



# An efficient code to solve the Kepler's equation for elliptic and hyperbolic orbits

Virginia Raposo Pulido, Jesús Peláez Álvarez SDG-UPM, E.T.S.I. Aeronáutica y del Espacio

International Conference on Astrodynamics Tools and Techniques March 15, 2016



#### Overview: Kepler equation

Kepler equation provides the position of the object orbiting around a body for some specific time.

| Elliptical orbits: $x = y - e \sin y$                                                |                   |                     |                           |
|--------------------------------------------------------------------------------------|-------------------|---------------------|---------------------------|
| Unknown parameter $\rightarrow y=E$<br>Known parameters $\rightarrow x=M$ ; <i>e</i> |                   |                     |                           |
| Approaches                                                                           | Markley<br>(1995) | Fukushima<br>(1996) | Mortari &<br>Elipe (2014) |
| E starter estimation                                                                 | Х                 | Х                   |                           |
| E bounds estimation                                                                  |                   |                     | Х                         |
| Iterative method                                                                     |                   | Х                   | Х                         |
| No iterative method                                                                  | Х                 |                     |                           |



#### Motivation

- Take advantage of the full potential of the symbolic manipulators.
- Efficient solving of Kepler equation estimating a good initial seed for the eccentric and hyperbolic anomaly:
  - \* To improve the computational time
  - \* To reach the machine error accuracy with hardly iterations
- Appropriate algorithm in the singular corner of the Kepler equation:
  - \* Neighborhood of M =0 and e = 1
  - \* To avoid convergence problems in the numerical method
- The advantage of the good behavior of the modified Newton-Raphson method when the initial seed is close to the looked for solution.
- Applicability to other problems: Lambert's problem



#### Code solution: The N-R methods

• Modified NR method: Solution of the equation defined by a successive approximation method starting from the seed  $(y_o)$ :

$$y_{i+1} = y_i + \Delta y_i, \ i \in \aleph \quad \rightarrow \quad f(y_{i+1}) = f(y_i + \Delta y_i) = 0$$

Second order Taylor expansion about  $y_i$ :  $f(y_{i+1}) \approx f(y_i) + f'(y_i) \Delta y_i + \frac{1}{2} f''(y_i) \Delta y_i^2 = 0$ 

$$\Delta y_{i \approx} \frac{-f'(y_i) + \sqrt{f'(y_i)^2 - 2f(y_i)f''(y_i)}}{f''(y_i)} = -\frac{2f(y_i)}{f'(y_i) \pm \sqrt{|f'(y_i)^2 - 2f(y_i)f''(y_i)|}} \qquad \begin{array}{c} + \to f'(y_i) > 0\\ - \to f'(y_i) < 0 \end{array}$$

• Generalization of the modified N-R method  $\rightarrow$  Root-finding method of Laguerre (Conway 1986)

$$\Delta y_{i \approx} - \frac{nf(y_i)}{f'(y_i) \pm \sqrt{|(n-1)[(n-1)f'(y_i)^2 - nf(y_i)f''(y_i)]|}} \qquad \qquad \begin{array}{c} f(y_i) \equiv 0 \\ \text{Kepler equation for elliptic or} \\ \text{hyperbolic orbit} \end{array}$$
Classical N-R method 
$$Modified \text{ N-R method} \qquad \text{Conway method} \\ n = 1 \qquad n = 2 \qquad n = 5 \end{array}$$

### Elliptic Kepler equation

 $x = y - e \sin y$ 



#### Code solution: The seed value I

#### Steps:

**1.** The *E*-domain  $[0, \pi]$  is discretized in 12 intervals of 15° of longitude :

$$E_i = \frac{(i-1)\pi}{12}$$
  $i = 1, \dots 13$ 

2. The *M*-domain is discretized according to the Kepler equation

$$M_i = E_i - e \sin E_i \quad i = 1, \dots 13$$
  
\* If  $x = M > \pi \rightarrow M = 2\pi - \chi$ ;  $E = 2\pi - \eta$ 

**3.** For each interval a fifth degree polynomial  $p_i(x)$  is defined to interpolate the eccentric anomaly.

$$M \in [M_i, M_{i+1}] \to [E_i, E_{i+1}] \quad with \ i = 1, ..., 12$$
$$p_i(x) = a_o^i + a_1^i x + a_2^i x^2 + a_3^i x^3 + a_4^i x^4 + a_5^i x^5$$

