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ABSTRACT Following the development of CNES new celestial
mechanics libraries in Java, the decision to poEETRA
Since 2007, CNES has been developing a method toaw a started with two prototype phases in 2014 and 20hb®ir

—ELECTRA- for evaluating public risk related to spa goal was to validate the precision of the results the

operations. ELECTRA calculates the
populations due to four types of events: uncoretblte-
entry, failure of propulsion during controlled retey, final
orbit re-entry or rocket launching. For each coesid
failure along the nominal trajectory, ELECTRA perfs a
Monte-Carlo simulation of the possible trajectorieduced
by all dispersed parameters on the environment, the
spacecraft and then the debris resulting from the
fragmentation or the explosion after the entry et
atmosphere. Then, ELECTRA computes the risks taking
into account the energy of the remaining fragmettts,
population density and protection afforded by hnid.
Originally built in Fortran, the development of a&w
version of ELECTRA tool in Java is under progresse .
2014. This article focuses on the functionalitigbe
architecture changes and finally the validatiotheftool.

1. INTRODUCTION
1.1. Context

As French National Space Agency, CNES has the
prerogative for some missions, one of which is éwedop

efficient state-of-the-art tools for evaluatingkssrelated to
space operations. The development of the ELECTRAIto

Fortran, undertaken in 2007, meets the requirenfent
precise quantification of the risks involved intahing and

re-entry of spacecraft. At the beginning, ELECTRAs~
implemented for internal CNES safety needs, buhsbbas

been provided to space operators, in the frambeoftench
Space Operations Act, to assess human risk assodat
their operations. Since December 2010, ELECTRAH=eEn

deployed and used operationally to monitor the risl?
associated to each launch from Guyana Space Céritee.
tool has also been used to estimate uncontrollethtmy risk

of all CNES LEO missions.

risk for groundsimpler
architecture of the new ELECTRA tool.

uncontrolled reentry mode, and lay out the

1.2. Tool characteristics

The tool currently comprises three products:

The ELECTRA Fortran, developed in Fortran 95
with GUI in GENESIS (a language developed by
CNES for the last 20 years). ELECTRA Fortran
takes advantage of the experience accumulated at
the CNES in the BIBMS libraries. This version
runs on Suse Linux Enterprise Server 10SP4 and
RedHat 6.4.

The ELECTRA Java, developed in Java 1.6 with
GUIl in GENIUS (a Swing-based framework
recently developed by CNES). This version is
based on the new PATRIUS [3] library developed
by the CNES as a replacement to BIBMS. This
version runs at least on Suse Linux Enterprise
Server 10SP4, Redhat 6.4 and Windows 7.

The viewer called ORESTE, based on MapFish
which uses a multiple layers technology. This
technology simplifies the customization and
evolution. Most layers come from the cartographic
database Global Insight Plus and also from the
population database GPW (Global Population of
the World) of the University of Columbia.

2. ELECTRA FUNCTIONALITIES

ELECTRA tool can process risks for four types ofitexts:
ocket launching, satellite controlled
uncontrolled re-entry and final orbit re-entry. Riwe first
two cases, ELECTRA takes into account degradedsahse
to a premature stop of rocket propulsion or a failof

re-entry, teflide



satellite deorbitation manoeuvre. ELECTRA computes
complementary estimations of the risk: the proligbibf
causing at least one victim and the expected vefuthe
number of victims.

The risk computation is done by:

- Assessment of fragment impact location and their

probabilities of occurrence,
- Consideration of population distribution and habi
protection.

2.1. Uncontrolled re-entry

Assessment of the “impact” risk during UncontrollBe-
entry is calculated in a different way because diebris
fallout zone is usually unknown. The potential dali zone
corresponds to the area of the Earth’s surface dmiw
latitudes +i and —i (i being the inclination of tepacecraft
orbit). To achieve more precise risk, the ELECTR®It
discretizes the [+, -i] latitude range into N tatde bands
correlated with the population grid and taking tbkowing
elements into account:

- The population density is variable accordinghe katitude
band,

- The probability of falling in a latitude band deqls of the
latitude of the band and of the spacecraft orlalimation.

