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Overview: Kepler equation

Kepler equation provides the position of the object orbiting around a body for some specific time.

Elliptical orbits: x = y —e siny

Hyperbolic orbits: x = e sinhy — y

Unknown parameter - y=E

Known parameters - x=M ; e

Unknown parameter - y=H

Known parameters = x=M ; e

E starter
estimation

E bounds X
estimation

Approaches | Markley Fukushima Mortari &
(1995) (1996) Elipe (2014)
X X

Iterative X X
method

No iterative X
method

Approaches Gooding Fukushima
(1988) (1997)
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estimation
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Motivation

+ Take advantage of the full potential of the symbolic manipulators.

« Efficient solving of Kepler equation estimating a good initial seed for the eccentric and hyperbolic anomaly:
* To improve the computational time

* To reach the machine error accuracy with hardly iterations
 Appropriate algorithm in the singular corner of the Kepler equation:
* Neighborhood of M =0 and e =1

* To avoid convergence problems in the numerical method

» The advantage of the good behavior of the modified Newton-Raphson method when the initial seed is close to the looked
for solution.

 Applicability to other problems: Lambert’s problem
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Code solution: The N-R methods

» Modified NR method: Solution of the equation defined by a successive approximation method starting from the seed (y,):
Yis1 = Vit Ay, €X > fyi) =fi+Ay) =0

Second order Taylor expansion about y; :  f(vi+1) = f(y;) + f'(y)Ay; + %f”(yl-)Ayiz =0

—f' O +VF O = 2f O "G _ 2f ) = fO)>0
Ay; ~ 7] -, - - f,(yi)<0
f ) F'o) £V 6% = 2f GO f " G
* Generalization of the modified N-R method = Root-finding method of Laguerre (Conway 1986)
Ay, . — nf (i) fo=0
T o0 VI = DI =D G2 = nf GO Kepler equation for ellptic or
hyperbolic orbit
Classical N-R method Modified N-R method Conway method
n=1 n=2 n=>5
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Elliptic Kepler equation

X=y—esiny
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Code solution: The seed value |

Steps:

1. The E-domain [0, ] is discretized in 12 intervals of 15° of longitude :
i—Dm M1 | E1 | M13 | E13
P Gl w1 E1 | M3 | E13
12 0 0 T T
2. The M-domain is discretized according to the Kepler equation

M;=E; —esinE; i=1,...13

(M, E,) vith e=05

*Ifx=M>zg> M=2r—y;E=2-79 E13

E12

3. For each interval a fifth degree polynomial p;(x) is defined to interpolate the E11

eccentric anomaly. E10

E9

” i}

E6

Me[Mi'Mi+1] - [Ei'Ei+1] with i=1,..,12 E5

E4

pi(x) = al + alx + abx? + afx® + ajx* + alx® Ez
EJMlMZMB M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
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Code solution: The seed value Il

4. Six boundary conditions are imposed to determine the coefficients of p;(x)

pi(x) = al +alx + alx? + abx® + alx* + alx®  with i=1,..,12

The six coefficients of p;(x) are obtained by six conditions at both ends of the corresponding interval:

pi(x;) = y(x;) = E; p'i(xiv1) =y (xi1)
p'i(x) =y'(x;) Di(Xiy1) = y(Xi41)
p"i(x) =y"(x;) p"i(xip1) = ¥ (Xi41)

5. Given e and M, the starting value E, is estimated:  Ey= p;(x = M)

An efficient code to solve the Kepler equation for elliptic and hyperbolic orbits
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APRIORI
DATA

(e, M)

e, ., chosen
tol

CHOOSE THE
INTERVAL

APPLY THE
POLYNOMIAL

> E

Apply
N-R
method
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Analysis of the singularity |

° Problem statement: Kepler equation y —esiny —x = 0 has a singular behavior in the neighborhood of e=1 and M=0

+ Goal: Describe numerically the exact solution (y,) with enough accuracy to be part of the seed ( E,) used to start the N-R
process.

+ Solution: Apply an asymptotic expansion in power of the small parameter e =1-e<<1

cez0—>y—(1—-¢)siny —x=0 €e=0->y,—siny—x=0

* Asymptotic expansion = x=x(y,)

*X(y,) inverted with Maple symbolic simulator: . Solution y,(x) when € = 0
() = (6x)F + 2 x + —= (6x)3 - ]
Vo(x) = (6x)3 + —x + —(6x)3 +...
10 1400 140
/
120
* Asymptotic expansion in the limit € > 0 (e # 0):
100
o
() =¥, (x) + € y1(x) + €y, (x) +... .
y;(x),i =1,..,n asafunction of the known y,(x) vanishing the 6 /
resulting serie for every order in e€: 0}
0|
_ o _siny, € siny, € cosy, (2=cosy,)(1+cosy,) ,
yas(x) - YO € 1—COSyo 2 1—COSyO + 3 Sinyo (1—C05y0)2 unr 0 20 40 60 20 100 120 140 160 180
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Analysis of the singularity

* Exact solution: y, — (1 —¢)siny, —x =0 - y, (with Maple symbolic simulator)

1 5
Yo (x) = (6x)3 + 1—10x + ﬁ (6x)3 +... x=M (known)
* Asymptotic solution:
y (x) =y c siny, c? siny, 3 cosy, (2—cosy,)(1+cosy,)
as —Jo - 2

1-cosy, Yl—cosyo 3 siny, (1—cosy,)?

