The true nature of the equilibrium for geostationary objects, applications to the high area-to-mass ratio debris

Fabien Gachet ${ }^{1}$
Christos Efthymiopoulos ${ }^{2}$, Alessandra Celletti ${ }^{1}$, Giuseppe Pucacco ${ }^{1}$
${ }^{1}$ University of Rome 'Tor Vergata'
${ }^{2}$ Academy of Athens
gachet@mat.uniroma2.it

March 15, 2016

Overview

(1) Introduction

- Motivation
- Subject
(2) Hamiltonian model
- Forces modeled
- Full Hamiltonian
- Normal form procedure
(3) Forced equilibrium
- Preliminary results for the forced equilibrium
- Refinement of the equilibrium
- Nature of the forced equilibrium
(4) Analytical results

(1) Introduction

- Motivation
- Subject

(2) Hamiltonian model

- Forces modeled
- Full Hamiltonian
- Normal form procedure
(3) Forced equilibrium
- Preliminary results for the forced equilibrium
- Refinement of the equilibrium
- Nature of the forced equilibrium

4. Analytical results

The problem of space debris

Number of catalogued space debris

Density of debris in different regions

HAMR objects

- High Area-to-Mass Ratio (HAMR) objects have been discovered in the early 2000s (Schildknecht et al.)
- Coming from thermal insulation layers (MLI) wrapping certain components of satellites that could have been detached from defunct satellite breakups, or from impact by smaller debris on said satellites
- Area-to-mass ratio $\left(\frac{A}{m}\right)$ can be thousands of times higher than regular satellites: $0.01 \mathrm{~m}^{2} / \mathrm{kg} \rightarrow 30 \mathrm{~m}^{2} / \mathrm{kg}$
- HAMR objects can reach very high eccentricity (up to 0.7) in a few months and this may lead to reentry
- Short terms and secular effects appear on the eccentricity and inclination

Research and topic overview

- Analytical modeling of the GEO region via the application of canonical pertubation theory, to give insights in the dynamical evolution of objects in this region over long time scales with applications to space debris
- A specific focus is set on the recently discovered debris with high area to mass ratios since they exhibit peculiar dynamical behavior
- In this work:
- The true nature of the forced equilibrium for space debris is shown.
- Analytical formulas for elements describing the motion of objects at GEO (valid for HAMR objects)
- Derivation and final expression using cylindrical coordinates (no expansion using eccentricity and inclination function)

State of the art

S. Valk et al. I Advances in Space Research 41 (2008) 1077-1090

(1) Introduction

- Motivation
- Subject
(2) Hamiltonian model
- Forces modeled
- Full Hamiltonian
- Normal form procedure
(3) Forced equilibrium
- Preliminary results for the forced equilibrium
- Refinement of the equilibrium
- Nature of the forced equilibrium

4. Analytical results

Hamiltonian of the system

- Hamiltonian

$$
H=T+V
$$

- Kinetic energy $\quad T=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)$
- Conjugated momenta

$$
\begin{aligned}
& p_{\rho}=m \dot{\rho} \\
& p_{\Phi}=m \rho^{2} \dot{\Phi} \\
& p_{z}=m \dot{z}
\end{aligned}
$$

$$
\Phi=\varphi+\Omega_{\oplus} t
$$

longitude in the non-rotating frame
$\Omega_{\oplus}=7.292115 \times 10^{-5} \mathrm{rad} / \mathrm{s}$

$$
H\left(\rho, \Phi, z, p_{\rho}, p_{\Phi}, p_{z}, t\right)=\frac{p_{\rho}{ }^{2}}{2}+\frac{p_{\Phi}{ }^{2}}{2 \rho^{2}}+\frac{p_{z}^{2}}{2}+V(\rho, \Phi, z, t)
$$

Perturbations at GEO

Order of magnitude of the perturbations

Forces modeled

- Geopotential : up to order and degree 2
- Sun : at order 2 in the small $\left|\frac{r}{r_{\odot}}\right|$ ratio $\left(\left|\frac{r}{r_{\odot}}\right| \simeq 0.00024\right)$, eccentricity ($e \simeq 0.016709$) and inclination ($i \simeq 23.44 \mathrm{deg}$)
- Moon : at order 2 in the small $\left|\frac{r}{\mathbf{r}_{\mathbb{C}}}\right|$ ratio $\left(\left|\frac{r}{\mathbf{r}_{\mathbb{C}}}\right| \simeq 0.094\right)$, eccentricity ($e \simeq 0.0055$) and inclination ($i \simeq 5.1 \mathrm{deg}$)
- Solar radiation pressure : same as the Sun since directly dependent

