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ABSTRACT
The Kepler equation for the elliptical motion, y− e siny = x,
involves a nonlinear function depending on three parameters:
the eccentric anomaly y ≡ E, the eccentricity e and the mean
anomaly x ≡ M. For given e and x values the numerical so-
lution of the Kepler equation becomes one of the goals of or-
bit propagation to provide the position of the object orbiting
around a body for some specific time (see references). In this
paper, a new approach for solving Kepler equation for ellip-
tical and hyperbolic orbits is developed. This new approach
takes advantage of the very good behavior of the Laguerre
method [1] when the initial seed is close to the looked for
solution and also of the existence of symbolic manipulators
which facilitates the obtention of polynomial approximations.
The central idea is to provide an initial seed as good as we can
to the modified Newton-Raphson method, because when the
initial guess is close to the solution, the algorithm is fast, reli-
able and very stable. To determine a good initial seed the do-
main of the equation is discretized in several intervals and for
each one of these intervals a fifth degree interpolating polyno-
mial is introduced. The six coefficients of the polynomial are
obtained by requiring six conditions at both ends of the corre-
sponding interval. Thus the real function and the polynomial
have equal values at both ends of the interval. Similarly rela-
tions are imposed for the two first derivatives. Consequently,
given e and x ≡ M, selecting the interval [xi,xi+1] in such a
way that M ∈ [xi,xi+1] and using the corresponding polyno-
mial pi(x), we determine the starter value y0 = E0. However,
the Kepler equation has a singular behavior when M is small
and e close to unity (singular corner). In this case, the exact
solution of the equation has to be described in a different way
to guarantee the enough accuracy to be part of the seed used to
start the numerical method. In order to do that, an asymptotic
expansion in power of the small parameter ε = 1− e is devel-
oped. In most of the cases, the seed generated by the Space
Dynamics Group at UPM (SDG-code) leads to reach machine
error accuracy with the modified Newton-Raphson methods
with no iterations or just one iteration. The final algorithm is
very stable and reliable. This approach improves the compu-
tational time compared with other methods currently in use.
The advantage of our approach is its applicability to other
problems as for example the Lambert problem for low thrust

trajectories.

Index Terms— Kepler equation, Newton-Raphson method,
orbit propagation

1. INTRODUCTION

Over the centuries the resolution of the Kepler equation has
been studied for a wide variety of scientists such that in vir-
tually every decade from 1650 to the present there have ap-
peared papers devoted to the Kepler problem and its solution
[2]. Although there exists a unique solution of the Kepler
equation, there are many methods to describe or approximate
it. Basically it depends on the solvers’s motivations and the
mathematical tools available in the epoch of study. In the last
century, with the advent of calculators and computers, there
is no impediment to achieving quick solutions of great accu-
racy. In particular, the symbolic manipulators like Matlab,
Maple or Mathematica, are very powerful calculators which
are easy to use and have a very intuitive syntax. Besides, they
can be compiled to provide the corresponding code in some
of the standard programming languages such as C, C++ or
Fortran, which are specially adapted for numerical calculus.

In this paper we develop a procedure to solve elliptic and
hyperbolic orbits taking advantage of the full potential of the
symbolic manipulators. We focus the study on the determina-
tion of an appropriate seed to initialize the numerical method
for solving the Kepler equation, considering the optimization
already tested of the well known Newton-Raphson method.

1.1. Elliptical case

The Kepler equation corresponding to the elliptical motion

x = y− e siny (1)

determines a nonlinear function y= y(x,e) where y≡ E is the
unknown eccentric anomaly, e the eccentricity and x ≡ M the
mean anomaly, which is known. For given values of e ∈ [0,1[
and M ∈ [0,2π ], equation (1) defines univocally a function y=
y(x,e). This property can be deduced from the Banach fixed-
point theorem. If we consider the equation g(y) = x+ e siny,
the function g(y) is a contractive mapping for every value of



x, since its derivative g′(y) = e cosy satisfies the condition
|g′(y)|< 1 when e ∈ [0,1[. In effect, the function g(y) is con-
tractive if there is a nonnegative real number 0 < k < 1 such
that ∀y1,y2 ∈ [0,2π ]:

|g(y1)− g(y2)| ≤ k|y1 − y2|

Here, the smallest value for k is called the Lipschitz constant
of g. Applying the mean value theorem to function g(y), there
exist an intermediate value y∗ ∈ [y1,y2] which verifies:

g(y2)− g(y1) = g′(y∗)(y2 − y1)

Taking into account that g ′(y) = e cosy, we have

|g(y2)− g(y1)|= |ecosy∗| |y2 − y1| ≤ e|y2 − y1|

that is, the Lipschitz constant of g , k, verifies k < e, proving
the property. Finally, applying the Banach fixed-point theo-
rem for contractive functions, it can be concluded that there
is a fixed point which verifies y = g(y) and this fixed point is
the looked for solution of the Kepler equation. Starting from
a given value y0 the sequence yn+1 = g(yn) turns out to be
convergent and its limit is the fixed point.

