
AN IMPLEMENTATION OF SGP4 IN NON-SINGULAR VARIABLES
USING A FUNCTIONAL PARADIGM

Pablo Pita Leira

pablo.pita@gmail.com

Martín Lara∗

GRUCACI – Scientific Computation Group
University of La Rioja

C/ Luis de Ulloa, s/n. Edificio Vives,
26004 Logroño, Spain

ABSTRACT

A new implementation of the SGP4 algorithm is pre-
sented, which allows for choosing different sets of vari-
ables in the computation of the periodic corrections. The
project is implemented in Scala, a hybrid functional/ob-
ject oriented programming language running in the Java
Virtual Machine. Validation of the new implementations
is made by carrying out different tests based on Vallado’s
results. Finally, applicability for massive data process-
ing tasks like prediction of orbital collision events and
performance are discussed.

Index Terms— SGP4, Orbital Propagation, Scala,
Perturbation theory, non-singular variables

1. INTRODUCTION TO SGP4EXTENSIONS

The SGP4 (Simplified General Perturbations 4) orbit
propagator is a widely used tool for the fast, short term
propagation of earth satellite orbits. The algorithms in
which it is based are thoroughly described in the SPACE-
TRACK report #3 [1], as well as in Vallado et al. up-
date [2]. Current implementations of SGP4 are based
on Brouwer’s gravity solution [3] and Lane atmospheric
model [4], but using Lyddane’s modifications for avoid-
ing loss of precision in the evaluation of the periodic cor-
rections [5], which are, besides, notably simplified for
improving evaluation efficiency. Different alternatives in
the literature discuss other variable sets, either canonical
or not, that can be used in the computation of periodic
corrections (see, for instance, [6, 7, 8, 9]).

Due to its popularity, there are numerous versions
of SGP4 in several programming languages. The most
important implementation comes from David Vallado [2]
who has done a comprehensive analysis of the algorithm.
Many other versions are derived from his work. The work
presented in this paper, SGP4Extensions, also derives

∗Funded by the Ministry of Economic Affairs and Competitive-
ness of Spain: Projects ESP2013-41634-P and ESP2014-57071-R.

from his software. It is written in Scala and can be com-
piled to run in the Java Virtual Machine or in the browser
with the scala.js compiler backend. The SGP4Extensions
software however is designed differently to those versions
from Vallado:

1. It is heavily influenced by the functional software
paradigm.

2. Implementations using other variables and/or ex-
tra terms can be easily introduced to create new
propagation algorithms

3. Equations in the code have almost always the same
notation as expressed in the papers to allow easy
review

In particular, the usage of Lara’s non-singular variables
[9] is optional for all periodic corrections, in this way
avoiding the mixture of Lyddane’s and polar variables
used for the long- and short-period corrections, respec-
tively, in the original implementation.

In the current version of SGP4Extensions, only ex-
tensions around SGP4 are implemented. The deep space
algorithm SDP4 is not implemented.

The project is hosted in
https://github.com/pleira/SGP4Extensions

and it is licensed with an open source Apache Version 2
license.

2. SCALA FEATURES

Scala has been created by Martin Odersky as an stati-
cally typed language fusing the object oriented and func-
tional paradigms [10]. It is designed with Java compati-
bility in mind. Users normally compile scala programs to
Java byte code that will run in the Java Virtual Machine.

Scala fully supports the functional paradigm where
functions are implemented in a referential transparent
way, called pure functions with no side effects [11, p. 3].

https://github.com/pleira/SGP4Extensions
https://github.com/pleira/SGP4Extensions


There is a separation of the run time part, like for ex-
ample reading/writing from/to files, called generally the
interpreter, from a pure functional part, the description,
which is just responsible to describe the algorithms that
will be applied. The algorithms in the description just
return new immutable structures with the calculations
carried out. In this implementation of SGP4, mutable
state and side effects have been completely avoided in
the algorithm allowing easily to support software con-
cerns like testability and parallelism.