2.2. Computation of trajectories and impacts for
controlled re-entry, launching and final orbit

To obtain the impact coordinates (latitude and i)
and the energy of impact of each fragment, ELECTRg
calculates the trajectory of the intact vehicle iluits
fragmentation and then the trajectories of eacgnfient to
the ground. This computation is done for each cmred
propulsion failure.

Several sources of dispersion and/or poor knowledige
some parameters can influence directly on the itpaint
of debris:

» The initial position of the falling object (state

vector, trajectory),

launching phase, taking into account all these ad&pn
sources.

The forces taken into account in the computationthef

trajectory, as well for the spacecraft as for thegents,

are:

The gravitational attraction of the Earth: with

definition of the maximum order and maximum

degree of the terms of the spherical harmonic

development to be considered.

* The gravitational attraction of the Sun and the
Moon

» The atmospheric forces (drag and lift)

» The forces due to solar radiation pressure.

In the case otontrolled re-entry, the maneuver allows to
target an uninhabited re-entry area. But for degplachses
where the thrust is not the expected one, fragmeats
impact inhabited areas. ELECTRA allows the defamitiof
maneuver failures with their associated probabildf
occurrence. For each failure case, the intact lehic
trajectory is calculated taking into account thdleth
maneuver (cf. Fig 1.). The extrapolation of theattvehicle
starts with an initial state vector, to the failunstant and
finally until the fragmentation. At this point, daclebris is
extrapolated to the ground.

Maneuvers are simulated as continuous thrust. EIBZCT
allows the definition of the characteristics of thagine
(specific impulse and thrust level), the maneuvanmand
type on the satellite (maneuver commanded in timgetia-

V) and the maneuver characteristics (date, expected
direction). Each of these inputs can be scattergdab
Gaussian or uniform law.

* The deorbitation maneuvers characteristics (only ir

controlled re-entry),
* The intrinsic characteristics of the vehicle,

 The altitude of the feared event (rupture or

explosion) leading to the spacecraft fragmentation,
 The fragmentation characteristics (including the
ejection velocity at the loss of integrity),
* The environment.
Since the effect of these uncertainties on theigskfficult ) _
to predict, the ELECTRA method uses a Monte Carld™or the risk due to aocket launching, ELECTRA
process to compute the risk for controlled re-erand considers failures related to the rocket propulgicemature

Figure 1 : Impact calculation for Controlled Re-enty



stop. The boosted phase trajectory is given inpremeris
file which contains position and velocity of theutecher
sampled at a given frequency. ELECTRA considertop s
of the boost at each point of the ephemeris andutzks
the trajectory of the launcher to fragmentation ahen,
debris trajectories to the ground (cf. Fig 2.). Tinebability
of occurrence of such a failure can evolve durihg t
boosted phase.

Figure 2 : Impact calculation for Launching

ELECTRA considers an
uncontrolled-reentry, but with knowledge on the ickh

For the risk onfinal orbit,

position and characteristics, albeit with uncettam
modeled by dispersion on ballistic coefficient. frdhis
knowledge, an algorithm computes equidistant reyent
points at a given altitude, called final orbit, aaslsigns a
probability of occurrence to each of them. ELECTEw®nN
estimates the risk by computing the trajectory freach re-
entry point, considering fragmentation and thusithpact
from each debris.

Depending on the distance between each re-entnt pod
the dispersion on the ballistic coefficient, theafi orbit can
comprise many re-entry points, which leads to Sicgunt
computation time. In order to drastically decredbe
computation time, ELECTRA only computes the full
trajectory for one in several re-entry points, edllanchor.
Each anchor is approximately the middle point ofagular
portion of the final orbit, that is to say that tdétance
between each point in this angular portion andatiehor is
smaller than a fixed value. ELECTRA then deriveg th
impacts of every re-entry point in the angular jportfrom
those calculated from the anchor.

Re-entry point

Anchor
Fragmentation

Impact

Angular portion

— Final orbit
Fragmentation
altitude

Figure 3 : Impact computation in Final Orbit

2.3. Computation of risk

Once impact points have been computed with a sesfiic
number of simulations with respect to the level
confidence objective, ELECTRA calculates the pralitsth
of incurring at least one victim, and the expectatue of
the number of victims by taking into account thegity and
the vulnerability of impacted populations.