Initially, x and y range in the interval [0,2π ]. However, the
transformation y = 2π −η and x = 2π − ξ convert equation
(1) into ξ = η −e sinη . Therefore, if x ∈]π ,2π ] the mapping
reduces the problem to the interval [0,π ]. As a consequence,
the Kepler equation can be seen as a root finder problem of
the equation

f (y)≡ y− e siny− x = 0 (2)

where e ∈ [0,1[ and x ∈ [0,π ] are known.

1.2. Hyperbolic case

The Kepler equation corresponding to the hyperbolic motion

x = e sinhy− y (3)

determines a nonlinear function y = y(x,e) where y ≡ H is
the unknown hyperbolic anomaly, e the eccentricity and x ≡
MH , which is known, is the equivalent to the mean anomaly
in the elliptic motion. Initially, x and y range in the interval
[−∞,∞[ with e > 1. Because the eccentricity e is larger than
1, y > 0 ⇔ x > 0. Besides, the right hand side of (3) is an
odd function. That is, for negative values of x the change
of variables x = −ξ and y = −η convert equation (3) into
ξ = e sinhη −η , where ξ and η are positives. Therefore, we
focus the analysis in the resolution of equation (3) for positive
values: (x,y) ∈ [0,∞[×[0,∞[.

For given values of e > 1 and MH ∈ [0,∞[ equation (3)
defines univocally a bijective function y = y(x,e) which
is defined on R+. This property can be deduced from
the Bolzano’s theorem and the fact the function f (y) =

e sinhy− y− x is strictly increasing. Indeed, f (y) is a con-
tinuous function on the closed interval [y1,y2] = [0, x

e−1 ] such
that takes the values of the opposite sign at the extremes
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Applying the Bolzano’s theorem to function f (y), there exist
an intermediate value y∗ ∈ [y1,y2] which verifies f (y∗) = 0.
Now we can assure f (y) vanishes at least one in the stated
interval. However, the derivative f (y) ′ is always positive

d f
dy

= e coshy− 1 ≥ e− 1 > 0

That is, ∀y2 > y1 with y1,y2 ∈ [0,∞[, f (y2)≥ f (y1) and f (y)
is strictly increasing. Consequently, f (y) is zero for only one
value of y ∈ [y1,y2], i.e., for given x, ∃ ! y such that verifies
(3).

As a consequence, the Kepler equation can be seen as a
root finder problem of the equation

f (y) ≡ e sinhy− y− x= 0 (4)

where e > 1 and x ∈ [0,∞[ are known.

1.3. Kepler equation solvers

Several authors have developed different methods to solve the
Kepler equation focusing in the accuracy and the computa-
tional cost of the algorithm. These aspects depend on how the
seed is chosen as well as the method (numerical or analytical)
used. In what follows we describe some of the approaches
currently used

• The Gooding 1988 approach for hyperbolic case [3]:
The starter is based on Lagrange’s theorem, where the
equation is rewritten as a function of S = sinhy instead
of y. First, the Halley’s method is applied to obtain the
corrector of S as well as of the function and its deriva-
tive. With these values, the Newton-Rhapson method
is applied to determine the solution of the equation. It
is an iterative method which requires several transcen-
dental function evaluations.

• The Markley 1995 approach for elliptical case [4]: The
starter point for y is the root of a cubic equation, whose
expression is derived through a Padé approximation for
siny, which is replaced in (2). After that, a fifth-order
refinement of the solution is applied only once. It is a
no iterative method which requires four transcendental
function evaluations.



• The Fukushima 1996 approach for elliptical case [5]:
The starter value for y is a trivial upper bound of the
solution, π . The approximate solution is determined
by transforming the Newton-Raphson method from the
continuous x-space to a discretized j-space, where x
represents y and j the solution index. The corrected
value for y is another approximation of the Newton-
Raphson method by approximating the evaluation of
(2) and the derivative by their truncated Taylor se-
ries around the approximate solution. It is an iterative
method which does not require transcendental function
evaluation.

• The Fukushima 1997 approach for hyperbolic case [6]:
Several intervals of L=x/e are defined to select where
the solution should be determine. The different meth-
ods and approximations chosen for each interval are go-
ing to depend on the expected size solution. First, four
cases are selected where the solution is large. For these
cases an asymptotic form of the main equation is con-
sidered and an approximate solution is found. Next,
four other cases are selected when the solution is small.
In that case an iterative procedure is applied to solve
the approximate forms of Kepler’s equation. In the rest
case, when the solution interval becomes finite, a dis-
cretized Newton method is applied as well as a Newton
method where the functions are evaluated by Taylor se-
ries expansions. In that case, the starter value is the
minimum of some upper bounds of the solution pre-
pared by using the Newton correction formula. This
approach, depending on the case, use or not an itera-
tive method, requiring several transcendental function
evaluations.