Scala’s support for unicode to represent algebraic
equations has been explored in the literature [12]. Uni-
code is used intensively in SGP4Extensions with some
simplifications to alleviate the notation: no primes nor
overdots for derivatives have been done in the code. As
example, equations 6 giving Lara’s long period correc-
tions in Sec.3.2 are so stated in the code in the scala
trait LaraFirstOrderCorrections:
val δψ = ϵ3 * (2*χ + (κ*χ - c*σ*ξ)/(1+c))

val δξ = ϵ3 * (2*`χ²` + κ*(1 - `ξ²`))

val δχ = -ϵ3 * (`c²`*σ + (2 + κ)*ξ*χ)

val δr = ϵ3 * p * ξ

val δR = ϵ3 * (Θ/r) * (1 + κ) * χ

val δΘ = ϵ3 * Θ * (κ*ξ - σ*χ)

Regarding optimizations, SGP4Extensions uses the
@specialized annotation for the Double numeric type.
The usage of primitive types like Double comes with the
cost of boxing/unboxing operations when working with
unspecialized methods as the compiler creates wrapper
objects for that, an operation called boxing. With @spe-
cialized the compiler will support creating specialized
methods or classes for the declared primitive types that
avoids creating the boxing objects.

2.1. Scala libraries used

The current version of the SGP4Extensions code uses
the Scala libraries Spire [13], Scalactic [14] and Scalatest
[15].

Spire is a library that provides efficient numeric
types and mathematical functions. The implementation
of most of the functions and methods in SGP4Exten-
sions are parameterized through Spire’s type classes. As
example, the algorithm to calculate Lane’s coefficients
for atmospheric drag just needs Spire’s Field type class
as its operations are expressed via products and sums:
def calcLaneCoefs[@sp(Double) F : Field]

(gcoefs : GeoPotentialCoefs[F]) : LaneCoefs[F] = {

import gcoefs._

val `C1²` = C1*C1

LaneCoefs(

3*C1/2,

D2 + 2*`C1²`,

(3*D3 + C1*(12*D2 + 10 * `C1²`))/4,

(3*D4 + 12*C1*D3 + 6*D2*D2 + 15*`C1²`*(2*D2+`C1²`))/5)

}

For most of the methods, the following type classes are
needed:

• Field: provides for the sum, product and division
operation following associative laws.

• Trig: provides trigonometric functions.

• NRoot: provides fractional exponents, square root
and nroots.

• Order: type-safe equivalence and comparison func-
tions.

As example, the trigonometric series for the geopotential
coefficients use these four type classes.

The user has then a choice of a particular numeric
class to define a SGP4 propagator. The Double type
has been used for testing SGP4Extensions as it is fast
and sufficient for almost all cases. The @sp annotation
is an alias for @specialized, and therefore, a version of
this method is created by the compiler using the prim-
itive representation of double in the Java Virtual Ma-
chine avoiding the creation of objects. But the user has
a choice for other numeric types. As example, an exact
numeric type like Real could be used. A numeric type
like Interval[Double] would allow for automatic calcula-
tion of errors when those are defined as intervals. These
numeric types can have uses in certain areas but their
execution times are several orders of magnitude slower
than Double.

Scalactic provides support for types expressing either
the good result or an error message and for comparing
Doubles with a certain tolerance.
// final results in cartesians

type SGPPropCtx[F] = (CartesianElems[F],

CartesianElems[F], SpecialPolarNodal[F])

type SGPPropResult[F] = SGPPropCtx[F] Or ErrorMessage

Scalatest is used to automatically check the results of
the different algorithms.

2.2. Description of the types used

Several groups of types are defined to make clear the pro-
cessing steps involved in this new SGP4 implementation.
First, the coordinate types in the TEME (True Equator
Mean Equinox) reference system and supporting classes
for coordinate transformations:

• SGPElems: classical keplerian elements plus bStar
drag coefficient and julian day

• CartesianElems: orbital position and velocity ref-
erence frame

• SpecialPolarNodal: polar nodal coordinates with
the inclination instead of the polar component of
the angular momentum



• LaraNonSingular: non singular variables

• LyddaneElems

Then, models for the corrections like BrouwerLaneSec-
ularCorrections, LyddaneLongPeriodCorrections, Lyd-
dane2ndOrderLongPeriodCorrections, LaraFirstOrder-
Corrections. For the resolution of the different Kepler
equations because of the different coordinate systems,
there are SimpleKeplerEq and TwoTermsKeplerEq.

