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ABSTRACT 
 
Since 2007, CNES has been developing a method and a tool 
–ELECTRA– for evaluating public risk related to space 
operations. ELECTRA calculates the risk for ground 
populations due to four types of events: uncontrolled re-
entry, failure of propulsion during controlled re-entry, final 
orbit re-entry or rocket launching. For each considered 
failure along the nominal trajectory, ELECTRA performs a 
Monte-Carlo simulation of the possible trajectories induced 
by all dispersed parameters on the environment, the 
spacecraft and then the debris resulting from the 
fragmentation or the explosion after the entry in the 
atmosphere. Then, ELECTRA computes the risks taking 
into account the energy of the remaining fragments, the 
population density and protection afforded by buildings. 
Originally built in Fortran, the development of a new 
version of ELECTRA tool in Java is under progress since 
2014. This article focuses on the functionalities, the 
architecture changes and finally the validation of the tool. 
 

1. INTRODUCTION 
 

1.1. Context 
 
As French National Space Agency, CNES has the 
prerogative for some missions, one of which is to develop 
efficient state-of-the-art tools for evaluating risks related to 
space operations. The development of the ELECTRA tool in 
Fortran, undertaken in 2007, meets the requirement for 
precise quantification of the risks involved in launching and 
re-entry of spacecraft. At the beginning, ELECTRA was 
implemented for internal CNES safety needs, but soon it has 
been provided to space operators, in the frame of the French 
Space Operations Act, to assess human risk associated to 
their operations. Since December 2010, ELECTRA has been 
deployed and used operationally to monitor the risk 
associated to each launch from Guyana Space Centre. The 
tool has also been used to estimate uncontrolled re-entry risk 
of all CNES LEO missions. 

Following the development of CNES new celestial 
mechanics libraries in Java, the decision to port ELECTRA 
started with two prototype phases in 2014 and 2015. Their 
goal was to validate the precision of the results on the 
simpler uncontrolled reentry mode, and lay out the 
architecture of the new ELECTRA tool. 
 

1.2. Tool characteristics 
 
The tool currently comprises three products: 

• The ELECTRA Fortran, developed in Fortran 95 
with GUI in GENESIS (a language developed by 
CNES for the last 20 years). ELECTRA Fortran 
takes advantage of the experience accumulated at 
the CNES in the BIBMS libraries. This version 
runs on Suse Linux Enterprise Server 10SP4 and 
RedHat 6.4. 

• The ELECTRA Java, developed in Java 1.6 with 
GUI in GENIUS (a Swing-based framework 
recently developed by CNES). This version is 
based on the new PATRIUS [3] library developed 
by the CNES as a replacement to BIBMS. This 
version runs at least on Suse Linux Enterprise 
Server 10SP4, Redhat 6.4 and Windows 7. 

• The viewer called ORESTE, based on MapFish 
which uses a multiple layers technology. This 
technology simplifies the customization and 
evolution. Most layers come from the cartographic 
database Global Insight Plus and also from the 
population database GPW (Global Population of 
the World) of the University of Columbia. 

2. ELECTRA FUNCTIONALITIES 
 
ELECTRA tool can process risks for four types of contexts: 
rocket launching, satellite controlled re-entry, satellite 
uncontrolled re-entry and final orbit re-entry. For the first 
two cases, ELECTRA takes into account degraded cases due 
to a premature stop of rocket propulsion or a failure of 



satellite deorbitation manoeuvre. ELECTRA computes two 
complementary estimations of the risk: the probability of 
causing at least one victim and the expected value of the 
number of victims. 
 
The risk computation is done by: 
- Assessment of fragment impact location and their 
probabilities of occurrence, 
- Consideration of population distribution and habitat 
protection. 
 

2.1. Uncontrolled re-entry 
 
Assessment of the “impact” risk during Uncontrolled Re-
entry is calculated in a different way because the debris 
fallout zone is usually unknown. The potential fallout zone 
corresponds to the area of the Earth’s surface between 
latitudes +i and –i (i being the inclination of the spacecraft 
orbit). To achieve more precise risk, the ELECTRA tool 
discretizes the [+i, -i] latitude range into N latitude bands 
correlated with the population grid and taking the following 
elements into account: 
- The population density is variable according to the latitude 
band, 
- The probability of falling in a latitude band depends of the 
latitude of the band and of the spacecraft orbit inclination. 

