An efficient code to solve the Kepler's equation for elliptic and hyperbolic orbits

Virginia Raposo Pulido, Jesús Peláez Álvarez
SDG-UPM, E.T.S.I. Aeronáutica y del Espacio

International Conference on Astrodynamics Tools and Techniques
March 15, 2016

Overview: Kepler equation

Kepler equation provides the position of the object orbiting around a body for some specific time.

Elliptical orbits: $x=y-e \sin y$				Hyperbolic orbits: $x=e \sinh y-y$		
Unknown parameter $\rightarrow y=\mathrm{E}$ Known parameters $\rightarrow x=\mathrm{M}$; e				Unknown parameter $\rightarrow y=\mathrm{H}$ Known parameters $\rightarrow x=\mathrm{M}_{\mathrm{H}} ; e$		
Approaches	$\begin{gathered} \text { Markley } \\ \text { (1995) } \end{gathered}$	$\begin{gathered} \text { Fukushima } \\ (1996) \end{gathered}$	 Elipe (2014)	Approaches	Gooding (1988)	$\begin{aligned} & \text { Fukushima } \\ & (1997) \end{aligned}$
E starter estimation	X	X		E starter estimation	X	X
E bounds estimation			X	E bounds estimation		
Iterative method		X	X	Iterative method	X	X
No iterative method	X			No iterative method		X

Motivation

- Take advantage of the full potential of the symbolic manipulators.
- Efficient solving of Kepler equation estimating a good initial seed for the eccentric and hyperbolic anomaly:
* To improve the computational time
* To reach the machine error accuracy with hardly iterations
- Appropriate algorithm in the singular corner of the Kepler equation:
* Neighborhood of $\mathrm{M}=0$ and $\mathrm{e}=1$
* To avoid convergence problems in the numerical method
- The advantage of the good behavior of the modified Newton-Raphson method when the initial seed is close to the looked for solution.
- Applicability to other problems: Lambert's problem

Code solution: The N-R methods

- Modified NR method: Solution of the equation defined by a successive approximation method starting from the seed $\left(y_{o}\right)$:

$$
y_{i+1}=y_{i}+\Delta y_{i}, i \in \aleph \quad \rightarrow \quad f\left(y_{i+1}\right)=f\left(y_{i}+\Delta y_{i}\right)=0
$$

Second order Taylor expansion about $y_{i}: \quad f\left(y_{i+1}\right) \approx f\left(y_{i}\right)+f^{\prime}\left(y_{i}\right) \Delta y_{i}+\frac{1}{2} f^{\prime \prime}\left(y_{i}\right) \Delta y_{i}{ }^{2}=0$

$$
\Delta y_{i \approx} \frac{-f^{\prime}\left(y_{i}\right)+\sqrt{f^{\prime}\left(y_{i}\right)^{2}-2 f\left(y_{i}\right) f^{\prime \prime}\left(y_{i}\right)}}{f^{\prime \prime}\left(y_{i}\right)}=-\frac{2 f\left(y_{i}\right)}{f^{\prime}\left(y_{i}\right) \pm \sqrt{\left|f^{\prime}\left(y_{i}\right)^{2}-2 f\left(y_{i}\right) f^{\prime \prime}\left(y_{i}\right)\right|}} \quad \begin{aligned}
& +\rightarrow f^{\prime}\left(y_{i}\right)>0 \\
& -\rightarrow f^{\prime}\left(y_{i}\right)<0
\end{aligned}
$$

- Generalization of the modified N-R method \rightarrow Root-finding method of Laguerre (Conway 1986)

$$
\Delta y_{i} \approx-\frac{n f\left(y_{i}\right)}{f^{\prime}\left(y_{i}\right) \pm \sqrt{\left|(n-1)\left[(n-1) f^{\prime}\left(y_{i}\right)^{2}-n f\left(y_{i}\right) f^{\prime \prime}\left(y_{i}\right)\right]\right|}}
$$

$$
f\left(y_{i}\right) \equiv 0
$$

Kepler equation for elliptic or hyperbolic orbit

Classical N-R method

$$
\mathrm{n}=1
$$

$$
\mathrm{n}=2
$$

Conway method

$$
\mathrm{n}=5
$$

Elliptic Kepler equation

$$
x=y-e \sin y
$$

Code solution: The seed value I

Steps:

1. The E-domain $[0, \pi]$ is discretized in 12 intervals of 15° of longitude :

$$
E_{i}=\frac{(i-1) \pi}{12} \quad i=1, \ldots 13
$$

2. The M-domain is discretized according to the Kepler equation

$$
\begin{aligned}
& \quad M_{i}=E_{i}-e \sin E_{i} \quad i=1, \ldots 13 \\
& * \text { If } x=M>\pi \rightarrow M=2 \pi-\chi ; E=2 \pi-\eta
\end{aligned}
$$

3. For each interval a fifth degree polynomial $p_{i}(x)$ is defined to interpolate the
eccentric anomaly.

$$
\begin{aligned}
& M \in\left[M_{i}, M_{i+1}\right] \rightarrow\left[E_{i}, E_{i+1}\right] \quad \text { with } i=1, \ldots, 12 \\
& \boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{x})=\boldsymbol{a}_{\boldsymbol{o}}^{\boldsymbol{i}}+\boldsymbol{a}_{\mathbf{1}}^{\boldsymbol{i}} \boldsymbol{x}+\boldsymbol{a}_{\mathbf{2}}^{\boldsymbol{i}} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{a}_{\mathbf{3}}^{\boldsymbol{i}} \boldsymbol{x}^{\mathbf{3}}+\boldsymbol{a}_{\mathbf{4}}^{\boldsymbol{i}} \boldsymbol{x}^{\mathbf{4}}+\boldsymbol{a}_{\mathbf{5}}^{\boldsymbol{i}} \boldsymbol{x}^{\mathbf{5}}
\end{aligned}
$$

(

$\left(M_{i}, E_{i}\right)$ with $e=0.5$

Code solution: The seed value II

4. Six boundary conditions are imposed to determine the coefficients of $p_{i}(x)$

$$
\boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{x})=a_{o}^{i}+a_{1}^{i} x+a_{2}^{i} x^{2}+a_{3}^{i} x^{3}+a_{4}^{i} x^{4}+a_{5}^{i} x^{5} \quad \text { with } i=1, \ldots, 12
$$

The six coefficients of $p_{i}(x)$ are obtained by six conditions at both ends of the corresponding interval:

$$
\begin{array}{ll}
p_{i}\left(x_{i}\right)=\mathrm{y}\left(x_{i}\right)=E_{i} & p_{i}^{\prime}\left(x_{i+1}\right)=\mathrm{y}^{\prime}\left(x_{i+1}\right) \\
{p^{\prime}}_{i}\left(x_{i}\right)=\mathrm{y}^{\prime}\left(x_{i}\right) & p_{i}\left(x_{i+1}\right)=\mathrm{y}\left(x_{i+1}\right) \\
{p^{\prime \prime}}^{\prime \prime}\left(x_{i}\right)=\mathrm{y}^{\prime \prime}\left(x_{i}\right) & p^{\prime \prime}{ }_{i}\left(x_{i+1}\right)=y^{\prime \prime}\left(x_{i+1}\right)
\end{array}
$$

5. Given e and M, the starting value E_{o} is estimated: $\quad E_{0}=p_{i}(x=M)$

SDG-code

Analysis of the singularity I

- Problem statement: Kepler equation $y-e \sin y-x=0$ has a singular behavior in the neighborhood of $e=1$ and $\mathrm{M}=0$
- Goal: Describe numerically the exact solution $\left(\mathrm{y}_{\mathrm{v}}\right)$ with enough accuracy to be part of the seed (E_{0}) used to start the N-R process.
- Solution: Apply an asymptotic expansion in power of the small parameter $\epsilon=1-e \ll 1$

$$
\epsilon \neq 0 \rightarrow y-(1-\epsilon) \sin y-x=0 \quad \epsilon=0 \rightarrow y_{o}-\sin y_{o}-x=0
$$