All those types are mixed in the SGP4 algorithm sub-
classes, like SGP4Vallado in Fig. (1) and SGP4Lara in
Fig. (2).

3. SGP4 ALGORITHM DESCRIPTIONS

The SGP4 propagator is thoroughly described in the lit-
erature [1, 2]. For completeness, we summarize it here,
yet without mentioning anything related to the deep
space or atmospheric drag corrections.

First, we recall that Brouwer’s gravitational theory
relies on the canonical set of Delaunay variables

• ` =M : mean anomaly
• g = ω: argument of the periapsis
• h = Ω: RAAN (right ascension of the ascending

node)
• L =

√
µa: Delaunay action, where µ is the earth

gravitational constant and a is the orbit semi-
major axis

• G =
√
µ p: total angular momentum, where p =

a(1−e2) is the orbit parameter (semilatus rectum),
and e is the orbit eccentricity

• H = G cos I: projection of the angular momentum
on the earth’s rotation axis, where I is the orbit
inclination

However, Brouwer’s theory finds trouble when evaluat-
ing the short-period corrections for the lower eccentricity
orbits. The trouble is artificial, and is related to the sin-
gularity of Delaunay variables for circular orbits. Hence,
SGP4 implements a different set of elements based on
Lyddane’s approach which completely avoids that trou-
ble. In particular, the elements used in the computation
of short-period corrections are1

F = `+g+h, C = e cosω, S = e sinω, a, I, h.

3.1. Standard implementation of SGP4

3.1.1. Initialization and secular corrections

The code, starts from the initial mean elements at epoch
(I0,Ω0, e0, ω0,M0, n0), where n stands for mean motion,

1The original variables proposed by Lyddane were slightly dif-
ferent, namely a, F , e cos `, e sin `, sin 1

2
I cosh, and sin 1

2
I sinh.

which should be obtained from the so called two line
elements, or TLEs.2 From them, Delaunay elements
at epoch (`′′0 , g

′′
0 , h

′′
0 , L

′′
0 , G

′′
0 ,H

′′
0 ) are obtained from their

definition. The double prime notation is used for “sec-
ular” elements. In fact, the Delaunay actions, viz. L,
G, and H, are never computed in SGP4, which uses
n = µ2/L3, e =

√
1−G2/L2, and I = arccos(H/G),

instead.
From these initial elements, Brouwer’s theory pro-

vides the secular frequencies ˙̀′′, ġ′′, and ḣ′′, due to the
earth’s gravitational potential, where the overdot means
time derivative. Each of these frequencies is a function
of (n0, e0, I0), and remain constant for the evaluation of
the theory at different dates. Besides, the initialization
process provides a series of coefficients needed to apply
drag secular corrections as computed from Lane’s theory
[4].

The code works with internal units of length LU
(units of earth’s radius R⊕ in km) and time TU (units
of the orbit’s period in min) such that µ = 1LU3/TU2

in internal units. Besides, the expansion of the gravita-
tional potential in SGP4 is limited to the (unnormalized)
zonal harmonics J2, J3, and J4. This selection of units
helps in optimizing the code, but it is irrelevant for
the description of the algorithms. Therefore, following
descriptions include explicitly both the earth’s gravita-
tional parameter as well as the earth’s equatorial radius.

The next step is to update the secular elements at
epoch to the desired date given by the time t.

Brouwer’s gravitational corrections are applied first

`′′j =M0 + ˙̀′′ t, g′′j = ω0 + ġ′′ t, h′′j = Ω0 + ḣ′′ t,

where the subindex j stands for gravitational effects only.
Besides, corrections due to the atmospheric drag, which
are not discussed in the paper, are incorporated at this
stage.

After that, we obtain the set of secular elements

(`′′, g′′, h′′, a′′, e′′, I ′′).