| M1 | E1 | M13 | E13 |
|----|----|-----|-----|
| 0  | 0  | π   | π   |





#### Code solution: The seed value II

**4.** Six boundary conditions are imposed to determine the coefficients of  $p_i(x)$ 

$$\boldsymbol{p}_{i}(\boldsymbol{x}) = \boldsymbol{a}_{o}^{i} + \boldsymbol{a}_{1}^{i}\boldsymbol{x} + \boldsymbol{a}_{2}^{i}\boldsymbol{x}^{2} + \boldsymbol{a}_{3}^{i}\boldsymbol{x}^{3} + \boldsymbol{a}_{4}^{i}\boldsymbol{x}^{4} + \boldsymbol{a}_{5}^{i}\boldsymbol{x}^{5} \quad \text{with } i = 1, \dots, 12$$

The six coefficients of  $p_i(x)$  are obtained by six conditions at both ends of the corresponding interval:

$$p_{i}(x_{i}) = y(x_{i}) = E_{i} \qquad p'_{i}(x_{i+1}) = y'(x_{i+1})$$

$$p'_{i}(x_{i}) = y'(x_{i}) \qquad p_{i}(x_{i+1}) = y(x_{i+1})$$

$$p''_{i}(x_{i}) = y''(x_{i}) \qquad p''_{i}(x_{i+1}) = y''(x_{i+1})$$

5. Given *e* and *M*, the starting value  $E_o$  is estimated:  $E_0 = p_i(x = M)$ 



#### SDG-code





#### Analysis of the singularity I

- Problem statement: Kepler equation  $y e \sin y x = 0$  has a singular behavior in the neighborhood of e=1 and M=0
- Goal: Describe numerically the exact solution  $(y_v)$  with enough accuracy to be part of the seed ( $E_0$ ) used to start the N-R process.
- Solution: Apply an asymptotic expansion in power of the small parameter  $\epsilon = 1 e \ll 1$

$$\epsilon \neq 0 \rightarrow y - (1 - \epsilon) \sin y - x = 0$$
  $\epsilon = 0 \rightarrow y_o - \sin y_o - x = 0$ 

\* Asymptotic expansion  $\rightarrow x = x(y_o)$ \*  $x(y_o)$  inverted with Maple symbolic simulator:

$$y_0(x) = (6x)^{\frac{1}{3}} + \frac{1}{10}x + \frac{1}{1400}(6x)^{\frac{5}{3}} + \dots$$

\* Asymptotic expansion in the limit  $\epsilon \rightarrow 0 \ (\epsilon \neq 0)$ :

$$y(x) = y_0(x) + \epsilon y_1(x) + \epsilon^2 y_2(x) + \dots$$

 $y_i(x), i = 1, ..., n$  as a function of the known  $y_o(x)$  vanishing the resulting serie for every order in  $\epsilon$ :

$$y_{as}(x) = y_0 - \epsilon \frac{\sin y_0}{1 - \cos y_0} + \frac{\epsilon^2}{2} \frac{\sin y_0}{1 - \cos y_0} + \frac{\epsilon^3}{3} \frac{\cos y_0}{\sin y_0} \frac{(2 - \cos y_0)(1 + \cos y_0)}{(1 - \cos y_0)^2} \dots$$





#### Analysis of the singularity II

• Exact solution:  $y_v - (1 - \epsilon) \sin y_v - x = 0 \rightarrow y_v$  (with Maple symbolic simulator)

• Asymptotic solution:

$$y_o(x) = (6x)^{\frac{1}{3}} + \frac{1}{10}x + \frac{1}{1400}(6x)^{\frac{5}{3}} + \dots \qquad x = M \text{ (known)}$$
$$y_{as}(x) = y_o - \epsilon \frac{\sin y_o}{1 - \cos y_o} - \frac{\epsilon^2}{2} \frac{\sin y_o}{1 - \cos y_o} + \frac{\epsilon^3}{3} \frac{\cos y_o}{\sin y_o} \frac{(2 - \cos y_o)(1 + \cos y_o)}{(1 - \cos y_o)^2} \dots$$