ELECTRA uses as input a population file in GPW fatm
This file describes the number of inhabitants peit of a
global grid of quadrilateral latitude-longitude Iselat a
chosen resolution (0.25°, 0.5° or 1°) for a giveary

For vulnerability, ELECTRA uses coefficients thapresent
the level of protection (offered by a building other
means). These coefficients depend on the latitrdetime
of day (day /night), the season (summer / wintex) the
debris impact energy. Thus, for each computed impac
ELECTRA knows the density and the level of protattof
the population as well as the casualty area offrdigment
and can therefore calculate the probability andeetqul
number of victims associated with this impact.

of

2.4. ELECTRA GUI
The graphical interface of ELECTRA allows the user
enter all the parameters needed to compute the risk
associated with one of the presented modes. Th& mai
behavior of the GUI is defined only once for all des.
Each mode is associated with a Spring XML contekich
defines what parts of the GUI should be displayadthis
mode. This way, the different situations are both
independent, yet all the same.
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Figure 4 : ELECTRA GUI for uncontrolled re-entry

The GUI also yields several tools, mainly to digpda
modify input data. For instance, ELECTRA can dig@a
GUI to define fragment files, used to model théslisf
debris produced by the fragmentation of the vehicieng
re-entry. Most of the parameters of this GUI can be
dispersed (surface, mass, ballistic coefficient...).
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Figure 5 : Fragment editor

3. COMPARISON OF THE FORTRAN/JAVA
ARCHITECTURES

The build of a new version of ELECTRA is the oceoasio
improve the architecture of the software. It isoakhe
occasion to modify some parts that made maintenance
difficult. This chapter highlights the key differegs
between the Fortran and the Java version of tHe too

3.1. On the language

Obviously, the change of programming language ldads
fundamental differences between the tools, espgaiath
the target language being Java. The point heretitormake
an exhaustive comparison of the two, but to focnstre
main observed benefits.

Java accelerates the process of porting ELECTRA new
platform. The Fortran version only runs on a Sudsp or
Redhat 6.4 platform. With some care given to fimdiing,
the Java version runs naturally on Windows 7, Sigsp4
and RedHat, where it is validated, and can mostaity be
used on many other platforms. Validation is stéleded to
verify the results, but porting to a new platform longer
requires checking every library needed by the tool
installing appropriate ones when necessary. Momedhe
installation of ELECTRA is handled by an instaleti
wizard. One of its roles is to search the systemafbthe
required libraries and their versions. This will haghly
simplified for the Java version since the only riegment
will be the 1.6 version of Java.

Another key benefit comes from the development
environment. For all development using Java, CNES det

a workshop based on Eclipse, with embedded quality
plugins for Checkstyle, PMD, Findbugs. With fixeldgins,
CNES can distribute a fixed configured set of dyaiules,
and ensure the coherence of this quality referentia
throughout every project.

The last key benefit is about unit testing. ELE@TiRakes
use of JUnit for unit tests, that were very diffidio develop
and use in Fortran. Now, they are directly avadabi
Eclipse. Most importantly, they are run nightly Bydson
on a continuous integration platform. Hudson giues
crucial feedback on integration of the code of EOIR2,
which is developed by a team of five persons. Tiggept
also uses Sonar to give metrics, quality rules d@ampe
and code coverage, which leads to a much bettdityqoé
the code.



3.2. Simplifications

The first significant simplification comes from tobhange of
CNES library suite. The Fortran version used a pafie
Fortran libraries from the BIBMS suite for diffeten
applications. These tools had to be installed andigured
separately, which defined a complex architecturieces
2009, in the Sirius project, CNES started the dgwelent of
a new Java suite of libraries and tools to repRtieMS.

it difficult to retrieve the information. To prevethis, the
Java version centralizes the drawing of the vaembln

effect, the variable are still attributed to the@spective
model, but they are all registered to a single isenat

creation. This service therefore has access toyexsiable,
and is in charge of launches the drawings. It dam access
to all drawn values, and is able to write the disfpa file

more easily.

ELECTRA is based on one of them, Patrius, whicht is possible to execute the computations on [eral

combined with Java functionalities replaces evelg\BS
tool. Here is a quick overview of the correspondeatthe
Fortran tools with their equivalent in Java (SD=Gpa

Dynamics):

MSLIB90 Basic SD components

MECASPA | High level SD components

PSIMU Earth or Mars orbif Patrius
extrapolation

COMPAS SD models data

MAGE Warning and error handling Java

Similarly, the new GENIUS library, developed by CS8lEo

implement scientific GUI, replaces both GENESIS an
MADONA (file format). Contrary to the GENESIS code

files that mixes Fortran to custom code GENIUS4dsdd on
Swing and thus, can be directly written in Java,civh
makes it much easier to integrate in ELECTRA.