The secular mean motion n′′ = (µ/a′′3)1/2 is also com-
puted.

3.1.2. Geopotential periodic corrections

Brouwer long-period gravitational corrections are re-
formulated in Lyddane’s variables. At the precision of
SGP4, that is, neglecting terms O(e2), there are only
corrections for F and S. Then, C ′ = C ′′, a′ = a′′,

2Keep in mind that the TLE mean motion needs to be converted
first from Kozai’s definition [16] to Brouwer’s secular one.



p.s.SGP4

p.s.r.LyddaneLongPeriodCorrections

p.s.r.SGP4Vallado

p.s.r.SGP4WithSPNCorrections p.s.r.TwoTermsKeplerEq

p.s.r.SPNShortPeriodCorrections

Fig. 1. Structure of SGP4Vallado algorithm

p.s.SGP4 p.s.r.LaraFirstOrderCorrections

p.s.r.SGP4Lara

p.s.r.SimpleKeplerEq

Fig. 2. Structure of SGP4Lara algorithm

h′ = h′′, I ′ = I ′′, and

F ′ = (`′′ + g′′ + h′′)− J3
4J2

R⊕

p′′
C ′′ 3 + 5 cos I ′′

1 + cos I ′′
sin I ′′

S′ = e′′ sin g′′ − J3
2J2

R⊕

p′′
sin I ′′

where C ′′ = e′′ cos g′′, p′′ = a′′(1 − e′′2). The single
prime notation means that Lyddane elements include
long-period effects. Note that n′ = n′′. Since there is
no risk of ambiguity, the notation can be unified and
simplified by removing primes, to read

F = M + ω +Ω− ε3se cosω 3 + 5c

2(1 + c)

S = e sinω − ε3s

where c = cos I, s = sin I, and ε3 = 1
2 (J3/J2)(R⊕/p).

It follows a change from Lyddane’s to polar variables

(r, θ, R = ṙ,Θ = r2θ̇) −→ (F,C, S, a).

To do that, first the Kepler equation

U ≡ F ′ − h′ = Ψ+ S′ cosΨ− C ′ sinΨ,

is solved to compute Ψ = E′+g′, where E is the eccentric
anomaly. Newton-Raphson iterations start from Ψ0 =
U .

Next g′ and e′ are solved from C ′ = e′ cos g′, S′ =
e′ sin g′. Then, compute E′ = Ψ − g′, L′ =

√
µa′, and

β′ =
√
1− e′2. It follows the usual transformation

r′ = a′(1− e′ cosE′) (1)
R′ = (L′/r′)e′ sinE′ (2)
Θ′ = L′β′ (3)
θ′ = f ′ + g′ (4)

where the true anomaly is obtained without ambiguity
from

sin f ′ = (a′/r′)β′ sinE′, cos f ′ = (a′/r′)(cosE′ − e′).
(5)
Note that, SGP4 computes the correction to rθ̇ = Θ/r
instead of the correction to the polar variable Θ.

Then, compute p′ = a′β′2, c′ = cos I ′, s′ = sin I ′, and
ε2 = − 1

4J2(R⊕/p
′)2, to obtain the SGP4 short-period

corrections

δr = ε2
[
3β′r′(3c′2 − 1)− p′s′2 cos 2θ′

]
δθ =

1

2
ε2(7c

′2 − 1) sin 2θ′

δΩ = −3ε2c
′ sin 2θ′

δR = 2ε2p
′n′s′2 sin 2θ′

δI = −3ε2c
′ s′ cos 2θ′

δ
Θ

r
= −ε2

Θ′

p′
[
2s′2 cos 2θ′ + 3

(
3c′2 − 1

)]
which neglect terms of O(e).

Finally, the state vector is computed from the stan-
dard transformation from Cartesian to polar-nodal vari-
ables x ẋ

y ẏ
z ż

 = R3(−Ω)R1(−I)R3(−θ)

 r R
0 Θ/r
0 0





where R1 and R3 are the usual rotation matrices about
the x and z axes, respectively

3.2. Lara’s algorithm in non-singular variables

A straightforward alternative to the SGP4 implemen-
tation is to proceed in Lara’s non-singular variables [9]
both for the long- and short-period gravitational correc-
tions. The modifications to the SGP4 algorithm start
from Section 3.1.2 as follows.