• The Mortari and Elipe 2014 approach for elliptical case
[7]: Two ranges of x are defined to select where the so-
lution should be determine. The lower bound for y is
derived through two implicit functions, which are non-
rational Bézier functions, linear or quadratic, depend-
ing on the derivatives of the initial bound values. The
upper bound for y is estimated by applying the Newton-
Raphson method with the lower bound as the starting
value. After that, if the machine error accuracy is not
reached, the lower and upper bounds define a new range
of searching. It is an iterative method which requires
several transcendental function evaluations.

2. THE ITERATIVE METHOD

The method used in our code to solve the Kepler equation
is the modified Newton-Raphson method. It is a successive
approximation method starting from a seed y0, where the root
searched is solution of (2) or (4) depending on the case we
are. If yn in one of the terms of the sequence we want to
generate, the next term will be yn+1 = yn +Δyn, where Δyn

should verify f (yn+1) = f (yn +Δyn) = 0, with f given by (2)
or (4). If we approximate f (yn+1) by its second order Taylor
expansion about yn

f (yn+1)≈ f (yn)+ f ′(yn)Δyn +
1
2

f ′′(yn)Δ2yn

so that imposing the condition f (yn+1)=0, we obtain

Δyn =
−2 f (yn)

f ′(yn)±
√
| f ′2(yn)− 2 f (yn) f ′′(yn)|

(5)

where we have to select the sign (+) when f ′(yn) is positive;
if f ′(yn)< 0 the sign (−) must be taken.

The use of absolute value in (5) does not affect the conver-
gence of the algorithm. It is introduced to avoid the algorithm
fails during the series generation when the square root is a
complex number. The first and second derivatives of (2) are
given by the relations

f ′(yn) = 1− e cosyn

f ′′(yn) = e sinyn

while the first and second derivatives of (4) are given by

f ′(yn) = e coshyn − 1

f ′′(yn) = e sinhyn

Equation (5) summarizes the modified Newton-Raphson
algorithm. It should be noticed that this algorithm becomes
the classical Newton-Raphson method, in which the function
is approximated by its first order Taylor expansion, when
f ′′(yn) = 0. The modified Newton-Raphson is a particular
case of the Conway method. Bruce M. Conway, of the Uni-
versity of Illinois, applied a root-finding method of Laguerre
(1834-1886) to the solution of Kepler equation (Conway
1986). Although the method is intended for finding the roots
of a polynomial, it works equally as well for Kepler equation.
The algorithm associated to that method summarizes in the
equation

Δyn =
−(1+ p) f (yn)

f ′(yn)±
√
|p [p f ′2(yn)− (1+ p) f (yn) f ′′(yn)]|

with p = m−1 and m is the degree of the polynomial. As we
can see, the modified Newton-Raphson method used in this
paper is a particular case of the Conway method for m = 2.

3. THE SEED VALUE

In order to initialize the iterative method, we require a starting
value of the eccentric or hyperbolic anomaly, whose selec-
tion should be done carefully to optimize the corresponding
method. To do that, we start defining the interval where we
are going to work.



3.1. Elliptical case

We start discretizing the eccentric anomaly domain [0,π ] in
twelve intervals of 15◦ of longitude, where the corresponding
Mi ≡ xi is obtained from equation (1). This way, we defined
twelve intervals [xi,xi+1], i = 1, . . . ,12. In each one of these
intervals we introduce a fifth degree polynomial p i(x), i =
1, . . . ,12 to interpolate the eccentric anomaly

y(x)≈ pi(x) = a(i)0 + a(i)1 x+ a(i)2 x2 + a(i)3 x3 + a(i)4 x4 + a(i)5 x5

in [xi,xi+1], i = 1, . . . ,12.
In order to determine the six coefficients of pi(x) the fol-

lowing six boundary conditions should be imposed

pi(xi) = y(xi) pi(xi+1) = y(xi+1)

p′i(xi) = y′(xi) p′i(xi+1) = y′(xi+1)

p′′i (xi) = y′′(xi) p′′i (xi+1) = y′′(xi+1)

where the two first derivatives of y are given by:

y′ =
dy
dx

=
1

1− e cosy

y′′ =
d2y
dx2 =

−e siny
(1− e cosy)3

These polynomials pi(x), i = 1, . . . ,12, can be generated
easily with the help of the Maple symbolic manipulator only
once; moreover, the Maple manipulator provides the FOR-
TRAN or C code of the polynomials that will be appropriately
stored in one module of code.