Gravitational potential of the Earth

$$
\begin{aligned}
& V_{G E O_{2}}=V(\rho, \varphi, z)= \\
& -\frac{\mu_{\oplus}}{\sqrt{\rho^{2}+z^{2}}}+\frac{\sqrt{5} \bar{C}_{2,0} \mu_{\oplus} R_{\oplus}^{2}}{2\left(\rho^{2}+z^{2}\right)^{3 / 2}}-\frac{3 \sqrt{5} \bar{C}_{2,0} \mu_{\oplus} R_{\oplus}^{2} z^{2}}{2\left(\rho^{2}+z^{2}\right)^{3 / 2}}+\frac{\sqrt{15} \bar{C}_{2,2} \mu_{\oplus} R_{\oplus}^{2} z^{2} \cos (2 \varphi)}{2\left(\rho^{2}+z^{2}\right)^{5 / 2}} \\
& -\frac{\sqrt{15} \bar{C}_{2,2} \mu_{\oplus} R_{\oplus}^{2} \cos (2 \varphi)}{2\left(\rho^{2}+z^{2}\right)^{3 / 2}}+\frac{\sqrt{15} \mu_{\oplus} R_{\oplus}^{2} \bar{S}_{2,2} z^{2} \sin (2 \varphi)}{2\left(\rho^{2}+z^{2}\right)^{5 / 2}}-\frac{\sqrt{15} \mu_{\oplus} R_{\oplus}^{2} \bar{S}_{2,2} \sin (2 \varphi)}{2\left(\rho^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

Study of the system with just the Geopotential reveals the existence of four basic equilibria of the system, located at $\rho=\rho_{G E O}, z=0$:

Stable

- $\varphi=75.07 \mathrm{deg}$
- $\varphi=-104.93 \mathrm{deg}$

Unstable

- $\varphi=165.07 \mathrm{deg}$
- $\varphi=-14.93 \mathrm{deg}$

Lunisolar potential

$$
\begin{aligned}
V_{\overparen{B}} & =-G m_{\mathbb{C}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{\overparen{ }}\right|}+\frac{\mathbf{r} \cdot \mathbf{r}_{\mathbb{C}}}{\left|\mathbf{r}_{\overparen{ }}\right|^{3}}\right) \\
V_{\odot} & =-G m_{\odot}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{\odot}\right|}+\frac{\mathbf{r} \cdot \mathbf{r}_{\odot}}{\left|\mathbf{r}_{\odot}\right|^{3}}\right)
\end{aligned}
$$

Lunisolar potential

$$
\begin{gathered}
V_{\mathbb{C}}=-G m_{\mathbb{C}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{\mathbb{G}}\right|}+\frac{\mathbf{r} \cdot \mathbf{r}_{\mathbb{G}}}{\left|\mathbf{r}_{\overparen{G}}\right|^{3}}\right) \\
V_{\odot}=-G m_{\odot}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{\odot}\right|}+\frac{\mathbf{r} \cdot \mathbf{r}_{\odot}}{\left|\mathbf{r}_{\odot}\right|^{3}}\right) \\
\mathbf{r}=\left(\begin{array}{c}
\rho \cos \Phi \\
\rho \sin \Phi \\
z
\end{array}\right)=\left(\begin{array}{c}
\rho \cos \left(\varphi+\varphi_{E}\right) \\
\rho \sin \left(\varphi+\varphi_{E}\right) \\
z
\end{array}\right) \\
\varphi_{E}=\Omega_{\oplus} \cdot t \\
\Omega_{\oplus}=7.292115 \times 10^{-5} \mathrm{rad} / \mathrm{s} \\
\text { Associated period: } 1 \text { day }
\end{gathered}
$$

Sun and Moon vector expansions

$$
r_{\odot}, r \cdot r_{\odot}=f\left(M_{\odot}\right)
$$

- M_{\odot} : Sun's mean anomaly

$$
\begin{aligned}
M_{\odot} & =f\left(\varphi_{M}\right) \\
\varphi_{M} & =\Omega_{M} \cdot t
\end{aligned}
$$

