terms with
trigonometric arguments of the form:
kipp + ko + k3pz + kawe + ksom + keoma + kromp + kspms

@ Since slow angles are associated with resonances, we want to isolate
them and construct a pendulum-like model for them

@ Choice of resonant module to keep in Z the resonant terms: Since
Kp = Kz = Qg, if ki + k3 + k4 = 0 then the term belongs to the
module. All other terms will be relegated in the remainder through
the normal form process

@ This step is similar to the first step in averaging theory, where the
mean anomaly with a daily frequency is eliminated
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Hamiltonian model Normal form procedure

Change of variable after first normalization

@ After this first normalization that was done up to order 4 in
book-keeping we do a change of variables to reflect the slow and fast

variables better
Pec = Pp =P —PE+ VM

PR=1¢
Pin =Pz — Y — PE
Pe = PE
Pm = $M
Pma = $Ma
Pmp = PMp
Pms = PMs

Fabien Gachet (U. Rome Tor Vergata)

Jec = Jp
JR = Jcp + Jec + Jin
Jin = Jz

Je=Je+ I+ J;
Im = Jow — Jp

Ima = o,
Imp = JWMP
Jms = J‘)DMS
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Hamiltonian model Normal form procedure

Introduction of Poincaré variables

@ We can see in the Hamiltonian obtained by the previous procedure
some terms showing the form a forced equilibrium, notably in the
variables Joc and J;,

@ It is then natural to pass to Poincaré variables:

Xe = \/2Jec sin(@ec)

Ye =V 2Jec COS(SOec)
Xi =/ 2./,',, sin(go,-,,)
yi = V/ 2Jincos(pin)
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Forced equilibrium

© Forced equilibrium
@ Preliminary results for the forced equilibrium
@ Refinement of the equilibrium
@ Nature of the forced equilibrium
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Forced equilibrium Preliminary results for the forced equilibrium

Forced equilibrium

e By removing all the other terms than (xe, Ve, Xi, ¥i), we have a toy
model. We can then look for its equilibrium

@ The solutions found are :

Xef = —0.138785
Yer = —0.000012
x;r = —0.231519
vir = 0.042744

o Which corresponds to (for 2 = 10 for instance):
e a forced eccentricity of : 0.11

e a forced inclination of :

Fabien Gachet (U. Rome Tor Vergata)
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Forced equilibrium Preliminary results for the forced equilibrium

Expansion around the forced equilibrium

@ Numerically integrating this Hamiltonian starting at the equilibrium
found gives variations of up to 10% for (xe, Ye, Xi, ¥i). This shows the
need for a refined equilibrium

e To find it we expand our Hamiltonian around (xf, yef, Xif, yir) by

introducing new variables:

Fabien Gachet (U. Rome Tor Vergata)

dXe = Xe —
dye = ye —
dX,' = X
dyi = yi —
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Forced equilibrium Refinement of the equilibrium

Transformation to action-angle variables

@ Need to pass to action-angle variables again, for normalization
purposes

o First, a diagonalization of the previous Hamiltonian toy model
restricted to its quadratic terms is done

(dX67 d_ye7 dXi7 dyl) — (CI17 P1,q2, p2)
@ Then to finish the transformation to action-angle variables we do the
following canonical transformation:
Gk — \/ Jke?x
Pk — —i Jke_hpk

@ To refine the equilibrium, a new normalization of this Hamiltonian is
needed
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Forced equilibrium Refinement of the equilibrium

Second normalization

@ This time, we want to eliminate very precise terms, the terms that
cause the non-constancy of (dxe, dye, dx;, dy;)

@ They are terms linear in (dxe, dye, dx;, dy;) and contain small divisors

@ Define a threshold up to which we keep the terms with a given small
divisor so that they contribute to the dynamics of the normal form

@ New normalization will eliminate the other ones up to second order in
book-keeping
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Forced equilibrium Nature of the forced equilibrium

Nature of the forced equilibrium

@ Back-transforming from the action-angle variables (Ji, ¢1, J2, ©2)
with which the Hamiltonian was normalized to the (dxe, dye, dx;, dy;),
and numerically integrating the results, the variations are smaller by
one order of magnitude

@ We now consider those variations small enough, and therefore the
new (dxe, dye, dx;, dy;) as quasi-constants. We can then express the
old (dxe, dye, dx;, dy;) in function of these new ones considered as
constant (equal to their refined equilibrium values) and have an
expression of them directly function of time

@ The forced equilibrium is then a lower dimensional object containing a
combination of five distinct frequencies (Qg, Qm, Qum,, Qm,, Lig)
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orced equilibrium Nature of the forced equilibrium
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Forced equilibrium Nature of the forced equilibrium

Analytical expression for the original variables

e From these original (dxe, dye, dx;, dy;) expressed in function of time
we can come back to the (p, ¢, z) and express them in function of
time only too

@ This gives us an analytical formula of our original variables
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Analytical results

@ Analytical results
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Comparison of the analytical results with the numerical
integration of the full model
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Analytical results

Comparison of the analytical results with the numerical
integration of the full model

eccentricity for 10000 days inclination for 1000 days
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Analytical results

Future works

Do a thorough study of the region using stability maps
Derive orbital lifetime of objects

Dynamical deorbiting strategies

Study other regions of the phase space
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Thank you for your attention!
Questions?
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