2.2. Computation of trajectories and impacts for 
controlled re-entry, launching and final orbit 

 
To obtain the impact coordinates (latitude and longitude) 
and the energy of impact of each fragment, ELECTRA first 
calculates the trajectory of the intact vehicle until its 
fragmentation and then the trajectories of each fragment to 
the ground. This computation is done for each considered 
propulsion failure. 
Several sources of dispersion and/or poor knowledge of 
some parameters can influence directly on the impact point 
of debris: 

• The initial position of the falling object (state 
vector, trajectory), 

• The deorbitation maneuvers characteristics (only in 
controlled re-entry), 

• The intrinsic characteristics of the vehicle, 
• The altitude of the feared event (rupture or 

explosion) leading to the spacecraft fragmentation, 
• The fragmentation characteristics (including the 

ejection velocity at the loss of integrity), 
• The environment. 

Since the effect of these uncertainties on the risk is difficult 
to predict, the ELECTRA method uses a Monte Carlo 
process to compute the risk for controlled re-entry and 

launching phase, taking into account all these dispersion 
sources. 
 
The forces taken into account in the computation of the 
trajectory, as well for the spacecraft as for the fragments, 
are: 

• The gravitational attraction of the Earth: with 
definition of the maximum order and maximum 
degree of the terms of the spherical harmonic 
development to be considered. 

• The gravitational attraction of the Sun and the 
Moon 

• The atmospheric forces (drag and lift) 
• The forces due to solar radiation pressure. 

 
In the case of controlled re-entry, the maneuver allows to 
target an uninhabited re-entry area. But for degraded cases 
where the thrust is not the expected one, fragments can 
impact inhabited areas. ELECTRA allows the definition of 
maneuver failures with their associated probability of 
occurrence. For each failure case, the intact vehicle 
trajectory is calculated taking into account the failed 
maneuver (cf. Fig 1.). The extrapolation of the intact vehicle 
starts with an initial state vector, to the failure instant and 
finally until the fragmentation. At this point, each debris is 
extrapolated to the ground. 
 
Maneuvers are simulated as continuous thrust. ELECTRA 
allows the definition of the characteristics of the engine 
(specific impulse and thrust level), the maneuver command 
type on the satellite (maneuver commanded in time or delta-
V) and the maneuver characteristics (date, expected 
direction). Each of these inputs can be scattered by a 
Gaussian or uniform law. 
 

 
Figure 1 : Impact calculation for Controlled Re-entry 

 
For the risk due to a rocket launching, ELECTRA 
considers failures related to the rocket propulsion premature 



stop. The boosted phase trajectory is given in an ephemeris 
file which contains position and velocity of the launcher 
sampled at a given frequency. ELECTRA considers a stop 
of the boost at each point of the ephemeris and calculates 
the trajectory of the launcher to fragmentation and then, 
debris trajectories to the ground (cf. Fig 2.). The probability 
of occurrence of such a failure can evolve during the 
boosted phase. 
 

 
Figure 2 : Impact calculation for Launching 

For the risk on final orbit , ELECTRA considers an 
uncontrolled-reentry, but with knowledge on the vehicle 
position and characteristics, albeit with uncertainties 
modeled by dispersion on ballistic coefficient. From this 
knowledge, an algorithm computes equidistant re-entry 
points at a given altitude, called final orbit, and assigns a 
probability of occurrence to each of them. ELECTRA then 
estimates the risk by computing the trajectory from each re-
entry point, considering fragmentation and thus the impact 
from each debris. 
 
Depending on the distance between each re-entry point and 
the dispersion on the ballistic coefficient, the final orbit can 
comprise many re-entry points, which leads to significant 
computation time. In order to drastically decrease the 
computation time, ELECTRA only computes the full 
trajectory for one in several re-entry points, called anchor. 
Each anchor is approximately the middle point of an angular 
portion of the final orbit, that is to say that the distance 
between each point in this angular portion and the anchor is 
smaller than a fixed value. ELECTRA then derives the 
impacts of every re-entry point in the angular portion from 
those calculated from the anchor. 