Now, Kepler equation `′′ = E′′ − e′′ sinE′′ must be
solved first to compute the (secular) eccentric anomaly,
and then the (secular) true anomaly

f ′′ = 2 arctan

(√
1 + e′′

1− e′′
tan E

′′

2

)
.

Next, Delaunay variables are transformed to polar
variables using the same equations as Eqs. (1)–(5) but
now with double prime variables, which in turn are trans-
formed to Lara’s non-singular variables

ψ = θ +Ω, ξ = sin I sin θ, χ = sin I cos θ, r, R, Θ.

Then, apply the long-period corrections

δψ = ε3 [2χ+ (κχ− cξσ)/(1 + c)] ,

δξ = ε3
[
2χ2 + κ

(
1− ξ2

)]
,

δχ = −ε3
[
c2σ + (2 + κ)ξχ

]
,

δr = ε3 ξ p,

δR = ε3 (1 + κ)χΘ/r,

δΘ = ε3(κξ − σχ)Θ,

where c =
√
1− ξ2 − χ2, κ = −1 + p/r, σ = pR/Θ,

and p = Θ2/µ. Note that this corrections have no con-
tributions of O(e2) and, therefore, do not accept any
simplification at the precision of SGP4. The notation
has been simplified avoiding primes because there is no
risk of confusion.

It follows the computation of the short-period correc-
tions

∆ψ = −ε2
1 + 7c

1 + c
ξ χ

∆ξ = −ε2
(
χ2 − 3c2

)
ξ

∆χ = ε2
(
ξ2 − 3c2

)
χ

∆r = 2ε2r
(
ξ2 − 2 + 5c2

)
∆R = 4ε2 (Θ/r)ξ χ

∆Θ = 3ε2 Θ(ξ2 − χ2)

where c = cos I, s = sin I, and ε2 = − 1
4 (R⊕/p)

2J2,
which have been simplifyed neglecting terms of O(e) ac-
cording to SGP4 criteria.

Finally, the state vector is computed from

x = r (b cosψ + q sinψ)
y = r (b sinψ − q cosψ)
z = r ξ

X = x (R/r)− (Θ/r) (q cosψ + τ sinψ)
Y = y (R/r)− (Θ/r) (q sinψ − τ cosψ)
Z = z (R/r) + (Θ/r)χ

where

b = 1− ξ2

1 + c
, τ = 1− χ2

1 + c
, q =

ξ χ

1 + c
,

and c = H/Θ. Remark that H is an integral of the zonal
problem and, therefore, its value is always known from
given initial conditions H = H ′′

0 .

4. VALIDATION

The validation of the software has been done by com-
paring the results with those of Vallado’s original C++
source with propagations up to 3 weeks. The C++
source has been slightly modified in order to save the
cartesian coordinates, the unit vector, the polar nodals
coordinates and the long period corrections into a file.
The modified sources and output file results are available
as well online at
https://github.com/pleira/sgpvallado

The outputs were collected for the Near Earth test cases
detailed in Table 1.

The results for the SGP4Vallado algorithm in Scala
matches the C++ results with negligible differences for
all test propagations (maximum differences of the order
of 3E-8).

When propagating satellites 22312 and 28350, the
SGP4Vallado implementation went into error at an ear-
lier time than the C++ version because of the negative
value for the eccentricity, being the times 454.2028672
versus 474.2028672 for 22312 and 960 versus 1440
for 28350. For the satellite 28872, propagation with
SGP4Vallado ends by epoch minute 50 as in Vallado’s
C++.