* Asymptotic expansion $\rightarrow x=x\left(y_{o}\right)$
* $x\left(y_{o}\right)$ inverted with Maple symbolic simulator:

$$
y_{o}(x)=(6 x)^{\frac{1}{3}}+\frac{1}{10} x+\frac{1}{1400}(6 x)^{\frac{5}{3}}+\ldots
$$

* Asymptotic expansion in the limit $\epsilon \rightarrow 0(\epsilon \neq 0)$:

$$
\boldsymbol{y}(\boldsymbol{x})=y_{o}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}(x)+\ldots
$$

$y_{i}(x), i=1, \ldots, n$ as a function of the known $y_{o}(x)$ vanishing the resulting serie for every order in ϵ :
$\boldsymbol{y}_{a s}(\boldsymbol{x})=y_{o}-\epsilon \frac{\sin y_{o}}{1-\cos y_{o}}+\frac{\epsilon^{2}}{2} \frac{\sin y_{o}}{1-\cos y_{o}}+\frac{\epsilon^{3}}{3} \frac{\cos y_{o}}{\sin y_{o}} \frac{\left(2-\cos y_{o}\right)\left(1+\cos y_{0}\right)}{\left(1-\cos y_{o}\right)^{2}} \ldots$

Analysis of the singularity II

- Exact solution: $\boldsymbol{y}_{v}-(\mathbf{1}-\mathbf{\epsilon}) \boldsymbol{\operatorname { s i n }} \boldsymbol{y}_{v}-\boldsymbol{x}=\mathbf{0} \rightarrow \boldsymbol{y}_{v} \quad$ (with Maple symbolic simulator)
- Asymptotic solution:

$$
\left\{\begin{array}{l}
y_{o}(x)=(6 x)^{\frac{1}{3}}+\frac{1}{10} x+\frac{1}{1400}(6 x)^{\frac{5}{3}}+\ldots \quad x=\mathrm{M}(\mathrm{known}) \\
y_{a s}(x)=y_{o}-\epsilon \frac{\sin y_{o}}{1-\cos y_{o}}-\frac{\epsilon^{2}}{2} \frac{\sin y_{o}}{1-\cos y_{o}}+\frac{\epsilon^{3}}{3} \frac{\cos y_{o}}{\sin y_{o}} \frac{\left(2-\cos y_{o}\right)\left(1+\cos y_{o}\right)}{\left(1-\cos y_{o}\right)^{2}} \ldots
\end{array}\right.
$$

Fixed $\varepsilon_{\mathrm{tol}}: \exists\left(x^{*}, y^{*}\right)$ such as $\left|y_{v}-y_{a s}\right| \geq \varepsilon_{\mathrm{tol}}$ for the first time

- Special solution $\left(x<x^{*}\right): y_{s p}(x)=x\left(\mathrm{a} x+\frac{1}{\epsilon}\right), \quad \mathrm{a}=\frac{y^{*}}{\left(x^{*}\right)^{2}}-\frac{1}{\epsilon x^{*}}$
* Assuming $\varepsilon_{\text {tol }}=5 \times 10^{-4}$, for each $\epsilon_{\mathrm{i}} \rightarrow\left(x^{*}, y^{*}\right)_{\mathrm{i}}, \prime \in$ defined in [0, 0.025]
* Least Square Adjustment to fit the critical points $\left(x^{*}, y^{*}\right)$ w.r.t. ϵ :

$$
\left\{\begin{array}{l}
x^{*}=\epsilon\left(-86.3921 \epsilon^{2}+9.1074 \epsilon+0.051632\right) \\
y^{*}=\sqrt{\epsilon}\left(-220.1588 \epsilon^{2}+12.0785 \epsilon+0.9972\right)
\end{array}\right.
$$

SDG-code

Results: SDG-code using MNR, Conway and CNR method

Modified N-R method:
≤ 2 iterations
$i_{\mathrm{m}} \approx 0.99$
CPU time $=68.4 \mathrm{sec}$