 
Figure 3 : Impact computation in Final Orbit 

2.3. Computation of risk 
 
Once impact points have been computed with a sufficient 
number of simulations with respect to the level of 
confidence objective, ELECTRA calculates the probability 
of incurring at least one victim, and the expected value of 
the number of victims by taking into account the density and 
the vulnerability of impacted populations. 
ELECTRA uses as input a population file in GPW format. 
This file describes the number of inhabitants per unit of a 
global grid of quadrilateral latitude-longitude cells at a 
chosen resolution (0.25°, 0.5° or 1°) for a given year. 
For vulnerability, ELECTRA uses coefficients that represent 
the level of protection (offered by a building or other 
means). These coefficients depend on the latitude, the time 
of day (day /night), the season (summer / winter) and the 
debris impact energy. Thus, for each computed impact, 
ELECTRA knows the density and the level of protection of 
the population as well as the casualty area of the fragment 
and can therefore calculate the probability and expected 
number of victims associated with this impact. 
 

2.4. ELECTRA GUI  
The graphical interface of ELECTRA allows the user to 
enter all the parameters needed to compute the risk 
associated with one of the presented modes. The main 
behavior of the GUI is defined only once for all modes. 
Each mode is associated with a Spring XML context, which 
defines what parts of the GUI should be displayed for this 
mode. This way, the different situations are both 
independent, yet all the same. 
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Figure 4 : ELECTRA GUI for uncontrolled re-entry 

The GUI also yields several tools, mainly to display or 
modify input data. For instance, ELECTRA can display a 
GUI to define fragment files, used to model the lists of 
debris produced by the fragmentation of the vehicle during 
re-entry. Most of the parameters of this GUI can be 
dispersed (surface, mass, ballistic coefficient…). 
 

 
Figure 5 : Fragment editor 

 

3. COMPARISON OF THE FORTRAN/JAVA 
ARCHITECTURES 

 
The build of a new version of ELECTRA is the occasion to 
improve the architecture of the software. It is also the 
occasion to modify some parts that made maintenance 
difficult. This chapter highlights the key differences 
between the Fortran and the Java version of the tool. 
 

3.1. On the language 
 
Obviously, the change of programming language leads to 
fundamental differences between the tools, especially with 
the target language being Java. The point here is not to make 
an exhaustive comparison of the two, but to focus on the 
main observed benefits. 
 
Java accelerates the process of porting ELECTRA to a new 
platform. The Fortran version only runs on a Suse 10sp4 or 
Redhat 6.4 platform. With some care given to file handling, 
the Java version  runs naturally on Windows 7, Suse 10sp4 
and RedHat, where it is validated, and can most probably be 
used on many other platforms. Validation is still needed to 
verify the results, but porting to a new platform no longer 
requires checking every library needed by the tool or 
installing appropriate ones when necessary. Moreover, the 
installation of ELECTRA is handled by an installation 
wizard. One of its roles is to search the system for all the 
required libraries and their versions. This will be highly 
simplified for the Java version since the only requirement 
will be the 1.6 version of Java. 
 
Another key benefit comes from the development 
environment. For all development using Java, CNES has set 
a workshop based on Eclipse, with embedded quality 
plugins for Checkstyle, PMD, Findbugs. With fixed plugins, 
CNES can distribute a fixed configured set of quality rules, 
and ensure the coherence of this quality referential 
throughout every project. 
 
The  last key benefit is about unit testing. ELECTRA makes 
use of JUnit for unit tests, that were very difficult to develop 
and use in Fortran. Now, they are directly available in 
Eclipse. Most importantly, they are run nightly by Hudson 
on a continuous integration platform. Hudson gives us 
crucial feedback on integration of the code of ELECTRA, 
which is developed by a team of five persons. The project 
also uses Sonar to give metrics, quality rules compliance 
and code coverage, which leads to a much better quality of 
the code. 



3.2. Simplifications 
 
The first significant simplification comes from the change of 
CNES library suite. The Fortran version used a panel of 
Fortran libraries from the BIBMS suite for different 
applications. These tools had to be installed and configured 
separately, which defined a complex architecture. Since 
2009, in the Sirius project, CNES started the development of 
a new Java suite of libraries and tools to replace BIBMS. 
ELECTRA is based on one of them, Patrius, which 
combined with Java functionalities replaces every BIBMS 
tool. Here is a quick overview of the correspondence of the 
Fortran tools with their equivalent in Java (SD=Space 
Dynamics): 
MSLIB90 Basic SD components 

Patrius 
MECASPA High level SD components 

PSIMU 
Earth or Mars orbit 
extrapolation 

COMPAS SD models data 
MAGE Warning and error handling Java 
 
Similarly, the new GENIUS library, developed by CNES to 
implement scientific GUI, replaces both GENESIS and 
MADONA (file format). Contrary to the GENESIS code 
files that mixes Fortran to custom code GENIUS is based on 
Swing and thus, can be directly written in Java, which 
makes it much easier to integrate in ELECTRA. 
 