The second significant simplification derives frtime use of
Maven. The different computation modes (randomrmteye
launching...) are all clearly separated in dedica#alen
projects. This simplifies integration as working onde

specific to one mode doesn’'t impact any other. &thar

functionalities are placed in a “commons” Maven jpch
This architecture enables a clear chain of depesieen
The independence of the modes makes it possitlestall
them separately.

The Fortran version contained complicated compifgti
generation and installation scripts. In the Javasioe,
everything is handled by Maven’s Assembly goal,irozf
for each project. This goal also manages the paocgaof
every dependency. The result is an easy-to-ingtpllfile
that contains everything needed to run the software

3.3. Specific improvements

ELECTRA uses many dispersed variables.
variables apply to very diverse models, such agnifient
size or atmospheric density, they are naturallyteczd in
the code. In Fortran, the values were drawn atutage of
the variable value, resulting in a code that wametimes
hard to follow. Moreover, these values can be amitin an
output file for investigation, and their disseminatmakes

processes in ELECTRA. In Fortran, this was doneubh
Open-MPI, which had two issues : it is sometimesd Ha
investigate problems with it, and it implies anathe
dependency for the software. Another issues stem the
software code itself, which duplicates most of toele to
provide either a sequential or parallel computatidbhese
issues made the software difficult and time-consigntio
maintain. In Java, the parallelization is addressed
differently. This version uses the native Java Ekerc
framework. A CompletionService is running, and wéitr
jobs (typically the computation of one failure a-entry
point) to be submitted. As soon as the result alable, it
Jorwards it to an outputs handler. This handleo almnages
error cases. The management of the pool of threatbme
by native Java objects. To make the code easimatotain,
there is no difference between sequential and lphrabdes

. every portion of parallelizable code (one forleawode) is
written as a Callable object, which is a more txiversion
of a Thread.

4. VALIDATION OF ELECTRA JAVA

The reference in validating the Java version of ELRA is
given by the results of the Fortran version. Altglouthis
principle is quite simple, it can rapidly becomengicated
to apply, due to three main issues:

e« The difficulty to extract results of specific

functions from the Fortran version,

e The unavailability of models,

e The changes in the dispersion of variables.
The following paragraphs will focus on each case an
explain how they were solved through examples.

4.1. Validating specific methods

As thesk the Java version, the trend is to validate eachputation

method with unit tests. Thanks to object orientedigh, it
is possible to isolate these methods rather easign if
some mocks are required. In the Fortran versionghpthis
is usually not possible. In this case, the valmatis done
from scratch, and several means are used:

» Production of a reference with a script,



» Result analysis with Excel, by copying the occurs for the Earth potential models, the solastesy

algorithm,

» Special analysis, with a specific method.
The third case was applied on ELECTRA for the \atlizh
of the uniform distributions. The value drawingdisne by
Apache commons-math (which is a dependence ofuBgtri
but since the subject lies at the very heart of ELRA, the
variable drawing had to be validated. In this cade
method was as follows, for a variable drawn unifigrin a
given interval:

« Draw the variable a large number of times,

» Divide the interval in N boxes,

ephemeris, or even the type of integrator.

Fortunately, the use of an object-oriented languagel a
carefully designed library, meets this problem eettly. The
solution lies in the usage of interfaces. For insg all the
atmosphere models in Patrius implement the interfac
Atmosphere, which defines what each model can ctenpu
for instance the atmospheric density at a givemtpand
date. In ELECTRA, the computations only work witist
interface, with absolutely no knowledge on the miptype
of model. As a consequence, each model can beitsidst

«  For each box, count how many times the value jwith another, and this has no impact on the ELECTRA

drawn in its interval,

algorithm. With this crucial point in mind, we caonclude

«  Check that each box contains the same number 6[9at if ELECTRA is validated with one model, themet

drawings.

This is visually summed-up in the following graphat

main algorithm is valid for any other model.