Consequently, given e and M, we determine the starter
value E0 following the next procedure:

1. First, given e the ends xi, xi+1 of the intervals are cal-
culated applying (1) to the corresponding y i, yi+1.

2. The interval [xi,xi+1] should be selected in such a way
that M ∈ [xi,xi+1]. Note that the corresponding val-
ues [yi,yi+1] are known and the seed y0 satisfies: y0 ∈
[yi,yi+1]

3. Use the corresponding polynomial pi(x) to obtain the
seed to be used with the Newton-Raphson algorithm:
y0 = pi(M)

3.2. Hyperbolic case

We start doing a change of variable in (3) such that

z = tanhy ⇔ y =
1
2

ln
1+ z
1− z

(6)

which transform the Kepler equation in the relation

x = e
z√

1− z2
− 1

2
ln

1+ z
1− z

(7)

but now the variable z ranges in the interval [0,1[ when y ∈
[0,∞[. Notice that the value z = 1 is singular. Equation (7)
defines a function z = z(x,e) which will be approximated by
fifth degree polynomials as it was explained for the elliptical
case. We divide the interval [0,1[ where z ranges in 12 uneven
intervals; the lower ends of such intervals are given by:

zi = 0.99 ·
(

i− 1
11

)1/5

, i = 1, . . . ,12

The last interval z ∈ [0.99,1[, where the value of x could
be very large, deserves a different treatment.

• For the first eleven intervals we introduce 11 polynomi-
als of fifth degree pi(x), i= 1, . . . ,11 and in each one of
the intervals the function z(x) will be approximated by
the corresponding polynomial: z(x) ≈ pi(x), when x ∈
[xi,xi+1]. As in the elliptical case, the six coefficients of
each polynomial are determined by requiring that the
function z(x) and the polynomial reach the same values
at the ends of the corresponding interval; moreover, the
two first derivatives of z(x) and the polynomial must
reach the same values at both ends. Now the two first
derivatives of z are given by:

z′ =
dz
dx

=
(1− z2)

3
2

e−√
1− z2

z′′ =
d2z
dx2 =

z(2
√

1− z2 − 3e)(1− z2)2

(e−√
1− z2)3

• In the last interval z ∈ [0.99,1[ a recursive algorithm
is applied to estimate the seed of z, z0. We perform a
change of variable in (7) such that z = cosξ . Because
we are in the vicinity of z = 1, ξ � 1 and x � 1. As a
consequence, (7) is given by

x = e cotξ − 1
2

ln(cot2
ξ
2
)

being the final equation for the algorithm

ξ = h(ξ ,e,x) = arctan
e

x+ 1
2 ln(cot2 ξ

2 )
(8)

Starting from the value ξ0 = π
2 the sequence ξn+1 =

h(ξn,e,x) turns out to be quickly convergent and its
limit ξ� provides the seed z0 for z in this last interval:
z0 = cosξ�.

Consequently, given e and MH , we determine the starter
value z0 following the next procedure:

1. First, given e the ends xi, xi+1 of the intervals are cal-
culated applying (3) to the corresponding y i, yi+1



2. The interval [xi,xi+1] should be selected in such a way
that MH ∈ [xi,xi+1]. Note that the corresponding val-
ues [zi,zi+1] are known and the seed z0 satisfies: z0 ∈
[zi,zi+1]

3. If the right interval is the last one, use the sequence
associated with equation (8); with 4 or 6 iteration we
obtain a very good seed z0 = cosξ� to be used with the
Newton-Raphson algorithm

4. If the right interval is not the last one, use the cor-
responding polynomial pi(x) to obtain the seed z0 =
pi(MH)

5. The seed z0 is used to solve the equation (7) by using
the modified Newton-Raphson algorithm. The output
of this algorithm, z(x) provides, via the change of vari-
able (6), the desired value of the hyperbolic anomaly
y(x)

4. THE SINGULAR CORNER

4.1. Elliptical case

The expression (2) defines a real function y = y(x,e) which is
univocally determined when e ∈ [0,1]. However, the Kepler
equation has a singular behavior in the neighborhood of e= 1
and M = 0 (singular corner). To describe the solution close to
the singular corner we introduce the value ε = 1−e assuming
that ε � 1:

y− (1− ε) siny− x = 0 (9)

Our goal is to describe numerically the exact solution yv

of equation (9) with enough accuracy to be part of the seed
used to start the Newton-Raphson convergent process. In or-
der to do that, an asymptotic expansion in power of the small
parameter ε will be obtained.

In the case ε = 0 the solution of equation (9) is a smooth
function η0(x) which is defined in the whole interval [0,π ].
Let us assume that this function is known; in such a case it
is possible to obtain an asymptotic solution of equation (9) in
the limit ε → 0 but for ε �= 0:

y(x) = η0(x)+ εη1(x)+ ε2 η2(x)+ . . .

By introducing this expansion, respectively, in equation
(9) and requiring that the resulting series vanish for every or-
der in ε it is possible to obtain the different function η i(x), i =
1, . . .n in terms of the known function η0(x). With the help of
the Maple symbolic manipulator we obtain:

yas(x) = η0 − ε
sinη0

1− cosη0
+ ε2 1

2
sinη0

1− cosη0
+

+ ε3 1
3

cosη0

sinη0

(2− cosη0)(1+ cosη0)

(1− cosη0)2 . . . (10)

In the singular corner η0 is small and the asymptotic solu-
tion (15) involves two small quantities: ε and η0. Let us con-
sider a tolerance level εtol , for example, εtol = 0.001 . When
η0 is clearly larger than ε , the asymptotic solution (10) pro-
vides a very accurate result, that is, the difference between the
exact value yv and the asymptotic solution yas is smaller than
εtol : |yv − yas|< εtol .