The second significant simplification derives from the use of 
Maven. The different computation modes (random re-entry, 
launching…) are all clearly separated in dedicated Maven 
projects. This simplifies integration as working on code 
specific to one mode doesn’t impact any other. Shared 
functionalities are placed in a “commons” Maven project. 
This architecture enables a clear chain of dependencies. 
The independence of the modes makes it possible to install 
them separately. 
The Fortran version contained complicated compilation, 
generation and installation scripts. In the Java version, 
everything is handled by Maven’s Assembly goal, defined 
for each project. This goal also manages the packaging of 
every dependency. The result is an easy-to-install zip file 
that contains everything needed to run the software. 

3.3. Specific improvements 
 
ELECTRA uses many dispersed variables. As these 
variables apply to very diverse models, such as fragment 
size or atmospheric density, they are naturally scattered in 
the code. In Fortran, the values were drawn at the usage of 
the variable value, resulting in a code that was sometimes 
hard to follow. Moreover, these values can be written in an 
output file for investigation, and their dissemination makes 

it difficult to retrieve the information. To prevent this, the 
Java version centralizes the drawing of the variables. In 
effect, the variable are still attributed to their respective 
model, but they are all registered to a single service at 
creation. This service therefore has access to every variable, 
and is in charge of launches the drawings. It can also access 
to all drawn values, and is able to write the dispersion file 
more easily. 
 
It is possible to execute the computations on parallel 
processes in ELECTRA. In Fortran, this was done through 
Open-MPI, which had two issues : it is sometimes hard to 
investigate problems with it, and it implies another 
dependency for the software. Another issues stem from the 
software code itself, which duplicates most of the code to 
provide either a sequential or parallel computation. These 
issues made the software difficult and time-consuming to 
maintain. In Java, the parallelization is addressed 
differently. This version uses the native Java Executor 
framework. A CompletionService is running, and waits for 
jobs (typically the computation of one failure or re-entry 
point) to be submitted. As soon as the result is available, it 
forwards it to an outputs handler. This handler also manages 
error cases. The management of the pool of thread is done 
by native Java objects. To make the code easier to maintain, 
there is no difference between sequential and parallel modes 
: every portion of parallelizable code (one for each mode) is 
written as a Callable object, which is a more flexible version 
of a Thread. 

4. VALIDATION OF ELECTRA JAVA 
 
The reference in validating the Java version of ELECTRA is 
given by the results of the Fortran version. Although this 
principle is quite simple, it can rapidly become complicated 
to apply, due to three main issues: 

• The difficulty to extract results of specific 
functions from the Fortran version, 

• The unavailability of models, 
• The changes in the dispersion of variables. 

The following paragraphs will focus on each case and 
explain how they were solved through examples. 

4.1. Validating specific methods 
 
In the Java version, the trend is to validate each computation 
method with unit tests. Thanks to object oriented design, it 
is possible to isolate these methods rather easily, even if 
some mocks are required. In the Fortran version though, this 
is usually not possible. In this case, the validation is done 
from scratch, and several means are used: 

• Production of a reference with a script, 



• Result analysis with Excel, by copying the 
algorithm, 

• Special analysis, with a specific method. 
The third case was applied on ELECTRA for the validation 
of the uniform distributions. The value drawing is done by 
Apache commons-math (which is a dependence of Patrius), 
but since the subject lies at the very heart of ELECTRA, the 
variable drawing had to be validated. In this case, the 
method was as follows, for a variable drawn uniformly in a 
given interval: 

• Draw the variable a large number of times, 
• Divide the interval in N boxes, 
• For each box, count how many times the value is 

drawn in its interval, 
• Check that each box contains the same number of 

drawings. 
 
This is visually summed-up in the following graph that 
shows the deviation in percentage on the number of 
drawings per box, for 10’000’000 drawings and 50 boxes. 
This shows that the mean deviation is of 10-3 order, which 
is correct for ELECTRA. 