Critical point when € = 0.005, &, = 0.001 Fixed e, : 3 (X*, y*) suchas |y, — Y|> gy for the first time
i1
— Exact
—— Yas /  Special solution (x < x*): yg,(x) = x (ax + : ), a= "‘1*2 S
5L Ysp e € (x*) €X*
. // (z*,9%) * Assuming g, = 5x1074, foreach ¢ = (x*, y*); , € defined
~ in [0, 0.025]

* Least Square Adjustment to fit the critical points (x*, y*) w.r.t. € :

x* = ¢(—86.3921€% + 9.1074¢ + 0.051632)
* y* = € (—220.1588€2 + 12.0785¢ + 0.9972)

i
III
1] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
xr
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SDG-code

A PRIORI REGION OF

DATA THE PLANE ALGORITHM ALGORITHM

—> E

Apply N-R
method

’ Singular corner
e>0.99

Ei=(i-1)n /12 ’5“‘ degree polynomial
Mi = Ei - eS|nE| = pl(M)
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Results: SDG-code using MNR, Conway and CNR method

- e - s . —
180 ;,;l L T T T 180 M T T T T T - T T 180 =;1—- _I_ T T T .

e v § B :
b i — N N .
Ou: olz —— ol — ols == ola = 07- R T 'Lé_hi oo- — olz

Modified N-R method: Conway method Classical N-R method
< 2 iterations < 2 iterations < 3 iterations
i, =~ 0.99 I, ~0.99 i ~1.037
CPU time = 68.4 sec CPU time = 70.4 sec mo

CPU time = 62.1 sec
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Results: Fukushima and Mortari code

0 02 04 0. 08 1
e

Fukushima method: Mortari method:
i, ~4.030 i, ~2.427
CPU time = 328 sec CPU time = 101.4 sec
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Conclusions

 An efficient code has been developed to solve the Kepler equation for elliptic motion.

* Improving the seed estimator provides faster and more accurate results than improving the
numerical mehod:

SDG — code SDG - code SDG — code Fukushima Mortari &
(MNR) (Conway) (CNR) code Elipe code
0 (%) 0.66 0.66 0.66 0.05 0.1
. 1 (%) 99.33 99.28 95.02 0 0.05
Iterations
2 (%) 0.0052 0.057 4.3 0.35 57.20
3 (%) 0 0 0.0093 25.75 44.32
>4 (%) 0 0 0 73.85 0.33
Mean value 0.99 0.99 1.037 4.030 2.427
Points ~ 4 millions ~ 4 millions ~ 4 millions ~ 4 millions ~ 4 millions
Computational time 68.4 sec 70.4 sec 62.1 sec 328 sec 101.4 sec
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Accuracy analysis

« Considering the true solution (y,), we study the residual (p) and the absolute error (&4ps) Of the numerical solution (y,)
taking into account that:

Ye = Yv T Eabs } e | = p
p = |y. —esiny, — x| absT ™11 — cosy, |

« Fixing the value of the eccentricity, we scan the whole interval M € [0,7] and calculate the residual and absolute error
after zero iteration, , two iterations and so on, considering the maximum residual that we found for each
iteration when the M interval is scanning:

o
- |
[0 A S S N A
i S I T I el I ~1
a T -0
logo(pmaz) L log;p(=abs)
-30 e a0
" :q;aums we— 0

1 1=E
—— 1 tferatipn —— 1 tferatipn
—— 2 iferatipns —— 2 sferatipns
1 -350 L
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Hyperbolic Kepler equation

X =esinhy —y
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Code solution: The seed value |

Steps:

1. Achange of variable is done in the Kepler equation:

z = tan yHy—Enl_Z = x—em—inl_z 0 0 o3 1

with z € [0,1) when y €[0,0) and x singularin z=1 (b 2) vith =15
0.99 3 4
2. The z-domain [0, 1) is discretized in 12 uneven intervals such that: 0.9 o :
1 0.8 ° ¢
i—1\5 07+—®

zi=0.99< 11) i=1,..12 o

N~ 05

z13=1 04

0.3

3. The mean anomaly domain is discretized according to the Kepler equation Zj

x(z) with respect to the first twelve z;

0
0 05 1 15 2 25 3 35 MA}—| 45 5 55 6 65 7 75 8
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Code solution: The seed value Il