However, for decreasing values of y0 the asymptotic solu-
tion reaches the point (x∗,y∗) where, for the first time, the
accuracy fails since the difference |yv − yas| ≥ εtol . Once
the tolerance level εtol has been fixed, these critical values
(x∗,y∗) only depend of the parameter ε . As a consequence,
the asymptotic solution (10) cannot be used when x < x ∗ and
we need to look for another solution valid in this zone.
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Fig. 1. Exact, asymptotic and special solution for ε = 0.005
in the elliptical case

In this zone, x < x∗, we use the following polynomial ap-
proximation:

ysp = x(ax+
1
ε
), with a =

y∗

(x∗)2 − 1
ε x∗

(11)

This approximation provides a curve which pass through
the origin (0,0), the point (x∗,y∗) and matches the slope at
the origin.

Figure 1 shows the exact solution, yv, the asymptotic so-
lution, yas, and the special solution, ysp for the particular case
ε = 0.005 and a tolerance level εtol = 0.001.

The definition of the point (x∗,y∗) is not precise; however,
considering that we are looking for a seed in order to feed
the further Newton-Raphson process, the accuracy is enough
with tolerance levels of the order of 10−3 as we have seen
previously.

Summarizing this analysis, to obtain a reliable procedure
we have to provide: a reliable and accurate solution for the
function η0(x) which is involved in the asymptotic solution
yas and the critical point (x∗,y∗) which defines the special so-
lution ysp.



4.1.1. Solution η0(x)

The procedure requires the solution η0(x) for small values
of x, in order to be in the singular corner. This solution can
be obtained using asymptotic expansion in terms of the mean
anomaly x:

η0(x) = (6x)
1
3 +

1
10

x+
1

1400
(6x)

5
3 +

1
4200

(6x)
7
3 + . . .

The number of terms of this expansion can be increased
easily and this asymptotic solution provides the value of y 0(x)
with greater accuracy than necessary. Note that using an ex-
pansion of η0(x) with four terms the differences are of the
order of 10−6 for small values of x.

4.1.2. Critical values (x∗,y∗)

Once the tolerance level εtol has been fixed, the critical point
(x∗,y∗) is a function of the parameter ε . With the help of the
Maple symbolic manipulator is easy to obtain a set of critical
pairs (x∗,y∗) for different values of ε and a tolerance of ε tol =
5.0 ·10−4. After that, we use a Least Square fitting procedure
to obtain the following functions:

x∗ = ε(−86.3921ε 2+ 9.1074ε+ 0.051632) (12)

y∗ =
√

ε (0.99722+ 12.07850ε− 220.15880ε 2) (13)

which provides the values (x∗,y∗) in terms of ε = 1− e.

4.1.3. Algorithm in the singular corner

The algorithm used in our code for values of e and M in the
singular corner is as follows:

1. We define arbitrarily the singular corner as the region
of the plane (e,M) where e > 0.975 and M < 0.05 rad.
We fix εtol = 5.0 ·10−4.

2. We calculate ε = 1− e and if the value of M is larger
than the critical value x∗, i.e., M > x∗(ε) then we calcu-
late the eccentric anomaly using the asymptotic expan-
sion yas given by (10)

3. If the value of M is smaller than the critical value x∗,
i.e., M ≤ x∗(ε) then we calculate the eccentric anomaly
using the special solution ysp given by (11). In such a
case we need to calculate both critical values (x∗,y∗)
using equations (12-13)

The eccentric anomaly obtained is the seed y0 used to feed
the Newton-Raphson process.

4.2. Hyperbolic case

The expression (4) defines a real function univocally deter-
mined when e > 1. However, the Kepler equation has a sin-
gular behavior in the neighborhood of e= 1 and M H = 0 (sin-
gular corner). To describe the solution close to the singular

corner we introduce the value ε = e−1 assuming that ε � 1:

y− (1+ ε) sinhy+ x = 0 (14)

Our goal is to describe numerically the exact solution yv

of equation (14) with enough accuracy to be part of the seed
used to start the Newton-Raphson convergent process. In or-
der to do that, an asymptotic expansion in power of the small
parameter ε will be obtained.

In the case ε = 0 the solution of equation (14) is a smooth
function η0(x) which is defined in the whole real line R+.
Let us assume that this function is known; in such a case it is
possible to obtain an asymptotic solution of equation (14) in
the limit ε → 0 but for ε �= 0:

y(x) = η0(x)+ εη1(x)+ ε2 η2(x)+ . . .

By introducing this expansion in equation (14) and requiring
that the resulting series vanish for every order in ε it is possi-
ble to obtain the different functions η i(x), i = 1, . . .n in terms
of the known function η0(x). With the help of the Maple sym-
bolic manipulator we obtain:

yas(x) = η0 + ε
sinhη0

1− coshη0
− ε2 1

2
sinhη0

1− coshη0
+

+ ε3 1
3

coshη0 sinhη0
(2− coshη0)(1+ coshη0)

(1− coshη0)2 . . .