Fixed  $\varepsilon_{tol} : \exists (x^*, y^*)$  such as  $|y_v - y_{as}| \ge \varepsilon_{tol}$  for the first time • Special solution  $(x < x^*)$ :  $y_{sp}(x) = x (ax + \frac{1}{\epsilon}), \quad a = \frac{y^*}{(x^*)^2} - \frac{1}{\epsilon x^*}$ 

- \* Assuming  $\varepsilon_{tol} = 5 \times 10^{-4}$ , for each  $\epsilon_i \rightarrow (x^*, y^*)_i$ ,  $\epsilon$  defined in [0, 0.025]
- \* Least Square Adjustment to fit the critical points ( $x^*$ ,  $y^*$ ) w.r.t.  $\epsilon$ :

$$\begin{cases} x^* = \epsilon(-86.3921\epsilon^2 + 9.1074\epsilon + 0.051632) \\ y^* = \sqrt{\epsilon} (-220.1588\epsilon^2 + 12.0785\epsilon + 0.9972) \end{cases}$$



#### SDG-code





#### Results: SDG-code using MNR, Conway and CNR method





#### Results: Fukushima and Mortari code





#### Conclusions

- An efficient code has been developed to solve the Kepler equation for elliptic motion.
- Improving the seed estimator provides faster and more accurate results than improving the numerical mehod:

|                    |            | SDG – code<br>(MNR) | SDG – code<br>(Conway) | SDG – code<br>(CNR) | Fukushima<br>code | Mortari &<br>Elipe code |
|--------------------|------------|---------------------|------------------------|---------------------|-------------------|-------------------------|
|                    | 0 (%)      | 0.66                | 0.66                   | 0.66                | 0.05              | 0.1                     |
| Iterations         | 1 (%)      | 99.33               | 99.28                  | 95.02               | 0                 | 0.05                    |
| nonunonio          | 2 (%)      | 0.0052              | 0.057                  | 4.3                 | 0.35              | 57.20                   |
|                    | 3 (%)      | 0                   | 0                      | 0.0093              | 25.75             | 44.32                   |
|                    | ≥4 (%)     | 0                   | 0                      | 0                   | 73.85             | 0.33                    |
|                    | Mean value | 0.99                | 0.99                   | 1.037               | 4.030             | 2.427                   |
| Points             |            | ~ 4 millions        | ~ 4 millions           | ~ 4 millions        | ~ 4 millions      | ~ 4 millions            |
| Computational time |            | 68.4 sec            | 70.4 sec               | 62.1 sec            | 328 sec           | 101.4 sec               |

#### Accuracy analysis

• Considering the true solution  $(y_v)$ , we study the residual ( $\rho$ ) and the absolute error ( $\varepsilon_{abs}$ ) of the numerical solution  $(y_c)$  taking into account that:

$$\begin{cases} y_c = y_v + \varepsilon_{abs} \\ \rho = |y_c - e\sin y_c - x| \end{cases} \quad |\varepsilon_{abs}| = \frac{\rho}{|1 - \cos y_v|}$$

• Fixing the value of the eccentricity, we scan the whole interval  $M \in [0, \pi]$  and calculate the residual and absolute error after zero iteration, one iteration, two iterations and so on, considering the maximum residual that we found for each iteration when the M interval is scanning:



# Hyperbolic Kepler equation $x = e \sinh y - y$



#### Code solution: The seed value I

#### Steps:

**1.** A change of variable is done in the Kepler equation:

$$z = \tanh y \leftrightarrow y = \frac{1}{2} \ln \frac{1+z}{1-z} \quad \Rightarrow \quad x = e \frac{z}{\sqrt{1-z^2}} - \frac{1}{2} \ln \frac{1+z}{1-z}$$

with  $z \in [0,1)$  when  $y \in [0,\infty)$  and x singular in z = 1

2. The z-domain [0, 1) is discretized in 12 uneven intervals such that:

$$\begin{cases} z_i = 0.99 \left(\frac{i-1}{11}\right)^{\frac{1}{5}} & i = 1, \dots 12 \\ z_{13} = 1 \end{cases}$$

