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Introduction Motivation

The problem of space debris
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Introduction Motivation

Number of catalogued space debris
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Introduction Motivation

Density of debris in different regions
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Introduction Motivation

HAMR objects

High Area-to-Mass Ratio (HAMR) objects
have been discovered in the early 2000s (Schildknecht et al.)

Coming from thermal insulation layers (MLI) wrapping certain
components of satellites that could have been detached from defunct
satellite breakups, or from impact by smaller debris on said satellites

Area-to-mass ratio ( A
m ) can be thousands of times higher than regular

satellites : 0.01 m2/kg → 30 m2/kg

HAMR objects can reach very high eccentricity (up to 0.7) in a few
months and this may lead to reentry

Short terms and secular effects appear on the eccentricity and
inclination
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Introduction Subject

Research and topic overview

Analytical modeling of the GEO region via the application of
canonical pertubation theory, to give insights in the dynamical
evolution of objects in this region over long time scales with
applications to space debris

A specific focus is set on the recently discovered debris with high area
to mass ratios since they exhibit peculiar dynamical behavior

In this work :

The true nature of the forced equilibrium for space debris is shown.
Analytical formulas for elements describing the motion of objects at
GEO (valid for HAMR objects)
Derivation and final expression using cylindrical coordinates (no
expansion using eccentricity and inclination function)
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Introduction Subject

State of the art
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Hamiltonian model

Hamiltonian of the system

Hamiltonian

Kinetic energy

Conjugated
momenta

H = T + V

T =
1

2
m
(
ρ̇2 + ρ2Φ̇2 + ż2

)
pρ = mρ̇

pΦ = mρ2Φ̇

pz = mż

Φ = ϕ+ Ω⊕t
longitude in the
non-rotating frame
Ω⊕ = 7.292115× 10−5rad/s

H(ρ,Φ, z , pρ, pΦ, pz , t) =
pρ

2

2
+

pΦ
2

2ρ2
+

p2
z

2
+ V (ρ,Φ, z , t)
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Hamiltonian model Forces modeled

Perturbations at GEO
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Hamiltonian model Forces modeled

Forces modeled

Geopotential : up to order and degree 2

Sun : at order 2 in the small
∣∣∣ r
r�

∣∣∣ ratio
(∣∣∣ r

r�

∣∣∣ ' 0.00024
)

,

eccentricity (e ' 0.016709) and inclination (i ' 23.44 deg)

Moon : at order 2 in the small

∣∣∣∣ r
r$

∣∣∣∣ ratio

(∣∣∣∣ r
r$

∣∣∣∣ ' 0.094

)
,

eccentricity (e ' 0.0055) and inclination (i ' 5.1 deg)

Solar radiation pressure : same as the Sun since directly dependent
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Hamiltonian model Forces modeled

Gravitational potential of the Earth

VGEO2 = V (ρ, ϕ, z) =

− µ⊕√
ρ2 + z2

+

√
5C̄2,0µ⊕R

2
⊕

2(ρ2 + z2)3/2
−

3
√

5C̄2,0µ⊕R
2
⊕z

2

2(ρ2 + z2)3/2
+

√
15C̄2,2µ⊕R

2
⊕z

2 cos(2ϕ)

2(ρ2 + z2)5/2

−
√

15C̄2,2µ⊕R
2
⊕ cos(2ϕ)

2(ρ2 + z2)3/2
+

√
15µ⊕R

2
⊕S̄2,2z

2 sin(2ϕ)

2(ρ2 + z2)5/2
−
√

15µ⊕R
2
⊕S̄2,2 sin(2ϕ)

2(ρ2 + z2)3/2

Study of the system with just the Geopotential reveals the existence of four basic
equilibria of the system, located at ρ = ρGEO , z = 0 :
Stable

ϕ = 75.07 deg

ϕ = −104.93 deg

Unstable

ϕ = 165.07 deg

ϕ = −14.93 deg
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Hamiltonian model Forces modeled