(15)

In the singular corner η0 is small and the asymptotic solu-
tion (15) involves two small quantities: ε and η0. Let us con-
sider a tolerance level εtol , for example, εtol = 0.0015. When
η0 is clearly larger than ε , the asymptotic solution (15) is an
excellent approximation of the true solution yv(x), that is, the
difference between the exact value yv and the asymptotic so-
lution yas is smaller than εtol : |yv − yas|< εtol .

However, for decreasing values η0 the asymptotic solu-
tion behaves worse and it reaches the point (x∗,y∗) where,
for the first time, the accuracy fails since the difference |yv −
yas| ≥ εtol . Once the tolerance level εtol has been fixed, these
critical values (x∗,y∗) only depend of the parameter ε . As
a consequence, the asymptotic solution (15) cannot be used
when x < x∗ and we need to look for another solution valid in
this zone.

In this zone, x < x∗, we use the following polynomial ap-
proximation:

ysp = x(ax+
1
ε
), with a =

y∗

(x∗)2 − 1
ε x∗

(16)

This approximation provides a curve which pass through the
origin (0,0), the point (x∗,y∗) and matches the slope at the
origin.

Figure 2 shows the exact solution, yv, the asymptotic so-
lution, yas, and the critical values, (x∗,y∗) for the particular
cases ε = 0.001,0.01,0.03,0.05 and a tolerance level ε tol =
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Fig. 2. Exact, asymptotic and critical values for ε =
0.001,0.01,0.03,0.05 in the hyperbolic case

0.0015. We can see the progressive separation of the func-
tions yv and yas for deceasing values of x.

Summarizing this analysis, to obtain a reliable procedure
we have to provide: a reliable and accurate solution for the
function η0(x) which is involved in the asymptotic solution
yas and the critical point (x∗,y∗) which defines the special so-
lution ysp.

4.2.1. Solution η0(x)

The procedure requires the solution η0(x) for small values
of x, in order to be in the singular corner. This solution can
be obtained using asymptotic expansion in terms of the mean
anomaly x:

η0(x) = 1.817121x
1
3 − 1

10
x+ 0.0141511x

5
3

− 0.0025959x
7
3 + 0.0005384972x3+ . . .

For x = 2, for example, by using an expansion of η 0(x)
with six terms the relative error is of the order of 10−7. But
for small values of x the behavior of the asymptotic solution is
better and by using an expansion with three terms the relative
error is of the order of 10−6.

4.2.2. Critical values (x∗,y∗)

Once the tolerance level εtol has been fixed, the critical point
(x∗,y∗) is a function of the parameter ε . With the help of the
Maple symbolic manipulator is easy to obtain a set of critical
pairs (x∗,y∗) for different values of ε and a tolerance of ε tol =
1.5 ·10−3. After that, we use a Least Square fitting procedure

to obtain the following functions:

x∗ = 0.023988ε+ 4.300478ε 2− 62.308284ε 3

+ 869.102230ε 4− 6174.838990ε 5+ 1.7777.158551ε 6

(17)

y∗ =
√

ε (0.549826+ 3.685319ε− 53.136123ε 2

+ 584.308539ε 3− 2254.963856ε 4) (18)

4.2.3. Algorithm in the singular corner

The algorithm used in our code for values of e and MH in the
singular corner is as follows:

1. We define arbitrarily the singular corner as the region
of the plane (e,MH) where e < 1.1 and MH < 0.1 rad.
We fix εtol = 1.5 ·10−3.

2. We calculate ε = e− 1 and if the value of M is larger
than the critical value x∗, i.e., MH > x∗(ε) then we cal-
culate the hyperbolic anomaly using the asymptotic ex-
pansion yas given by (15)

3. If the value of MH is smaller than the critical value
x∗, i.e., MH ≤ x∗(ε) then we calculate the hyperbolic
anomaly using the special solution ysp given by (16).
In such a case we need to calculate both critical values
(x∗,y∗) using equations (17-18)

5. ANALYSIS OF RESULTS

5.1. Elliptical case

We performed an exhaustive numerical analysis of the algo-
rithm that we propose in these pages. In our calculations, in-
stead of use 12 approximating polynomials we use 23. After
check the behavior of the algorithm by using several num-
ber of polynomials we came to the conclusion that: 1) the
differences are no important when using 12, 16, 18 or 23
polynomials, and 2) by using 23 the algorithm behavior is
slightly smoother from a global point of view. All the cal-
culations have been carried out in a workstation with Intel(R)
Xeon(R) ES-2620 v2 2.10 GHz microprocessor in a Windows
8.1 64 bits operative system and with the same Intel C/C++
compiler.