3. The mean anomaly domain is discretized according to the Kepler equation x(z) with respect to the first twelve  $z_i$ 

| M <sub>H1</sub> | z <sub>1</sub> | M <sub>H13</sub> | z <sub>13</sub> |
|-----------------|----------------|------------------|-----------------|
| 0               | 0              | 8                | 1               |





#### Code solution: The seed value II

4. For each of the first 11 intervals,  $z \in [0, 0.99]$ :

\*A fifth degree polynomial  $p_i(x)$  is defined to interpolate the variable *z*. \*Six boundary conditions are imposed to determine the coefficients of  $p_i(x)$  as we did for the elliptic case

 $p_i(x) = a_0^i + a_1^i x + a_2^i x^2 + a_3^i x^3 + a_4^i x^4 + a_5^i x^5$  with i = 1, ..., 12

such that given e and  $M_{H}$ , the starting value  $z_o$  is estimated:  $Z_0 = p_i(x = M_H)$ 

5. In the last interval,  $z \in [0.99, 1)$ :

A recursive algorithm is applied doing a change of variable in x(z):  $z = \cos \xi \Rightarrow x = e \cot \xi - \frac{1}{2} \ln \left( \cot^2 \frac{\xi}{2} \right)$ 

$$\xi = h(\xi, e, x) = \arctan \frac{e}{x + \frac{1}{2} \ln \left( \cot^2 \frac{\xi}{2} \right)} \quad \Rightarrow \quad \xi_{n+1} = h(\xi_n, e, x) \quad \text{with starter} \quad \xi_0 = \frac{\pi}{2}$$

such that given e and  $M_{H}$ , the starting value  $Z_o$  is estimated:  $Z_0 = \cos \xi_l$ 



#### SDG-code





#### Analysis of the singularity I

- Problem statement: Kepler equation  $e \sinh y y x = 0$  has a singular behavior in the neighborhood of e=1 and  $M_{H}=0$
- Goal: Describe numerically the exact solution  $(y_y)$  with enough accuracy to be part of the seed  $(H_0)$  used to start the N-R process.
- Solution: Apply an asymptotic expansion in power of the small parameter  $\epsilon = e \cdot 1 \ll 1$

$$\epsilon \neq 0 \rightarrow y - (1 + \epsilon) \sinh y + x = 0$$
  $\epsilon = 0 \rightarrow y_o - \sinh y_o + x = 0$ 

\* Asymptotic expansion  $\rightarrow x = x(y_o)$ \*  $x(y_o)$  inverted with Maple symbolic simulator:

$$y_o(x) = 1.817121(x)^{\frac{1}{3}} - \frac{1}{10}x + 0.0141511(x)^{\frac{5}{3}} + \dots$$

\* Asymptotic expansion in the limit  $\epsilon \rightarrow 0$  ( $\epsilon \neq 0$ ):

$$y(x) = y_0(x) + \epsilon y_1(x) + \epsilon^2 y_2(x) + \dots$$

 $y_i(x), i = 1, ..., n$  as a function of the known  $y_o(x)$  vanishing the resulting serie for every order in  $\epsilon$ :

$$\mathbf{y}_{as}(\mathbf{x}) = y_0 + \epsilon \frac{\sinh y_0}{1 - \cosh y_0} - \frac{\epsilon^2}{2} \frac{\sinh y_0}{1 - \cosh y_0} + \frac{\epsilon^3}{3} \cosh y_0 \sinh y_0 \frac{(2 - \cosh y_0)(1 + \cosh y_0)}{(1 - \cosh y_0)^2}$$



Solution  $y_o(x)$  when  $\epsilon = 0$ 

$$\epsilon \neq 0 \rightarrow y - (1 + \epsilon) \sin h y + x = 0$$
  $\epsilon = 0 \rightarrow y_o - \sinh y_o + x = 0$ 



#### Analysis of the singularity II

• Exact solution:  $y_v - (1+\epsilon)sinh y_v + x = 0 \rightarrow y_v$  (with Maple symbolic simulator)