Sun and Moon vector expansions

$$
r_{\odot}, r \cdot r_{\odot}=f\left(M_{\odot}\right)
$$

- M_{\odot} : Sun's mean anomaly

$$
\begin{aligned}
M_{\odot} & =f\left(\varphi_{M}\right) \\
\varphi_{M} & =\Omega_{M} \cdot t
\end{aligned}
$$

$\Omega_{M}=35999^{\circ} .049 /$ centuries, associated period: 1 year

Sun and Moon vector expansions

$$
r_{\odot}, r \cdot r_{\odot}=f\left(M_{\odot}\right)
$$

$$
r_{马}, r \cdot r_{\mathbb{B}}=f\left(L_{0}, I, I^{\prime}, F_{\mathbb{Z}}, D_{\mathbb{B}}\right)
$$

- M_{\odot} : Sun's mean anomaly

$$
\begin{aligned}
M_{\odot} & =f\left(\varphi_{M}\right) \\
\varphi_{M} & =\Omega_{M} \cdot t
\end{aligned}
$$

$\Omega_{M}=35999^{\circ} .049 /$ centuries, associated period: 1 year

- L_{0} : Moon's mean longitude
- $\mathbb{I}_{\mathbb{C}}:$ Moon's mean anomaly
- $I_{\mathbb{C}}^{\prime}:$ Sun's mean anomaly
- $F_{\mathbb{G}}$: mean angular distance of the Moon from the ascending node
- $D_{\mathbb{C}}$: difference between the mean longitudes of the Sun and the Moon

$$
\begin{aligned}
\left(L_{0}, I, I^{\prime}, F_{\mathbb{Q}}, D_{\mathbb{C}}\right) & =f\left(\varphi_{M}, \varphi_{M_{p}}, \varphi_{M_{a}}, \varphi_{M_{S}}\right) \\
\varphi_{M_{a}} & =\Omega_{M_{a}} t \\
\varphi_{M_{p}} & =\Omega_{M_{p}} t \\
\varphi_{M_{S}} & =\Omega_{M_{s}} t
\end{aligned}
$$

Sun and Moon vector expansions

$$
r_{\odot}, r \cdot r_{\odot}=f\left(M_{\odot}\right)
$$

$$
r_{马}, r \cdot r_{\mathbb{B}}=f\left(L_{0}, I, I^{\prime}, F_{\mathbb{Z}}, D_{\mathbb{B}}\right)
$$

- M_{\odot} : Sun's mean anomaly

$$
\begin{aligned}
M_{\odot} & =f\left(\varphi_{M}\right) \\
\varphi_{M} & =\Omega_{M} \cdot t
\end{aligned}
$$

$\Omega_{M}=35999^{\circ} .049 /$ centuries, associated period: 1 year
$\Omega_{M_{a}}=477198^{\circ} .86753 /$ centuries, associated period ~ 1 month $\Omega_{M_{p}}=4069^{\circ} .01335 /$ centuries, associated period ~ 8.85 years
$\Omega_{M_{S}}=1934^{\circ} .13784 /$ centuries, associated period ~ 18.6 years

Solar radiation pressure potential

$$
V_{S R P}=C_{r} P_{r} A U^{2} \frac{A}{m} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{\odot}\right|}
$$

- C_{r} : reflectivity coefficient ($1 \leq C_{r} \leq 2$), here $C_{r}=1$
- $P_{r}=4,56 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$: radiation pressure for an object located at $A U$ the astronomical unit of distance
- $\frac{A}{m}$: the area-to-mass ratio
- and the same expressions are used for \mathbf{r}_{\odot} than for the Sun's potential

Full Hamiltonian model

$$
\begin{aligned}
H & =T+V_{G E O}+V_{\odot}+V_{\mathbb{G}}+V_{S R P} \\
& =H\left(\rho, \varphi, z, \varphi_{E}, \varphi_{M}, \varphi_{M_{a}}, \varphi_{M_{P}}, \varphi_{M_{S}}, p_{\rho}, p_{\varphi}, p_{z}, J_{E}, J_{M}, J_{M_{z}}, J_{M_{P}}, J_{M_{S}}\right)
\end{aligned}
$$