The Kepler equation for the elliptic case has been solved
with the algorithm proposed in this paper by using five differ-
ent iteration algorithms:

• The SDG-code with the modified Newton-Raphson
(MNR) method

• The SDG-code with the Conway method

• The SDG-code with the classical Newton-Raphson
(CNR) method



Scheme i = 0 i = 1 i = 2 i = 3 i ≥ 4
SDG-MNR 0.66 99.33 0.0052 0 0
SDG-Conway 0.66 99.28 0.057 0 0
SDG-CNR 0.66 95.02 4.3 0.0093 0
Fukushima 0.05 0.00 0.35 25.75 73.85
Mortari 0.1 0.05 57.20 44.32 0.33

Table 1. Number of iterations (percentage) obtained with the
different Newton-Raphson algorithms checked

• The method described in Fukushima 1996 [5]

• The method described in Mortari and Elipe 2014 [7]

In each case, the Kepler equation has been solved≈ 4 ·10 6

times, using quadruple precision and a tolerance equal to the
zero of the machine: εtol = 2.22 ·10−16. It should be noticed
that when working with tolerances close to the zero of the ma-
chine, any numerical procedure based on consecutive approx-
imations is affected by artificial numerical chaos. By using
quadruple precision it is possible to escape from such a nu-
merical chaos. In each run we count the number of iterations
needed to reach a solution with a residual ρ = |y− e siny− x|
lower than the tolerance εtol .

Comparing the number of iterations (see table 1) and the
time computing between the different methods, we see that:

• Applying the SDG-code and the modified Newton-
Raphson (MNR) method we see that in the 99.33 %
of cases we reach the solution with only 1 iteration; in
the 0.66 % no iteration is necessary and in very small
number of cases located in the singular corner —the
0.0052 %— two iteration are required. These results
justify the option of work with quadruple precision
which does not slow the calculations due to the very
small number of iterations required. The CPU time
invested in the ≈ 4 · 106 of times that we solved the
Kepler equation was 68.4 seconds and the averaged
number of iterations was 0.99.

• Applying the SDG-code and the Conway method we
see that in the 99.28 % of cases we reach the solution
with only 1 iteration; in the 0.66 % no iteration is neces-
sary and in small number of cases located in the singu-
lar corner —the 0.057 %— two iteration are required.
The CPU time invested was 70.4 seconds and the aver-
aged number of interaction was 0.99.

• Applying the SDG-code and the classical Newton-
Raphson (CNR) method we see that in the 95.02 % of
cases we reach the solution with only 1 iteration; in
the 0.66 % no iteration is necessary and in small num-
ber of cases located close to the singular corner —the
4,3 %— two iteration are required; finally in a very
small number of cases —0.0093 %— three interactions

are needed. The CPU time invested was 62.1 seconds
and the averaged number of interaction was 1.037.

• Applying the code described in Fukushima code [5]
we see that in the percentage of cases with 0, 1 or
2 iterations turns out to be about the 0.40 %. In the
25.75 % of cases the number of iteration is three and
in the 73.85 % of cases 4 o more iterations are needed.
The CPU time invested was 328 seconds and the aver-
aged number of interaction was 4.030. Unfortunately
even though the CPU time invested in each interaction
is lower, the hight number of iterations jeopardize the
speed of calculations.

• Applying the code described in Mortari [7] we see that
in the 57.20 % of cases 2 iterations are needed and in
the 42.32 % of cases three iterations should be per-
formed. The percentage of cases with 1 or 2 iterations
turns out too be about the 0.15 %. Only in a 0.33 % the
number of iteration is greater than three. The CPU time
invested was 101.4 seconds and the averaged number of
interaction was 2.427.

5.1.1. Accuracy analysis

In this section we focus the analysis in the SDG-code in which
the iteration scheme is provided by the MNR algorithm. In the
SDG-code the iteration ends when the residual is lower that
the zero of the machine, that is, when ρ = |y− esiny− x| ≤
εtol = 2.22 ·10−16.

Let us consider the true solution yv(x,e) for given values
of e and the mean anomaly M = x. Let yc(x,e) the numerical
solution provided by the SDG-code for these particular val-
ues. Obviously, due to truncation and round-off errors it is
possible to write

yc = yv + εabs

where εabs is the total absolute error associated with the nu-
merical solution yc(x,e). This absolute error is closely re-
lated with the residual ρ . In effect, for the numerical solution
yc(x,e) the residual is given by:

ρ = |yv + εabs − e sin(yv + εabs)− x|

Taking into account that the true solution verifies

yv − e sinyv − x = 0

the residual takes the form

ρ = |εabs||1− cosyv|

As a consequence the total absolute error is given by:

|εabs|= ρ
|1− cosyv|
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Basically, it depends on the residual ρ , just like the total rela-
tive error

|εrel |= |yc − yv|
|yv| =

ρ
|yv(1− cosyv)|

Let us fix the value of the eccentricity e; then we scan the
whole interval M ∈ [0,π ] calculating the residual ρ after zero
iteration (the residual provided by the starting seed), after one
iteration, two iterations and so on. Let ρmax the maximum
residual that we found in the scanning of the whole interval
M ∈ [0,π ] for each iteration number. These maximum resid-
uals can be associated with the value of the eccentricity e. If
we plot the values of such maximum residual we have a very
good idea of the accuracy involved in our calculations. Notice
that these residuals mark the worst accuracy of the numerical
solution yc(x,e) provided by the SDG-code; in fact, for each
value of e there are hundred of values of M where the accu-
racy is much better than the indicated by ρmax

