
An implementation of SGP4
in non-singular variables
using a functional paradigm

Pablo Pita Leira

15th March 2016

6th ICATT Conference, Darmstadt

1/15



Motivation



SGP4

Simplified General Perturbations 4 orbit propagator

ä widely used tool for the fast, short term propagation of earth
satellite orbits

ä thoroughly described in the SPACETRACK report #3 by Hoots et
al.

ä numerous versions of SGP4: FORTRAN, C++, Java, MATLAB

ä Inputs: two line elements (TLE) disseminated by NORAD

3/15



SGP4 Algorithm Description

ä applied for all orbits with periods of T <= 225 min.

ä secular rates of change due to the zonal harmonics J2 and J4 of
the Earth potential, and due to drag perturbations in an
atmosphere with a power-law altitude profile of air density

ä long period corrections perturbations due to J3

ä first-order, short-period perturbation corrections due to J2

4/15



SGP4Extensions: why one more version?

SGP4 is used in a broader context like conjunction analysis.

Scala can be interesting for the design of algorithms in this broader
context

By having a version of SGP4 in Scala, the integration of SGP4 in the
algorithms is easier.

SGP4Extensions exposes new function calls that enables new
conjunction algorithms

No implementation of SDP4

5/15



SGP4Extensions



Scala

Developed by Martin Odersky in the EPFL since 2001.

ä Hybrid object oriented/functional

ä Rich type system

ä compiled to java byte code, also possible javascript

ä designed for creating DSL on top: expressive

7/15



SGP4Extensions: characteristics

ä It is heavily influenced by the functional software paradigm.

ä Equations have been expressed almost always literally writing
the algebraic equations in the code as expressed in the papers

ä Implementations using other variables and/or extra terms can be
easily introduced into the propagation algorithm

ä Provides more options and flexibility when being used within
other algorithms, like those performing space debris conjunction
analysis

8/15



Unicode support

ä Unicode support to express equations

ä Lyddane 2nd Order Long Period Corrections:

val δI = ε3 ∗ e sinω ∗ c

val δa = 0

val δh = −ε3 ∗ e cosω ∗ c/s

val δC = −ε3 ∗ e cosω ∗ e sinω ∗ (1/s − 2 ∗ s)

val δS = ε3 ∗ s − ε3 ∗ ‘η2‘ ∗ s − 2 ∗ ε3 ∗ ‘e cosω2‘ ∗ s + ε3 ∗ ‘e cosω2‘/s

val δF = ε3 ∗ s ∗ e cosω ∗ (1 − 2 ∗ ‘η2‘/(1 + η))/2

Note: e cosω2 that the product e cosω is squared.

9/15



SGP4 Vallado model

p.s.SGP4

p.s.r.LyddaneLongPeriodCorrections

p.s.r.SGP4Vallado

p.s.r.SGP4WithSPNCorrections p.s.r.TwoTermsKeplerEq

p.s.r.SPNShortPeriodCorrections

10/15



SGP4 Lara model

p.s.SGP4 p.s.r.LaraFirstOrderCorrections

p.s.r.SGP4Lara

p.s.r.SimpleKeplerEq

11/15



Validation results

Tested with TLEs for near Earth used by David Vallado

ä SGP4Vallado match C++ results (max diffs 10−8) at 30000 min

ä Order of calculation of Kepler equation does not introduce
significant effects

ä There are small differences between other algorithms like
PolarNodals, Lara and ValladoLong with SGP4Vallado

12/15



What’s next



Future’s work

ä Propagation of the whole catalog

ä Collision analysis

ä Conjuctions in field of view of optical cameras

14/15



Questions?

15/15


	Motivation
	SGP4Extensions
	What's next