Lunisolar potential

V$ = −Gm$

(
1

|r − r$|
+

r · r$
|r$|3

)

V� = −Gm�
(

1

|r − r�|
+

r · r�
|r�|3

)

r =

 ρ cos Φ
ρ sin Φ

z

 =

 ρ cos(ϕ+ ϕE )
ρ sin(ϕ+ ϕE )

z


ϕE = Ω⊕ · t
Ω⊕ = 7.292115× 10−5rad/s

Associated period: 1 day
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Hamiltonian model Forces modeled

Sun and Moon vector expansions

r�, r · r� = f (M�)

M�: Sun’s mean anomaly

M� = f (ϕM )

ϕM = ΩM · t

ΩM = 35999◦.049/centuries,

associated period: 1 year

r$, r · r$ = f (L0, l , l
′,F$,D$)

L0: Moon’s mean longitude

l$: Moon’s mean anomaly

l ′$: Sun’s mean anomaly

F$: mean angular distance of the
Moon from the ascending node

D$: difference between the mean
longitudes of the Sun and the Moon

(L0, l , l
′,F$,D$) = f (ϕM , ϕMp , ϕMa , ϕMS )

ϕMa = ΩMa t

ϕMp = ΩMp t

ϕMS = ΩMs t

ΩMa = 477198◦.86753/centuries,

associated period ∼ 1 month

ΩMp = 4069◦.01335/centuries,

associated period ∼ 8.85 years

ΩMS = 1934◦.13784/centuries,

associated period ∼ 18.6 years
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Hamiltonian model Forces modeled

Solar radiation pressure potential

VSRP = CrPr AU2 A

m

1

|r − r�|

Cr : reflectivity coefficient (1 ≤ Cr ≤ 2), here Cr = 1

Pr = 4, 56× 10−6 N/m2: radiation pressure for an object located at
AU the astronomical unit of distance
A
m : the area-to-mass ratio

and the same expressions are used for r� than for the Sun’s potential
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Hamiltonian model Full Hamiltonian

Full Hamiltonian model

H = T + VGEO + V� + V$ + VSRP

= H(ρ, ϕ, z , ϕE , ϕM , ϕMa , ϕMp , ϕMS
, pρ, pϕ, pz , JE , JM , JMa , JMp , JMS

)

=
pρ

2

2
+

pϕ
2

2r2 sin2 θ
+

p2
z

2
+ V (ρ, ϕ, z , ϕE , ϕM , ϕMa , ϕMp , ϕMS

)

− Ω⊕pϕ + Ω⊕JE + ΩMJM + ΩMaJMa + ΩMpJMp + ΩMS
JMS
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+
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Hamiltonian model Full Hamiltonian

Expansions and change of variables

H(ρ, ϕ, z , ϕE , ϕM , ϕMa , ϕMp , ϕMS
, pρ, pϕ, pz , JE , JM , JMa , JMp , JMS

)

8 DOF system, 5 DOF for the motion of Sun+Moon instead of just t
→ 5 new frequencies in the system (Ω⊕,ΩM ,ΩMa ,ΩMp ,ΩMS

)

Expansion of this Hamiltonian around ρ = ρGEO and z = 0

dρ = ρ− ρGEO , dz = z , and Jϕ = pϕ − pGEO with pGEO = Ω⊕ρ
2
GEO

Expansion up to order 8 in dρ and dz

numbers of monomials in the Hamiltonian ∼ 300→∼ 600
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Hamiltonian model Full Hamiltonian

Epicyclic action-angles variables

dρ =

√
2Jρ
κρ

sin (ϕρ)

dz =

√
2Jz

κz
sin (ϕz )

pρ =
√

2κρJρ cos (ϕρ)

pz =
√

2Jzκz cos (ϕz )

with

κρ =

√
d2VGEOeff

dρ2

κz =

√
d2VGEOeff

dz2

where

VGEOeff
=

p2
GEO

2r2
+ VGEO0(r)