Figure 3 shows the decimal logarithm of the residual vs.
the eccentricity e. The initial seed provides a residual which,
in the worst cases, ranges from 10−7/2 to 10−12. Since our
calculations have been carried out in quadruple precision, the
residual obtained after one iteration practically saturates the
capacity of the machine when e < 0.4 (approximately). For
e > 0.4 the residual growths and reaches a maximum in the
singular corner; however, it decreases again when the asymp-
totic expansion used in that boundary layer comes into play.
In any case, after two iterations, the residual reaches —in the
whole interval e ∈ [0,1]— the minimum values compatible
with the quadruple precision used in this test. The figure 3
does not show the results obtained with three or four iterations
because cannot be distinguished from the results correspond-
ing to only two iterations. After two iterations the maximum
accuracy is obtained and to increase the number of iteration
does not improve the quality of the numerical solution. We
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Fig. 4. The maximum total absolute error εabs for different
iterations versus the eccentricity e

found a similar situation if instead of the residual we plot the
maximum total absolute error εabs. Figure 4 shows the deci-
mal logarithm of εabs vs. e. Practically, the same comments
apply to this figure.

5.2. Hyperbolic case

We performed an exhaustive numerical analysis of the algo-
rithm for the hyperbolic case. All the calculations have been
carried out in a workstation with Intel(R) Xeon(R) ES-2620
v2 2.10 GHz microprocessor in a Windows 8.1 64 bits opera-
tive system and with the same Intel C/C++ compiler.

The Kepler equation has been solved ≈ 16 ·106 times, us-
ing quadruple precision and a tolerance equal to the zero of
the machine: εtol = 2.22 · 10−16. In each run we count the
number of iterations needed to reach a solution with a resid-
ual ρ = e sinhy− y− x lower than the tolerance εtol . The
eccentricity ranges in the interval e ∈]1,5] and the values of
MH = x range in the interval MH ∈ [0,20] (rad).

Applying the SDG-code and the modified Newton-Raphson
(MNR) iteration scheme, we notice that in the 59.09 % of
cases we reach the solution with only 1 iteration; in the
40.88 % of cases two iteration are required. In a very small
number of cases —0.00072 %— three iterations are required.
Just zero iterations are presented in the 0.026 % of cases. In
summary, in the 99.996 % of cases only 0, 1 or 2 iterations
are required. These results justify the option of work with
quadruple precision which does not slow the calculations due
to the very small number of iterations required. The CPU
time invested in the ≈ 16 · 106 of times that we solved the
Kepler equation was 394 seconds and the averaged number
of iterations 1.408.



6. CONCLUSIONS

Several conclusions can be drawn from the previous analysis:

1. An efficient code has been developed to solve the ellip-
tic Kepler equation and preliminary results are provided
for the hyperbolic Kepler equation.

2. When the starting seed of the Newton-Raphson algo-
rithm is very good, convergence is always assured as
confirmed the thoroughly analysis carried out in our
computers.

3. The stability and reliability of our scheme combined
with the Newton-Raphson algorithm in its different ver-
sions has been assessed.

• For the elliptical case, the classical Newton-
Raphson provides the solution in the 95.02 % of
cases with only one iteration. This is remarkable
result that we do not found in other algorithms
used in the Astrodynamics community. Improv-
ing the algorithm by using the Conway or the
modified Newton-Raphson permits to obtain the
right solution with only one iteration in the 99.3
% of cases. Besides, when quadruple precision is
used in numerical simulations, the absolute error
of the numerical solution provided by the SDG-
code is clearly under the 10−20 after one iteration,
practically in the whole interval e ∈ [0,1] except
in the region where e> 0.877 (approximately). In
any case, after two iterations the error is always
lower than 10−30, including the region e > 0.877.

• For the hyperbolic case, the modified Newton-
Raphson provides the solution in the 59.09 % of
cases with only one iteration and in the 40.88 %
of cases with two iterations.

4. The low number of iterations permits to use quadruple
precision if you like, because the speed of the calcula-
tions is not jeopardized. Therefore, we obtain the ben-
efit of a greater accuracy with a minimal cost.

5. The global algorithm solves successfully the solution
of the Kepler equation in the singular corner, M � 1
and e ≈ 1. The asymptotic expansions used to generate
the initial seed assure the reliability and convergence of
the Newton-Raphson iterative scheme. This is another
remarkable results since the convergence in this special
region not always is assured by some of the algorithms
usually considered in the literature.
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