Conway method

$$
\begin{gathered}
\leq 2 \text { iterations } \\
i_{\mathrm{m}} \approx 0.99
\end{gathered}
$$

CPU time $=70.4 \mathrm{sec}$

Classical N-R method

$$
\leq 3 \text { iterations }
$$

$$
i_{\mathrm{m}} \approx 1.037
$$

CPU time $=62.1 \mathrm{sec}$

Results: Fukushima and Mortari code

Fukushima method:

$$
i_{\mathrm{m}} \approx 4.030
$$

CPU time $=328 \mathrm{sec}$

Mortari method:

$$
i_{\mathrm{m}} \approx 2.427
$$

CPU time $=101.4 \mathrm{sec}$

Conclusions

- An efficient code has been developed to solve the Kepler equation for elliptic motion.
- Improving the seed estimator provides faster and more accurate results than improving the numerical mehod:

		$\begin{aligned} & \text { SDG - code } \\ & (\text { MNR }) \end{aligned}$	SDG - code (Conway)	$\begin{aligned} & \text { SDG - code } \\ & (\mathrm{CNR}) \end{aligned}$	Fukushima code	 Elipe code
Iterations	0 (\%)	0.66	0.66	0.66	0.05	0.1
	1 (\%)	99.33	99.28	95.02	0	0.05
	2 (\%)	0.0052	0.057	4.3	0.35	57.20
	3 (\%)	0	0	0.0093	25.75	44.32
	≥ 4 (\%)	0	0	0	73.85	0.33
	Mean value	0.99	0.99	1.037	4.030	2.427
Points		~ 4 millions				
Computational time		68.4 sec	70.4 sec	62.1 sec	328 sec	101.4 sec

Accuracy analysis

- Considering the true solution $\left(\mathrm{y}_{\mathrm{v}}\right)$, we study the residual (ρ) and the absolute error $\left(\varepsilon_{a b s}\right)$ of the numerical solution $\left(\mathrm{y}_{\mathrm{c}}\right)$ taking into account that:

$$
\left.\begin{array}{c}
y_{c}=y_{v}+\varepsilon_{a b s} \\
\rho=\left|y_{c}-e \sin y_{c}-x\right|
\end{array}\right\} \quad\left|\varepsilon_{a b s}\right|=\frac{\rho}{\left|1-\cos y_{v}\right|}
$$

- Fixing the value of the eccentricity, we scan the whole interval $\mathrm{M} \in[0, \pi]$ and calculate the residual and absolute error after zero iteration, one iteration, two iterations and so on, considering the maximum residual that we found for each iteration when the M interval is scanning:

Hyperbolic Kepler equation

$$
x=e \sinh y-y
$$

Code solution: The seed value I

Steps:

1. A change of variable is done in the Kepler equation:

$$
z=\tanh y \leftrightarrow y=\frac{1}{2} \ln \frac{1+z}{1-z} \Rightarrow x=e \frac{z}{\sqrt{1-z^{2}}}-\frac{1}{2} \ln \frac{1+z}{1-z}
$$

with $z \in[0,1)$ when $y \in[0, \infty)$ and x singular in $z=1$
2. The z-domain $[0,1)$ is discretized in 12 uneven intervals such that:

$$
\left\{\begin{array}{l}
z_{i}=0.99\left(\frac{i-1}{11}\right)^{\frac{1}{5}} i=1, \ldots 12 \\
z_{13}=1
\end{array}\right.
$$