 
Figure 6 : Uniform distribution deviations 

4.2. Unavailability of models 

 
The Fortran version of ELECTRA is based on the BIBMS 
set of tools, whether the Java version uses the much more 
recent Patrius. Therefore, most of the models, such as 
atmosphere models, are only available in one version of 
ELECTRA. In order to validate all the possibilities of the 
newer version, one must begin with validating one case with 
the common models. In effect, considering the atmosphere 
models, only US76 is available in both BIBMS and Patrius, 
and is consequently chosen for the validation case. 
Moreover, what happens to the atmosphere models also 

occurs for the Earth potential models, the solar system 
ephemeris, or even the type of integrator. 
 
Fortunately, the use of an object-oriented language, and a 
carefully designed library, meets this problem perfectly. The 
solution lies in the usage of interfaces. For instance, all the 
atmosphere models in Patrius implement the interface 
Atmosphere, which defines what each model can compute, 
for instance the atmospheric density at a given point and 
date. In ELECTRA, the computations only work with this 
interface, with absolutely no knowledge on the explicit type 
of model. As a consequence, each model can be substituted 
with another, and this has no impact on the ELECTRA 
algorithm. With this crucial point in mind, we can conclude 
that if ELECTRA is validated with one model, then the 
main algorithm is valid for any other model. 

4.3. Changes in the dispersion of variables 

 
The dispersion of the variables is done by using the 
Mersenne-Twister algorithm. This method generates random 
series of numbers, initialized with a seed. With this seed, it 
is possible to reproduce random drawings, and thus validate 
specific results, i.e. for each Monte-Carlo simulation, based 
on dispersed values. The issue here is that the two versions 
of ELECTRA use the random series differently. 
 
In Fortran, one series was used for each failure or re-entry 
point, and the variables were drawn by using successive 
values of this series. In Java though, this was changed, to 
use one random series per variable. So, for the same 
configuration, the drawn values are different, and it is no 
longer possible to validate specific results based on 
dispersed values. 
 
In order to bypass this issue, one has to consider large 
amount of drawings, and analyze the result from a statistical 
point of view. This principle was applied for the random re-
entry mode, with a configuration using a dispersed 
fragment. The dispersions affect the resulting risk, which 
means that the risk computed on both versions of 
ELECTRA should converge to each other for a large 
number of simulations. The result of such an analysis is 
shown Figure 7. 
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With even more simulations, one curious behavior can be 
observed. One would expect the risk to converge with a very 
high number of simulations, but due to the order of 
magnitude of the risk (generally about 10-6 to 10-4), the 
machine precision is reached and small variations of the risk 
are still observed. Figure 8 shows what happens for more 
than 300’000 simulations, on the same configuration as 
above. 
 

 
Figure 8 : Risk evolution for up to 1 million simulations 

This behavior has to be taken into account for future 
validations in the form of a threshold on the results. The 
observation shows that the relative deviation between 
Fortran and Java on this case is of the order of 10-5, hence 

future validations on the risk values will use a 10-4 relative 
threshold. 

5. CONCLUSION 

 
The Java version of ELECTRA is one of the first software 
to use the new CNES set of Java tools, with Patrius and 
Genius. As such, it is in a way a test platform of this new set 
of tools. 
The use of Java, Eclipse and Maven lead to software that is 
easier to develop, maintain, generate and install, especially 
for portability. Indeed, at the cost of an overhead in the 
conception phase, the object oriented language ensures that 
the development models closely the problem to solve with 
objects representing real problem elements. This also allows 
the definition of many extension points as long as interfaces 
and inheritance schemes are chosen carefully. 
These extension points also facilitate the validation, because 
if every implementations of an interface are individually 
validated, it is possible to validate the higher level algorithm 
with only one of these implementations. 
All these changes, though, make validation a very delicate 
business, and one has to conduct detailed validation in some 
specific cases to ensure that the results are correct. Another 
point that has to be closely monitored, but was not examined 
in the development of the Java version of Electra yet, is the 
performance of the computation. 
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Figure 7 : Risk evolution for one to 300’000 simulations 



In the coming months, the development of ELECTRA will 
have to tackle these issues on the more difficult cases of the 
launching failure and controlled re-entry. The tool will then 
be put into service in the frame of the French Space 
Operations Act. 
The experience of the development of ELECTRA Java, 
could be put in use to avoid pitfalls for the development of 
other tools, allowing to concentrate on creating more value 
and consolidate their functionalities. 
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