4. For each of the first 11 intervals, z € [0, 0.99]:

*Afifth degree polynomial p;(x) is defined to interpolate the variable z.
*Six boundary conditions are imposed to determine the coefficients of p;(x) as we did for the elliptic case

pi(x) = al + alx + abx? + atx® + alx* + alx®  with i=1,..,12

such that given e and M,,, the starting value z, is estimated: Z,= p;(x = Mp)

5. In the last interval, z € [0.99, 1):

1
A recursive algorithm is applied doing a change of variable in x(z): z = cos¢ = x = ecoté — Eln <cot2 %)

T
& = h(§, e ,x) = arctan = 41 = h(&,,e,x) with starter &, = 5

1 5 &
X +§ln (cot 7)

such that given e and M,,, the starting value Z is estimated: Z, = cosé;

An efficient code to solve the Kepler equation for elliptic and hyperbolic orbits
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SDG-code
APPLY
A PRIORI CHOOSE THE APPLY THE
DATA INTERVAL ALGORITHM N-R
METHOD
Z Ch f
ange o
(e’ M H) [fl> variable:
(g, chosen) 1 1+7Z7
H=-1
Z 2 "1 -7
S Y,
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Analysis of the singularity |

 Problem statement: Kepler equation e sinhy —y — x = 0 has a singular behavior in the neighborhood of e=1 and M,=0

+ Goal: Describe numerically the exact solution (y,) with enough accuracy to be part of the seed ( H,) used to start the N-R
process.

+ Solution: Apply an asymptotic expansion in power of the small parameter € =e-1<<1
€e#0-> y—(1+¢sinhy+x=0 €e=0->y,—sinhy,+x=0

* Asymptotic expansion = x=x(y,)

*X(y,) inverted with Maple symbolic simulator: Solution y,(x) when € =0
L 5 T— vy
yo(x) = 1.817121(x)3 — =Xt 0.0141511(x)3 +... ssh Vod2terms
—— ¥ b terms —
* Asymptotic expansion in the limit € > 0 (e # 0): 25 —
Yy 2
y(x) = y,(x) + €y1(x) + € y,(x) +... 7
yi(x),i =1,..,n asafunction of the known y,(x) vanishing the ) /

resulting serie for every order ine:

sinhy, €? sinhy,
1-coshy, 2 1-coshy,

(2—=coshy,)(1+coshy,)
(1—coshy,)? ) 2 3 A P o

3
Vas(X) =y +¢€ + %coshyosinhyo
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Analysis of the singularity

° Exact solution: y, — (14+€)sinhy, +x =0 — y, (with Maple symbolic simulator)

1 1 5
. . =1.817121 - .0141511 =My (k
- Asymptotic solution: Yo%) 8 ()2 =5 + 0.0141511(x)> + %= My (known)
o sinhy, é sinhy, i . (2—coshyy)(1+coshy,)
Yas(¥) = Yo + € 1—-coshy, 2 1—coshy, 3 coshy,sinhy, (1—-coshy,)?

Critical points when € = 0.001, 0.01, Fixed €l - 3 (X*1 y*) such as |yv_ yas|Z Etol for the first time

0.03,0.05, & = 1.5x10-3

- Special solution (x < x*): y,(x) = x (ax + %), a= (;‘i‘;z ] é
/ * Assuming ¢, = 1.5x1073, foreach ¢ = (x*,y*); ,, € defined

in [0, 0.1]

* Least Square Adjustment to fit the critical points (x*, y*) w.r.t. € :

x* = 0.023988¢ + 4.300478¢* —62.308284¢> + 869.10223¢*-...
y* = 0.549826+/€ + 3.685319¢\/€ — 53.136123€%\/€ +...

Yas i
P

YT —

l 1

0 0.002 0.004 0.006 0.008 0.01
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APRIORI DATA

(e, My)

e, chosen
tol

REGION OF
THE PLANE

Singular corner
e<ll
M, <0.1

ALGORITHM

ALGORITHM

gth degree polynomial
= pi(My)

= cos¢;
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Apply N-R
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—> H

Z=H

i?ecursive algorithm @ pply N-R  Change
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Preliminary results: SDG-code using the MNR method

20 2 T I T I T
Wb 0 (%) 0.026
- 0
“F Iterations = (E7, S
s : 2 (%) 40.88
k - - 3 (%) 0.00072
10 ;— —; > 4 (%) 0
¢ ' ‘ Mean value 1.408
: 1 Points ~ 16 millions

Computational time 394 sec
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Future Work

» Complete the SDG-code to the Kepler equation for hyperbolic orbits:

x =esinhy-y, e>1

* Apply the SDG-code to the Lambert’s problem: determination of an orbit from two position vectors
(r{,77) and the time of flight ¢,,.

*In low thrust trajectories

An efficient code to solve the Kepler equation for elliptic and hyperbolic orbits
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