3. The mean anomaly domain is discretized according to the Kepler equation $x(z)$ with respect to the first twelve z_{i}

M_{HI}	z_{1}	$\mathrm{M}_{\mathrm{HI} 3}$	z_{13}
0	0	∞	1

Code solution: The seed value II

4. For each of the first 11 intervals, $z \in[0,0.99]$:
*A fifth degree polynomial $p_{i}(x)$ is defined to interpolate the variable z.
*Six boundary conditions are imposed to determine the coefficients of $p_{i}(x)$ as we did for the elliptic case

$$
\boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{x})=a_{o}^{i}+a_{1}^{i} x+a_{2}^{i} x^{2}+a_{3}^{i} x^{3}+a_{4}^{i} x^{4}+a_{5}^{i} x^{5} \quad \text { with } i=1, \ldots, 12
$$

such that given e and M_{H}, the starting value z_{o} is estimated: $Z_{0}=p_{i}\left(x=M_{H}\right)$
5. In the last interval, $z \in[0.99,1)$:

A recursive algorithm is applied doing a change of variable in $x(z): z=\cos \xi \Rightarrow x=e \cot \xi-\frac{1}{2} \ln \left(\cot ^{2} \frac{\xi}{2}\right)$

$$
\xi=h(\xi, e, x)=\arctan \frac{e}{x+\frac{1}{2} \ln \left(\cot ^{2} \frac{\xi}{2}\right)} \Rightarrow \xi_{n+1}=h\left(\xi_{n}, e, x\right) \quad \text { with starter } \xi_{0}=\frac{\pi}{2}
$$

such that given e and M_{H}, the starting value Z_{o} is estimated: $Z_{0}=\cos \xi_{l}$

SDG-code

Analysis of the singularity I

- Problem statement: Kepler equation $e \sinh y-y-x=0$ has a singular behavior in the neighborhood of $e=1$ and $\mathrm{M}_{\mathrm{H}}=0$
- Goal: Describe numerically the exact solution $\left(\mathrm{y}_{\mathrm{v}}\right)$ with enough accuracy to be part of the seed $\left(H_{0}\right)$ used to start the N-R process.
- Solution: Apply an asymptotic expansion in power of the small parameter $\epsilon=e-1 \ll 1$

$$
\epsilon \neq 0 \rightarrow y-(1+\epsilon) \sinh y+x=0 \quad \epsilon=0 \rightarrow y_{o}-\sinh y_{o}+x=0
$$

* Asymptotic expansion $\rightarrow x=x\left(y_{o}\right)$
* $x\left(y_{o}\right)$ inverted with Maple symbolic simulator:

$$
y_{o}(\boldsymbol{x})=1.817121(x)^{\frac{1}{3}}-\frac{1}{10} x+0.0141511(x)^{\frac{5}{3}}+\ldots
$$

* Asymptotic expansion in the limit $\epsilon \rightarrow 0(\epsilon \neq 0)$:

$$
\boldsymbol{y}(\boldsymbol{x})=y_{o}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}(x)+\ldots
$$

$y_{i}(x), i=1, \ldots, n$ as a function of the known $y_{o}(x)$ vanishing the resulting serie for every order in ϵ :

$$
\boldsymbol{y}_{a s}(\boldsymbol{x})=y_{o}+\epsilon \frac{\sinh y_{o}}{1-\cosh y_{o}}-\frac{\epsilon^{2}}{2} \frac{\sinh y_{o}}{1-\cosh y_{o}}+\frac{\epsilon^{3}}{3} \cosh y_{o} \sinh y_{o} \frac{\left(2-\cosh y_{o}\right)\left(1+\cosh y_{o}\right)}{\left(1-\cosh y_{o}\right)^{2}}
$$

Analysis of the singularity II

- Exact solution: $\boldsymbol{y}_{v}-(\mathbf{1}+\boldsymbol{\epsilon}) \sinh \boldsymbol{y}_{v}+\boldsymbol{x}=\mathbf{0} \rightarrow \boldsymbol{y}_{v} \quad$ (with Maple symbolic simulator)
- Asymptotic solution:

$$
\begin{aligned}
& y_{o}(x)=1.817121(x)^{\frac{1}{3}}-\frac{1}{10} x+0.0141511(x)^{\frac{5}{3}}+\ldots \quad x=\mathrm{M}_{\mathrm{H}}(\text { known }) \\
& y_{a s}(x)=y_{0}+\epsilon \frac{\sinh y_{0}}{1-\cosh y_{0}}-\frac{\epsilon^{2}}{2} \frac{\sinh y_{o}}{1-\cosh y_{o}}+\frac{\epsilon^{3}}{3} \cosh y_{0} \sinh y_{o} \frac{\left(2-\cosh y_{0}\right)\left(1+\cosh y_{0}\right)}{\left(1-\cosh y_{o}\right)^{2}} \ldots
\end{aligned}
$$

