Space dynamics software ELECTRA

Philippe Pavero, 15/03/2016
Table of Contents

- Introduction
- ELECTRA Functionalities
- Comparison of the Fortran/Java architecture
- Validation of ELECTRA Java
- Conclusion
Introduction

- 2004 : French Space Operations Act
- 2007 : Start of ELECTRA development
- 2010 : Deployment at the Guyana Space Center
- 2014 : Start of the Java version
Introduction

- ELECTRA Fortran
 - Linux SUSE 10sp4

- ELECTRA Java
 - Linux SUSE 10sp4, Redhat 6.4, Windows 7

- ORESTE : impact viewer
Table of Contents

- Introduction
 - ELECTRA Functionalities
- Comparison of the Fortran/Java architecture
- Validation of ELECTRA Java
- Conclusion
ELECTRA functionalities

- Principle
 - Fragment impact locations => different modes available
 - Impact probability of occurrence
 - Population distribution
 - Habitat protection

- Many dispersions are available:
 - Environment
 - Initial vehicle position
 - Fragment characteristics
 - Fragmentation altitude
 - Maneuver characteristics

=> Monte-Carlo method
ELECTRA functionalities

- Uncontrolled re-entry: analytic computation
 - Orbit inclination
 - Fragment lists
 - => Risk by latitude band

- Every other mode computes trajectories using:
 - Numerical propagator
 - Force models:
 - Earth potential model
 - Atmospheric forces
 - Sun and Moon attraction
 - Solar radiation pressure
ELECTRA functionalities

- Controlled re-entry
 - Failure during re-entry maneuvers

- Launching
 - Failure during rocket launching
ELECTRA functionalities

- **Final orbit**
 - Exact re-entry point and ballistic coefficient are unknown
 - No maneuver
 - List of re-entry points called final orbit

- Anchor points and angular portion

- Shifting the anchor’s impacts
Table of Contents

- Introduction
- ELECTRA Functionalities
 - Comparison of the Fortran/Java architecture
- Validation of ELECTRA Java
- Conclusion
Comparison of the Fortran/Java architecture

- Language benefits
 - Portability
 - Linux SUSE 10sp4
 - Redhat 6.4
 - Windows 7
 - Unified workshop made by CNES
 - Eclipse
 - Maven
 - Quality standards and tools: Checkstyle, PMD, Findbugs
 - CIP
 - Unit testing
 - Crucial to a team of 5 people
 - Sonar
Comparison of the Fortran/Java architecture

- **Simplification**
 - CNES standard libraries evolution: mainly BIBMS => Sirius
 - MSLIB, MECASPA, PSIMU, COMPAS => Patrius
 - MAGE => Java
 - GENESIS and MADONA => GENIUS

- **Maven**
 - Chain of dependencies
 - Generation and installation
Comparison of the Fortran/Java architecture

- **Specific improvements**
 - Dispersions handling
 - Fortran: drawn at usage
 - Java: centralized drawing

- **Parallelization**
 - Fortran: Open-MPI
 - Java: Executor Framework

![Diagram](image-url)
Table of Contents

- Introduction
- ELECTRA Functionalities
- Comparison of the Fortran/Java architecture
- Validation of ELECTRA Java
- Conclusion
Validation of ELECTRA Java

- Testing specific functions
 - Example: uniform distribution
 - 10,000,000 drawings, 50 boxes
 - Expectation: 200,000 drawings per box

![Number of drawings per box deviation](image)
Validation of ELECTRA Java

- **Unavailability of models**
 - Most BIBMS models absent from Patrius
 - Model interfaces
 - If each model is validated, validation of ELECTRA only requires one model

- **Example**
Validation of ELECTRA Java

- Changes in the dispersion of variables
Validation of ELECTRA Java

- Changes in the dispersion of variables

![Graph showing risk evolution wrt the simulation number](image-url)
Conclusion

- New CNES referential: Patrius, Genius

- Java, Eclipse, and Maven => Easier to develop, maintain, generate, test.

- **BUT**: need careful conception phase

- Delicate points in validation

- **Future**: more complex modes, other tools