• Asymptotic solution:

$$y_{o}(x) = 1.817121(x)^{\frac{1}{3}} - \frac{1}{10}x + 0.0141511(x)^{\frac{5}{3}} + \dots \qquad x = M_{H} \text{ (known)}$$
$$y_{as}(x) = y_{o} + \epsilon \frac{\sinh y_{o}}{1 - \cosh y_{o}} - \frac{\epsilon^{2}}{2} \frac{\sinh y_{o}}{1 - \cosh y_{o}} + \frac{\epsilon^{3}}{3} \cosh y_{o} \sinh y_{o} \frac{(2 - \cosh y_{o})(1 + \cosh y_{o})}{(1 - \cosh y_{o})^{2}} \dots$$

Critical points when  $\epsilon = 0.001, 0.01,$  $0.03,\,0.05$  ,  $\epsilon_{tol}=1.5x10{-3}$ 0.2 0.15 У 0.1 0.05  $y_{v}$ yas  $y^{*}(x^{*})$ 0 0.002 0.004 0.006 0.008 0.01 х

Fixed  $\varepsilon_{tol}$ :  $\exists (x^*, y^*)$  such as  $|y_v - y_{as}| \ge \varepsilon_{tol}$  for the first time

- Special solution  $(x < x^*)$ :  $y_{sp}(x) = x (ax + \frac{1}{\epsilon}), a = \frac{y^*}{(x^*)^2} \frac{1}{\epsilon x^*}$ 
  - \* Assuming  $\varepsilon_{tol} = 1.5 \times 10^{-3}$ , for each  $\epsilon_i \rightarrow (x^*, y^*)_i$ ,  $\epsilon$  defined in [0, 0.1]
  - \* Least Square Adjustment to fit the critical points  $(x^*, y^*)$  w.r.t.  $\epsilon$ :

$$\begin{cases} x^* = 0.023988\epsilon + 4.300478\epsilon^2 - 62.308284\epsilon^3 + 869.10223\epsilon^4 - ... \\ y^* = 0.549826\sqrt{\epsilon} + 3.685319\epsilon\sqrt{\epsilon} - 53.136123\epsilon^2\sqrt{\epsilon} + ... \end{cases}$$



#### SDG-code





#### Preliminary results: SDG-code using the MNR method



|            | 0 (%)         | 0.026   |
|------------|---------------|---------|
| Iterations | 1 (%)         | 59.09   |
| normions   | 2 (%)         | 40.88   |
|            | 3 (%)         | 0.00072 |
|            | ≥4 (%)        | 0       |
|            | Mean value    | 1.408   |
| P          | ~ 16 millions |         |
| Computa    | 394 sec       |         |
|            |               |         |



#### Future Work

• Complete the SDG-code to the Kepler equation for hyperbolic orbits:

 $x = e \sinh y - y, \quad e > 1$ 

• Apply the SDG-code to the Lambert's problem: determination of an orbit from two position vectors  $(\vec{r_1}, \vec{r_2})$  and the time of flight  $t_v$ .

\* In low thrust trajectories



e>1

0

e =

e < 1



#### References

- W. NG, Edward, 1979: A general algorithm for the solution of Kepler's equation for elliptic orbits. Celestial Mechanics.
- Conway, Bruce A, 1986: An improved algorithm due to Laguerre for the solution of Kepler's equation. Celestial Mechanics.
- Serafin, RA, 1986: Bounds on the solution to Kepler's equation. Celestial Mechanics.
- Gooding, RH and Odell, AW, 1988: The hyperbolic Kepler equation (and the elliptic equation revisited). Celestial Mechanics.
- Nijenhuis, Albert, 1991: Solving Kepler's equation with high efficiency and accuracy. Celestial Mechanics and Dynamical Astronomy.
- Colwell, Peter, 1993: Solving Kepler's equation over three centuries. Richmond, Va: Willmann-Bell.
- Markley, F Landis, 1995: Kepler equation solver. Celestial Mechanics and Dynamical Astronomy.
- Fukushima, Toshio, 1996: A method solving Kepler's equation without transcendental function evaluations. Celestial Mechanics and Dynamical Astronomy.
- Fukushima, Toshio, 1997: A method solving Kepler's for hyperbolic case. Celestial Mechanics and Dynamical Astronomy.
- Mortari, Daniele and Elipe, Antonio, 2014: Solving Kepler's equation using implicit functions. Celestial Mechanics and Dynamical Astronomy.



## Vielen Dank für Ihre Aufmerksamkeit