Critical points when $\epsilon=0.001,0.01$, $0.03,0.05, \varepsilon_{\text {tol }}=1.5 \times 10-3$

Fixed $\varepsilon_{\mathrm{tol}}: \exists\left(x^{*}, y^{*}\right)$ such as $\left|y_{v}-y_{a s}\right| \geq \varepsilon_{\mathrm{tol}}$ for the first time

- \quad Special solution $\left(x<x^{*}\right): y_{s p}(x)=x\left(\mathrm{a} x+\frac{1}{\epsilon}\right), \quad \mathrm{a}=\frac{y^{*}}{\left(x^{*}\right)^{2}}-\frac{1}{\epsilon x^{*}}$
Assuming $\varepsilon_{\text {tol }}=1.5 \times 10^{-3}$, for each $\epsilon_{\mathrm{i}} \rightarrow\left(x^{}, y^{*}\right)_{\mathrm{i}}, \quad \in$ defined in $[0,0.1]$
* Least Square Adjustment to fit the critical points $\left(x^{*}, y^{*}\right)$ w.r.t. ϵ :

$$
\left\{\begin{array}{l}
x^{*}=0.023988 \epsilon+4.300478 \epsilon^{2}-62.308284 \epsilon^{3}+869.10223 \epsilon^{4}-\ldots \\
y^{*}=0.549826 \sqrt{\epsilon}+3.685319 \epsilon \sqrt{\epsilon}-53.136123 \epsilon^{2} \sqrt{\epsilon}+\ldots
\end{array}\right.
$$

SDG-code

Preliminary results: SDG-code using the MNR method

Iterations	$0(\%)$	0.026
	$1(\%)$	59.09
	$2(\%)$	40.88
	$3(\%)$	0.00072
	$\geq 4(\%)$	0
	Mean value	1.408
Points	~ 16 millions	
Computational time	394 sec	

Future Work

- Complete the SDG-code to the Kepler equation for hyperbolic orbits:

$$
x=e \sinh y-y, \quad e>1
$$

- Apply the SDG-code to the Lambert's problem: determination of an orbit from two position vectors $\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right)$ and the time of flight t_{v}.

References

- W. NG, Edward, 1979: A general algorithm for the solution of Kepler's equation for elliptic orbits. Celestial Mechanics.
- Conway, Bruce A, 1986: An improved algorithm due to Laguerre for the solution of Kepler's equation. Celestial Mechanics.
- Serafin, RA, 1986: Bounds on the solution to Kepler's equation. Celestial Mechanics.
- Gooding, RH and Odell, AW, 1988: The hyperbolic Kepler equation (and the elliptic equation revisited). Celestial Mechanics.
- Nijenhuis, Albert, 1991: Solving Kepler's equation with high efficiency and accuracy. Celestial Mechanics and Dynamical Astronomy.
- Colwell, Peter, 1993: Solving Kepler's equation over three centuries. Richmond, Va: Willmann-Bell.
- Markley, F Landis, 1995: Kepler equation solver. Celestial Mechanics and Dynamical Astronomy.
- Fukushima, Toshio, 1996: A method solving Kepler's equation without transcendental function evaluations. Celestial Mechanics and Dynamical Astronomy.
- Fukushima, Toshio, 1997: A method solving Kepler's for hyperbolic case. Celestial Mechanics and Dynamical Astronomy.
- Mortari, Daniele and Elipe, Antonio, 2014: Solving Kepler's equation using implicit functions. Celestial Mechanics and Dynamical Astronomy.

Vielen Dank für Ihre Aufmerksamkeit