Full Hamiltonian model

$$
\begin{aligned}
H= & T+V_{G E O}+V_{\odot}+V_{\mathbb{G}}+V_{S R P} \\
= & H\left(\rho, \varphi, z, \varphi_{E}, \varphi_{M}, \varphi_{M_{a}}, \varphi_{M_{p}}, \varphi_{M_{S}}, p_{\rho}, p_{\varphi}, p_{z}, J_{E}, J_{M}, J_{M_{a}}, J_{M_{P}}, J_{M_{S}}\right) \\
& =\frac{p_{\rho}^{2}}{2}+\frac{p_{\varphi}{ }^{2}}{2 r^{2} \sin ^{2} \theta}+\frac{p_{z}^{2}}{2}+V\left(\rho, \varphi, z, \varphi_{E}, \varphi_{M}, \varphi_{M_{a}}, \varphi_{M_{P}}, \varphi_{M_{S}}\right) \\
& -\Omega_{\oplus} p_{\varphi}+\Omega_{\oplus} J_{E}+\Omega_{M} J_{M}+\Omega_{M_{a}} J_{M_{z}}+\Omega_{M_{P}} J_{M_{p}}+\Omega_{M_{S}} J_{M_{S}}
\end{aligned}
$$

Expansions and change of variables

$$
H\left(\rho, \varphi, z, \varphi_{E}, \varphi_{M}, \varphi_{M_{\mathrm{a}}}, \varphi_{M_{p}}, \varphi_{M_{S}}, p_{\rho}, p_{\varphi}, p_{z}, J_{E}, J_{M}, J_{M_{\mathrm{a}}}, J_{M_{p}}, J_{M_{S}}\right)
$$

- 8 DOF system, 5 DOF for the motion of Sun+Moon instead of just t $\rightarrow 5$ new frequencies in the system ($\Omega_{\oplus}, \Omega_{M}, \Omega_{M_{\mathrm{a}}}, \Omega_{M_{p}}, \Omega_{M_{S}}$)
- Expansion of this Hamiltonian around $\rho=\rho_{\text {GEO }}$ and $z=0$
- $d \rho=\rho-\rho_{G E O}, d z=z$, and $J_{\varphi}=p_{\varphi}-p_{G E O}$ with $p_{G E O}=\Omega_{\oplus} \rho_{G E O}^{2}$
- Expansion up to order 8 in $d \rho$ and $d z$
- numbers of monomials in the Hamiltonian $\sim 300 \rightarrow \sim 600$

Epicyclic action-angles variables

$$
\begin{array}{rlrl}
d \rho & =\sqrt{\frac{2 J_{\rho}}{\kappa_{\rho}}} \sin \left(\varphi_{\rho}\right) & \text { with } & \\
\text { where } \\
d z & =\sqrt{\frac{2 J_{z}}{\kappa_{z}}} \sin \left(\varphi_{z}\right) & \kappa_{\rho}=\sqrt{\frac{d^{2} V_{G E O_{e f f}}}{d \rho^{2}}} &
\end{array} V_{G E O_{e f f}}=\frac{p_{G E O}^{2}}{2 r^{2}}+V_{G E O_{0}}
$$

The Hamiltonian now contains terms of the following form, $\left(m_{i}, k_{i}\right) \in \mathbb{Z}$:
$p_{\rho}^{m_{1}} p_{\varphi}^{m_{2}} p_{z}^{m_{3}} J_{E}^{m_{4}} J_{M}^{m_{5}} J_{M_{3}}^{m_{6}} J_{M_{p}}^{m_{7}} J_{M_{S}}^{m_{8}} \cos \left(k_{1} \varphi_{\rho}+k_{2} \varphi+k_{3} \varphi_{z}+k_{4} \varphi_{E}+k_{5} \varphi_{M}+k_{6} \varphi_{M_{a}}+k_{7} \varphi_{M_{p}}+k_{8} \varphi_{M_{s}}\right)$

A taste of normalization

Before

After

Normalization process

- Procedure of canonical perturbation theory
- Around a given region of phase space (here GEO), through canonical transformations, find a Hamiltonian of the kind :
- $H=Z+R$ where Z is 'simple' to analyze and R, the remainder is of a smaller order and induces only minor modifications to the dynamics
- Recursive normalization algorithm, to refine H
- Define which terms should be allowed in Z (definition of the module):
- e.g. have the form of a pendulum, or harmonic oscillator at order 0 .
- Then Z will be easier to analyze
- $H=H_{0}+\lambda H_{1}+\lambda^{2} H_{2}+\lambda^{3} H_{3} \ldots$
- $H^{(r)}=Z_{0}+\lambda Z_{1}+\lambda^{2} Z_{2}+\ldots+\lambda^{r+1} H_{r+1}^{(r)}$