4.1. Test for eccentric anomaly

Lara’s algorithm is done in non singular variables which
are related to polar nodal variables. To transform from
classical secular elements to those non-singular variables,
the eccentric anomaly has to be calculated first, as de-
scribed in Section 3.2. Vallado’s algorithm does the cal-
culation of the eccentric anomaly after the long period
corrections have been applied using Lyddane’s variables.
We have checked that, as expected, the order in which

https://github.com/pleira/sgpvallado


Table 1. Near Earth TLEs used for testing

Satellite Comment
00005 TEME example satellite.
06251 Normal drag case, perigee 377.26 km is low, but above the threshold of 220 km for simplified equations.
22312 Very low perigee (86.98 km) that uses the branch perigee <98 km for the atmospheric fitting parameter.
28057 Normal drag case, low eccentricity (0.000 088 4), so certain drag terms are set to zero to avoid math errors.
28350 Low perigee (127.20 km) that uses the branch perigee <156 km for the atmospheric fitting parameter.
28872 Perigee 51 km, lost about 50 minutes from epoch, used to test error handling.
29141 Last stages of decay.
29238 Perigee 212.24 km, simplified drag branch (perigee <220 km) test.

the eccentric anomaly is calculated has negligible effect
in the long period corrections.

Two algorithms have been developed to test this fact,
SGP4PN and SGP4ValladoLong. SGP4PN does the cal-
culation of long period corrections in polar nodal vari-
ables (SpecialPolarNodal in the code) and therefore re-
quires to calculate Kepler equation before the long pe-
riod corrections as in SGP4Lara. SGP4PN includes the
same terms for long period corrections as in SGP4Lara,
which include some more effects than those in SGP4Val-
lado. For the comparison, the SGP4ValladoLong algo-
rithm includes the same long period effects expressed
in Lyddane’s variables, that is, without neglecting long-
period corrections of O(e2) and higher, and afterwards,
solves the Kepler equation as in SGP4Vallado. The short
period corrections for all SGP4Vallado, SGP4PN and
SGP4ValladoLong share the same code expressed in po-
lar nodals variables. The results of comparing the output
in polar nodals variables in internal units after the peri-
odic corrections were calculated between SGP4Vallado-
Long and SGP4PN for propagations up to 3 weeks gave
maximum differences of the order 1.6E-6, which shows
no significant effect introduced by the order of the cal-
culation of the eccentric anomaly.

Figures (3) and (4) show the comparison of prop-
agation results for the test TLE 00005 for 1 day with
SGP4Vallado (which correspond to Vallado’s C++ re-
sults) to the other three different algorithms. The in-
clusion of more terms in the long period corrections for
the other algorithms produce differences. SGP4PN and
SGP4ValladoLong come displayed one a top the other,
which shows no effect by the order in the calculation of
the eccentric anomaly as mentioned previously. Also,
the differences between in the short period corrections
between Lara and the rest of the algorithms account for
the different behaviour of Lara’s algorithm.

5. APPLICATIONS

SGP4Extensions produces the same results as other
SGP4 implementations. Its interest resides in the flex-

ibility to introduce and test new ideas related to SGP4
itself. As example when doing conjunction analysis for
space debris, the user has the possibility to design filter
algorithms based on results obtained in polar nodal vari-
ables without the need to obtain cartesian values. One
possibility when comparing two objects is to find out the
crossing points of the orbital planes and then estimate
the passing times at those points with the true anomaly
[17, sec. 9.6].

As concerns like errors and uncertainties have also to
be taken into account when designing these algorithms,
more special numeric types related to Spire’s Intervals
can be introduced to automatically calculate such un-
certainties with the normal conjunction algorithm.

Other possible application is a kind of conjunction
analysis to have two or more objects in the field of view
of an optical camera, without considering their relative
distance. One of the objects could be a satellite that
already is tracked with high precision ephemerids. The
optical track left in a camera by this satellite could be
compared with the optical track of the secondary object.
The measured values can be compared with the values
given by the propagation and conjuction model and get
a more precise estimation of the orbital elements for the
secondary object.

For other filter possibilities, the cartesian values can
be easily obtained on demand, saving computational
time and memory requirements.

Regarding speed optimizations in the current SGP4
code, when doing conjunction analysis most of the com-
putational time goes into finding the points of close ap-
proach. Therefore, speed optimizations at SGP4 level
might not have a significant impact compared with the
actual design of the conjunction analysis strategy.