VGEO0(r) = −µ⊕
r

The Hamiltonian now contains terms of the following form, (mi , ki ) ∈ Z:

pm1
ρ pm2

ϕ pm3
z Jm4

E Jm5
M Jm6

Ma
Jm7

Mp
Jm8

MS
cos(k1ϕρ+k2ϕ+k3ϕz +k4ϕE +k5ϕM +k6ϕMa+k7ϕMp+k8ϕMs )
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Hamiltonian model Full Hamiltonian

A taste of normalization

Before After
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Hamiltonian model Full Hamiltonian

Normalization process

Procedure of canonical perturbation theory

Around a given region of phase space (here GEO), through canonical
transformations, find a Hamiltonian of the kind :
H = Z + R where Z is ’simple’ to analyze and R, the remainder is of a
smaller order and induces only minor modifications to the dynamics

Recursive normalization algorithm, to refine H
Define which terms should be allowed in Z (definition of the module):

e.g. have the form of a pendulum, or harmonic oscillator at order 0.
Then Z will be easier to analyze

H = H0 + λH1 + λ2H2 + λ3H3...
H(r) = Z0 + λZ1 + λ2Z2 + ...+ λr+1H

(r)
r+1
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Hamiltonian model Normal form procedure

Normalization process

Canonical transformations made through the use of Lie series :

(ϕ, Jϕ)→ (ϕnew , Jnew
ϕ ) via χ(ϕnew , Jnew

ϕ )

Hnew = exp(Lχ)H with Lχ = {., χ} and {f , g} =
∑n

i=1
∂f
∂qi

∂g
∂pi
− ∂f

∂pi

∂g
∂qi

exp(Lχ) =
∑∞

i=1
1
k!L

k
χ

Computed easily (sum, products of derivatives) up to a given order
The process is easy to implement :

Replace the old variables by the new ones
Compute Hnew = exp(Lχ)H(new variables)
no need to find inverse functions and to use compositions

How to find χ giving the canonical transformation that we want?

By solving the homological equation {Z , χ} = −H̃, where H̃ represents
the terms not belonging to the module.

To pass back to the original variables: (ϕ, Jϕ) = exp(Lχ)(ϕnew , Jnew
ϕ )
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Hamiltonian model Normal form procedure

First Normalization

Before normalization, the Hamiltonian contains terms with
trigonometric arguments of the form:
k1ϕρ + k2ϕ+ k3ϕz + k4ϕE + k5ϕM + k6ϕMa + k7ϕMp + k8ϕMs

Since slow angles are associated with resonances, we want to isolate
them and construct a pendulum-like model for them

Choice of resonant module to keep in Z the resonant terms: Since
κρ ≈ κz ≈ Ω⊕, if k1 + k3 + k4 = 0 then the term belongs to the
module. All other terms will be relegated in the remainder through
the normal form process

This step is similar to the first step in averaging theory, where the
mean anomaly with a daily frequency is eliminated
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Hamiltonian model Normal form procedure

Change of variable after first normalization

After this first normalization that was done up to order 4 in
book-keeping we do a change of variables to reflect the slow and fast
variables better
ϕec = ϕρ − ϕ− ϕE + ϕM

ϕR = ϕ

ϕin = ϕz − ϕ− ϕE

ϕe = ϕE

ϕm = ϕM

ϕma = ϕMa

ϕmp = ϕMp

ϕms = ϕMs

Jec = Jρ

JR = Jϕ + Jec + Jin

Jin = Jz

Je = JE + Jρ + Jz

Jm = JϕM
− Jρ

Jma = JϕMa

Jmp = JϕMp

Jms = JϕMs
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Hamiltonian model Normal form procedure

Introduction of Poincaré variables

We can see in the Hamiltonian obtained by the previous procedure
some terms showing the form a forced equilibrium, notably in the
variables Jec and Jin