Normalization process

- Canonical transformations made through the use of Lie series :
- $\left(\varphi, J_{\varphi}\right) \rightarrow\left(\varphi^{\text {new }}, J_{\varphi}^{\text {new }}\right)$ via $\chi\left(\varphi^{\text {new }}, J_{\varphi}^{\text {new }}\right)$
- $H^{\text {new }}=\exp \left(L_{\chi}\right) H$ with $L_{\chi}=\{., \chi\}$ and $\{f, g\}=\sum_{i=1}^{n} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}$
- $\exp \left(L_{\chi}\right)=\sum_{i=1}^{\infty} \frac{1}{k!} L_{\chi}^{k}$

Computed easily (sum, products of derivatives) up to a given order

- The process is easy to implement :
- Replace the old variables by the new ones
- Compute $H^{\text {new }}=\exp \left(L_{\chi}\right) H$ (new variables)
- no need to find inverse functions and to use compositions
- How to find χ giving the canonical transformation that we want?
- By solving the homological equation $\{Z, \chi\}=-\tilde{H}$, where \tilde{H} represents the terms not belonging to the module.
- To pass back to the original variables: $\left(\varphi, J_{\varphi}\right)=\exp \left(L_{\chi}\right)\left(\varphi^{\text {new }}, J_{\varphi}^{\text {new }}\right)$

First Normalization

- Before normalization, the Hamiltonian contains terms with trigonometric arguments of the form: $k_{1} \varphi_{\rho}+k_{2} \varphi+k_{3} \varphi_{z}+k_{4} \varphi_{E}+k_{5} \varphi_{M}+k_{6} \varphi_{M a}+k_{7} \varphi_{M p}+k_{8} \varphi_{M s}$
- Since slow angles are associated with resonances, we want to isolate them and construct a pendulum-like model for them
- Choice of resonant module to keep in Z the resonant terms: Since $\kappa_{\rho} \approx \kappa_{z} \approx \Omega_{\oplus}$, if $k_{1}+k_{3}+k_{4}=0$ then the term belongs to the module. All other terms will be relegated in the remainder through the normal form process
- This step is similar to the first step in averaging theory, where the mean anomaly with a daily frequency is eliminated

Change of variable after first normalization

- After this first normalization that was done up to order 4 in book-keeping we do a change of variables to reflect the slow and fast variables better

$$
\begin{aligned}
\varphi_{e c} & =\varphi_{\rho}-\varphi-\varphi_{E}+\varphi_{M} & J_{e c} & =J_{\rho} \\
\varphi_{R} & =\varphi & J_{R} & =J_{\varphi}+J_{e c}+J_{i n} \\
\varphi_{i n} & =\varphi_{z}-\varphi-\varphi_{E} & J_{i n} & =J_{z} \\
\varphi_{e} & =\varphi_{E} & J_{e} & =J_{E}+J_{\rho}+J_{z} \\
\varphi_{m} & =\varphi_{M} & J_{m} & =J_{\varphi_{M}}-J_{\rho} \\
\varphi_{m a} & =\varphi_{M a} & J_{m a} & =J_{\varphi_{M a}} \\
\varphi_{m p} & =\varphi_{M p} & J_{m p} & =J_{\varphi_{M p}} \\
\varphi_{m s} & =\varphi_{M s} & J_{m s} & =J_{\varphi_{M s}}
\end{aligned}
$$

Introduction of Poincaré variables

- We can see in the Hamiltonian obtained by the previous procedure some terms showing the form a forced equilibrium, notably in the variables $J_{e c}$ and $J_{\text {in }}$
- It is then natural to pass to Poincaré variables:

$$
\begin{aligned}
& x_{e}=\sqrt{2 J_{e c}} \sin \left(\varphi_{e c}\right) \\
& y_{e}=\sqrt{2 J_{e c}} \cos \left(\varphi_{e c}\right) \\
& x_{i}=\sqrt{2 J_{i n}} \sin \left(\varphi_{i n}\right) \\
& y_{i}=\sqrt{2 J_{i n}} \cos \left(\varphi_{i n}\right)
\end{aligned}
$$

(1) Introduction

- Motivation
- Subject

2 Hamiltonian model

- Forces modeled
- Full Hamiltonian
- Normal form procedure
(3) Forced equilibrium
- Preliminary results for the forced equilibrium
- Refinement of the equilibrium
- Nature of the forced equilibrium