6. CONCLUSIONS

A new implementation of the SGP4 algorithm in scala
is available for the community. It provides implementa-
tions of the models using a unicode notation resembling
the actual descriptions of the models in the literature.



It also allows to easily introduce alternative models and
variables related to the theory. The software is designed
for parallelization and for fine grain access to the data
generated by the propagation steps. This provides an
interesting base for massive conjunction analysis tasks.

7. REFERENCES

[1] F. R. Hoots and R. L. Roehrich, “Models for
Propagation of the NORAD Element Sets,” Project
SPACETRACK, Rept. 3, U.S. Air Force Aerospace
Defense Command, Colorado Springs, CO, Decem-
ber 1980.

[2] D. A. Vallado, P. Crawford, R. Hujsak, and T. S.
Kelso, “Revisiting Spacetrack Report #3 (AIAA
2006-6753),” in AIAA/AAS Astrodynamics Spe-
cialist Conference and Exhibit, USA, August 2006,
Guidance, Navigation, and Control and Co-located
Conferences, pp. 1–88, American Institute of Aero-
nautics and Astronautics.

[3] D. Brouwer, “Solution of the problem of artificial
satellite theory without drag,” The Astronomical
Journal, vol. 64, pp. 378–397, Nov. 1959.

[4] M. Lane, “The development of an artificial satellite
theory using a power-law atmospheric density rep-
resentation,” in Proceedings of the 2nd Aerospace
Sciences Meeting. Jan. 1965, pp. 1–16, American
Institute of Aeronautics and Astronautics.

[5] R. H. Lyddane, “Small eccentricities or inclinations
in the Brouwer theory of the artificial satellite,” As-
tronomical Journal, vol. 68, no. 8, pp. 555–558, Oct.
1963.

[6] I. G. Izsak, “A note on perturbation theory,” The
Astronomical Journal, vol. 68, no. 8, pp. 559–561,
Oct. 1963.

[7] K. Aksnes, “On the Use of the Hill Variables in
Artificial Satellite Theory,” Astronomy and Astro-
physics, vol. 17, no. 1, pp. 70–75, Feb. 1972.

[8] F. R. Hoots, “Reformulation of the Brouwer
geopotential theory for improved computational effi-
ciency,” Celestial Mechanics, vol. 24, no. 2, pp.
367–375, Aug. 1981.

[9] M. Lara, “Efficient Formulation of the Periodic Cor-
rections in Brouwer’s Gravity Solution,” Mathemat-
ical Problems in Engineering, vol. 2015, no. Article
ID 980652, pp. 1–9, 2015.

[10] Martin Odersky and al., “An overview of the scala
programming language,” Tech. Rep. IC/2004/64,
EPFL Lausanne, Switzerland, 2004.

[11] Paul Chiusano and Rúnar Bjarnason, Functional
Programming in Scala, Manning Publications, 1st
edition, September 2014.



−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0 50 100 150 200 250 300 350 400 450

D
if
f
er
en
ce
(k
m
)

Minutes

vl
pn
la

x coordinate differences to Vallado’s SGP4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300 350 400 450

D
if
f
er
en
ce
(k
m
)

Minutes

vl
pn
la

y coordinate differences to Vallado’s SGP4

−1

−0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400 450

D
if
f
er
en
ce
(k
m
)

Minutes

vl
pn
la

z coordinate differences to Vallado’s SGP4

−0.0004

−0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 50 100 150 200 250 300 350 400 450

D
if
f
er
en
ce
(k
m
/
s)

Minutes

vl
pn
la

vx coordinate differences to Vallado’s SGP4

−0.0004

−0.0002

0

0.0002

0.0004

0.0006

0.0008

0 50 100 150 200 250 300 350 400 450

D
if
f
er
en
ce
(k
m
/
s)

Minutes

vl
pn
la

vy coordinate differences to Vallado’s SGP4

−0.001

−0.0005

0

0.0005

0.001

0.0015

0 50 100 150 200 250 300 350 400 450

D
if
f
er
en
ce
(k
m
/s
)