It is then natural to pass to Poincaré variables:

xe =
√

2Jec sin(ϕec )

ye =
√

2Jec cos(ϕec )

xi =
√

2Jin sin(ϕin)

yi =
√

2Jin cos(ϕin)
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Forced equilibrium Preliminary results for the forced equilibrium

Forced equilibrium

By removing all the other terms than (xe , ye , xi , yi ), we have a toy
model. We can then look for its equilibrium

The solutions found are :

xef = −0.138785

yef = −0.000012

xif = −0.231519

yif = 0.042744

Which corresponds to (for A
m = 10 for instance):

a forced eccentricity of : 0.11
a forced inclination of : 10.9 deg
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Forced equilibrium Preliminary results for the forced equilibrium

Expansion around the forced equilibrium

Numerically integrating this Hamiltonian starting at the equilibrium
found gives variations of up to 10% for (xe , ye , xi , yi ). This shows the
need for a refined equilibrium

To find it we expand our Hamiltonian around (xef , yef , xif , yif ) by
introducing new variables:

dxe = xe − xef

dye = ye − yef

dxi = xi − xif

dyi = yi − yif
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Forced equilibrium Refinement of the equilibrium

Transformation to action-angle variables

Need to pass to action-angle variables again, for normalization
purposes

First, a diagonalization of the previous Hamiltonian toy model
restricted to its quadratic terms is done
(dxe , dye , dxi , dyi )→ (q1, p1, q2, p2)

Then to finish the transformation to action-angle variables we do the
following canonical transformation:

qk →
√
Jke

iϕk

pk → −i
√

Jke
−iϕk

To refine the equilibrium, a new normalization of this Hamiltonian is
needed
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Forced equilibrium Refinement of the equilibrium

Second normalization

This time, we want to eliminate very precise terms, the terms that
cause the non-constancy of (dxe , dye , dxi , dyi )

They are terms linear in (dxe , dye , dxi , dyi ) and contain small divisors

Define a threshold up to which we keep the terms with a given small
divisor so that they contribute to the dynamics of the normal form

New normalization will eliminate the other ones up to second order in
book-keeping
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Forced equilibrium Nature of the forced equilibrium

Nature of the forced equilibrium

Back-transforming from the action-angle variables (J1, ϕ1, J2, ϕ2)
with which the Hamiltonian was normalized to the (dxe , dye , dxi , dyi ),
and numerically integrating the results, the variations are smaller by
one order of magnitude

We now consider those variations small enough, and therefore the
new (dxe , dye , dxi , dyi ) as quasi-constants. We can then express the
old (dxe , dye , dxi , dyi ) in function of these new ones considered as
constant (equal to their refined equilibrium values) and have an
expression of them directly function of time

The forced equilibrium is then a lower dimensional object containing a
combination of five distinct frequencies (Ω⊕,ΩM ,ΩMa ,ΩMp ,ΩMS

)
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Forced equilibrium Nature of the forced equilibrium

e = eforced , i = iforced

e = 0, i = 0
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Forced equilibrium Nature of the forced equilibrium

Analytical expression for the original variables

From these original (dxe , dye , dxi , dyi ) expressed in function of time
we can come back to the (ρ, ϕ, z) and express them in function of
time only too

This gives us an analytical formula of our original variables
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Analytical results

Comparison of the analytical results with the numerical
integration of the full model

ρ for 1000 days ρ for 100 years
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Analytical results

Comparison of the analytical results with the numerical
integration of the full model

eccentricity for 10000 days inclination for 1000 days

Fabien Gachet (U. Rome Tor Vergata) ICATT 2016 March 15, 2016 37 / 38



Analytical results

Future works

Do a thorough study of the region using stability maps

Derive orbital lifetime of objects

Dynamical deorbiting strategies

Study other regions of the phase space

Fabien Gachet (U. Rome Tor Vergata) ICATT 2016 March 15, 2016 38 / 38



Analytical results

Thank you for your attention!
Questions?
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