4. Analytical results

Forced equilibrium

- By removing all the other terms than $\left(x_{e}, y_{e}, x_{i}, y_{i}\right)$, we have a toy model. We can then look for its equilibrium
- The solutions found are :

$$
\begin{gathered}
x_{e f}=-0.138785 \\
y_{e f}=-0.000012 \\
x_{i f}=-0.231519 \\
y_{i f}=0.042744
\end{gathered}
$$

- Which corresponds to (for $\frac{A}{m}=10$ for instance):
- a forced eccentricity of : 0.11
- a forced inclination of : 10.9 deg

Expansion around the forced equilibrium

- Numerically integrating this Hamiltonian starting at the equilibrium found gives variations of up to 10% for $\left(x_{e}, y_{e}, x_{i}, y_{i}\right)$. This shows the need for a refined equilibrium
- To find it we expand our Hamiltonian around ($x_{e f}, y_{e f}, x_{i f}, y_{i f}$) by introducing new variables:

$$
\begin{aligned}
d x_{e} & =x_{e}-x_{e f} \\
d y_{e} & =y_{e}-y_{e f} \\
d x_{i} & =x_{i}-x_{i f} \\
d y_{i} & =y_{i}-y_{i f}
\end{aligned}
$$

Transformation to action-angle variables

- Need to pass to action-angle variables again, for normalization purposes
- First, a diagonalization of the previous Hamiltonian toy model restricted to its quadratic terms is done $\left(d x_{e}, d y_{e}, d x_{i}, d y_{i}\right) \rightarrow\left(q_{1}, p_{1}, q_{2}, p_{2}\right)$
- Then to finish the transformation to action-angle variables we do the following canonical transformation:

$$
\begin{aligned}
& q_{k} \rightarrow \sqrt{J_{k}} e^{i \varphi_{k}} \\
& p_{k} \rightarrow-i \sqrt{J_{k}} e^{-i \varphi_{k}}
\end{aligned}
$$

- To refine the equilibrium, a new normalization of this Hamiltonian is needed

Second normalization

- This time, we want to eliminate very precise terms, the terms that cause the non-constancy of ($d x_{e}, d y_{e}, d x_{i}, d y_{i}$)
- They are terms linear in $\left(d x_{e}, d y_{e}, d x_{i}, d y_{i}\right)$ and contain small divisors
- Define a threshold up to which we keep the terms with a given small divisor so that they contribute to the dynamics of the normal form
- New normalization will eliminate the other ones up to second order in book-keeping

Nature of the forced equilibrium

- Back-transforming from the action-angle variables $\left(J_{1}, \varphi_{1}, J_{2}, \varphi_{2}\right)$ with which the Hamiltonian was normalized to the ($d x_{e}, d y_{e}, d x_{i}, d y_{i}$), and numerically integrating the results, the variations are smaller by one order of magnitude
- We now consider those variations small enough, and therefore the new $\left(d x_{e}, d y_{e}, d x_{i}, d y_{i}\right)$ as quasi-constants. We can then express the old ($d x_{e}, d y_{e}, d x_{i}, d y_{i}$) in function of these new ones considered as constant (equal to their refined equilibrium values) and have an expression of them directly function of time
- The forced equilibrium is then a lower dimensional object containing a combination of five distinct frequencies $\left(\Omega_{\oplus}, \Omega_{M}, \Omega_{M_{a}}, \Omega_{M_{p}}, \Omega_{M_{S}}\right)$

Analytical expression for the original variables

- From these original ($d x_{e}, d y_{e}, d x_{i}, d y_{i}$) expressed in function of time we can come back to the (ρ, φ, z) and express them in function of time only too
- This gives us an analytical formula of our original variables

(1) Introduction

- Motivation
- Subject

(2) Hamiltonian model

- Forces modeled
- Full Hamiltonian
- Normal form procedure
(3) Forced equilibrium
- Preliminary results for the forced equilibrium
- Refinement of the equilibrium
- Nature of the forced equilibrium

4 Analytical results

Comparison of the analytical results with the numerical integration of the full model

ρ for 1000 days
ρ for 100 years

Comparison of the analytical results with the numerical

 integration of the full modeleccentricity for 10000 days

inclination for 1000 days

Future works

- Do a thorough study of the region using stability maps
- Derive orbital lifetime of objects
- Dynamical deorbiting strategies
- Study other regions of the phase space

Thank you for your attention! Questions?