4.3. Changes in the dispersion of variables

shows the deviation in percentage on the number of

drawings per box, for 10'000°000 drawings and 5&és0
This shows that the mean deviation is of 10-3 qrdevich
is correct for ELECTRA.

Number of drawings per box deviation
0,4
0,3
0,2
0,1
L | |
-0,1
-0,2
-0,3
-0,4

M Deviation (%)

Figure 6 : Uniform distribution deviations

4.2. Unavailability of models

The Fortran version of ELECTRA is based on the BEBM
set of tools, whether the Java version uses thenmuare
recent Patrius. Therefore, most of the models, sash
atmosphere models, are only available in one wversib
ELECTRA. In order to validate all the possibilitie$ the
newer version, one must begin with validating oagecwith
the common models. In effect, considering the aphese
models, only US76 is available in both BIBMS andriga,

The dispersion of the variables is done by using th
Mersenne-Twister algorithm. This method generaesiom
series of numbers, initialized with a seed. Witls teed, it

is possible to reproduce random drawings, and vhlidate
specific results, i.e. for each Monte-Carlo simiolat based
on dispersed values. The issue here is that thevéngions
of ELECTRA use the random series differently.

In Fortran, one series was used for each failuree@ntry
point, and the variables were drawn by using swsizes
values of this series. In Java though, this wasgbd, to
use one random series per variable. So, for theesam
configuration, the drawn values are different, @nd no
longer possible to validate specific results basmu
dispersed values.

In order to bypass this issue, one has to condatgre
amount of drawings, and analyze the result frortatissical
point of view. This principle was applied for trendom re-
entry mode, with a configuration using a dispersed
fragment. The dispersions affect the resulting,riskich
means that the risk computed on both versions of
ELECTRA should converge to each other for a large
number of simulations. The result of such an amalys
shown Figure 7.

and is consequently chosen for the validation case.
Moreover, what happens to the atmosphere modets als



2,996
Risk evolution WRT the simulation number

2,994
o
o
% 2,992 1P A
\E ~ e
1S
:‘5 2,990
>
> 2,988
é Ec Fortran
5 2,986
° e £C JAVaA
g
g 2,984
3 Limit
L

2,982

2,980 T T T T T 1

0 50000 100000 150000 200000 250000
Number of simulations

300000

Figure 7 : Risk evolution for one to 300’000 simuligons

With even more simulations, one curious behaviar ba
observed. One would expect the risk to convergh wivery

future validations on the risk values will use & t6lative
threshold.

high number of simulations, but due to the order of

magnitude of the risk (generally about® 10%, the
machine precision is reached and small variatidribeorisk
are still observed. Figure 8 shows what happensrfore
than 300’000 simulations, on the same configuratisn
above.
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Figure 8 : Risk evolution for up to 1 million simulations

This behavior has to be taken into account forreutu
validations in the form of a threshold on the resurhe
observation shows that the relative deviation betwe
Fortran and Java on this case is of the order 6f Biénce

5. CONCLUSION

The Java version of ELECTRA is one of the firsttaaie
to use the new CNES set of Java tools, with Pataius
Genius. As such, it is in a way a test platfornthi§ new set
of tools.

The use of Java, Eclipse and Maven lead to softieieis
easier to develop, maintain, generate and insapecially
for portability. Indeed, at the cost of an overhéadthe
conception phase, the object oriented languageresishat
the development models closely the problem to sulith
objects representing real problem elements. This allows
the definition of many extension points as longrasrfaces
and inheritance schemes are chosen carefully.

These extension points also facilitate the valagtbecause
if every implementations of an interface are indually
validated, it is possible to validate the highefelealgorithm
with only one of these implementations.

All these changes, though, make validation a vesljcdte
business, and one has to conduct detailed validaiisome
specific cases to ensure that the results areatowaother
point that has to be closely monitored, but wasexaeimined
in the development of the Java version of Elecata ig the
performance of the computation.



In the coming months, the development of ELECTRA wi
have to tackle these issues on the more diffiages of the
launching failure and controlled re-entry. The tadl then

be put into service in the frame of the French 8pac
Operations Act.

The experience of the development of ELECTRA Java,
could be put in use to avoid pitfalls for the deypghent of
other tools, allowing to concentrate on creatingenzalue
and consolidate their functionalities.
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