Minutes

vl
pn
la

vz coordinate differences to Vallado’s SGP4

Fig. 3. Differences for the cartesian coordinates position (km) and velocity (km/s) of SGP4Extension algorithms
Vallado Long, Polar Nodals and Lara with SGP4Vallado/Vallado’s C++ results for TLE 00005 test case



6.2e− 05

6.25e− 05

6.3e− 05

6.35e− 05

6.4e− 05

6.45e− 05

6.5e− 05

6.55e− 05

0 50 100 150 200 250 300 350 400 450

D
iff

er
en

ce

Minutes

vl
pn
la

Inclination differences (radians) to Vallado’s SGP4

−0.00025

−0.000245

−0.00024

−0.000235

−0.00023

−0.000225

−0.00022

−0.000215

−0.00021

−0.000205

−0.0002

−0.000195

0 50 100150200250300350400450

D
iff

er
en

ce

Minutes

vl
pn
la

Argument of latitude diffs (radians) to Vallado’s SGP4

0.000215

0.0002155

0.000216

0.0002165

0.000217

0.0002175

0.000218

0.0002185

0 50 100150200250300350400450

D
iff

er
en

ce

Minutes

vl
pn
la

Ascending node differences (radians) to Vallado’s SGP4

−3.5e− 05

−3e− 05

−2.5e− 05

−2e− 05

−1.5e− 05

−1e− 05

−5e− 06

0

5e− 06

1e− 05

1.5e− 05

0 50 100 150 200 250 300 350 400 450

D
iff

er
en

ce

Minutes

vl
pn
la

radial distance diffs (km) to Vallado’s SGP4

−1.5e− 05

−1e− 05

−5e− 06

0

5e− 06

1e− 05

0 50 100 150 200 250 300 350 400 450

D
iff

er
en

ce

Minutes

vl
pn
la

radial velocity diffs (internal units) to Vallado’s SGP4

−0.0001

−5e− 05

0

5e− 05

0.0001

0.00015

0 50 100 150 200 250 300 350 400 450

D
iff

er
en

ce

Minutes

vl
pn
la

angular momentum diffs (internal units) to Vallado’s SGP4

Fig. 4. Differences for the Polar Nodal coordinates in internal units of the SGP4Extension algorithms Vallado Long,
Polar Nodals and Lara with SGP4Vallado/Vallado’s C++ results for TLE 00005 test case



[12] Michael E. Cotterell, John A. Miller, and Tom Hor-
ton, “Unicode in domain-specific programming lan-
guages for modeling & simulation: Scalation as a
case study,” CoRR, vol. abs/1112.1751, 2011.

[13] Tom Switzer Erik Osheim, “Spire,” https://

github.com/non/spire, 2011.

[14] Bill Venners, “Scalactic,” https://github.com/

scalatest/scalatest, 2015.

[15] Bill Venners, “Scalatest,” https://github.com/

scalatest/scalatest, 2009.

[16] Y. Kozai, “The Motion of a Close Earth Satel-
lite,” The Astronomical Journal, vol. 64, no. 11,
pp. 367–377, November 1959.

[17] Alberto Abad, Astrodinámica, Bubok Publishing
S.L., 2012, Freely available at http://www.bubok.

es/libros/219952/Astrodinamica.

https://github.com/non/spire
https://github.com/non/spire
https://github.com/scalatest/scalatest
https://github.com/scalatest/scalatest
https://github.com/scalatest/scalatest
https://github.com/scalatest/scalatest
http://www.bubok.es/libros/219952/Astrodinamica
http://www.bubok.es/libros/219952/Astrodinamica

	 INTRODUCTION TO SGP4Extensions
	 SCALA FEATURES
	 Scala libraries used
	 Description of the types used

	 SGP4 ALGORITHM DESCRIPTIONS
	 Standard implementation of SGP4
	 Initialization and secular corrections
	 Geopotential periodic corrections

	 Lara's algorithm in non-singular variables

	 VALIDATION
	 Test for eccentric anomaly

	 APPLICATIONS
	 CONCLUSIONS
	 References

