
SPACE DYNAMICS SOFTWARE ELECTRA

Philippe Pavero (1), Guillaume Rochais (2), Mirentxu Beuvelot (3)

(1) Capgemini, 109 av Eisenhower, BP53655 - 31036 TOULOUSE Cedex, France, Email :
philippe.pavero@capgemini.com

(2) Capgemini, 109 av Eisenhower, BP53655 - 31036 TOULOUSE Cedex, France, Email :
guillaume.rochais@capgemini.com

(3) Capgemini, 109 av Eisenhower, BP53655 - 31036 TOULOUSE Cedex, France, Email :
mirentxu.beuvelot@capgemini.com

ABSTRACT

Since 2007, CNES has been developing a method and a tool
–ELECTRA– for evaluating public risk related to space
operations. ELECTRA calculates the risk for ground
populations due to four types of events: uncontrolled re-
entry, failure of propulsion during controlled re-entry, final
orbit re-entry or rocket launching. For each considered
failure along the nominal trajectory, ELECTRA performs a
Monte-Carlo simulation of the possible trajectories induced
by all dispersed parameters on the environment, the
spacecraft and then the debris resulting from the
fragmentation or the explosion after the entry in the
atmosphere. Then, ELECTRA computes the risks taking
into account the energy of the remaining fragments, the
population density and protection afforded by buildings.
Originally built in Fortran, the development of a new
version of ELECTRA tool in Java is under progress since
2014. This article focuses on the functionalities, the
architecture changes and finally the validation of the tool.

1. INTRODUCTION

1.1. Context

As French National Space Agency, CNES has the
prerogative for some missions, one of which is to develop
efficient state-of-the-art tools for evaluating risks related to
space operations. The development of the ELECTRA tool in
Fortran, undertaken in 2007, meets the requirement for
precise quantification of the risks involved in launching and
re-entry of spacecraft. At the beginning, ELECTRA was
implemented for internal CNES safety needs, but soon it has
been provided to space operators, in the frame of the French
Space Operations Act, to assess human risk associated to
their operations. Since December 2010, ELECTRA has been
deployed and used operationally to monitor the risk
associated to each launch from Guyana Space Centre. The
tool has also been used to estimate uncontrolled re-entry risk
of all CNES LEO missions.

Following the development of CNES new celestial
mechanics libraries in Java, the decision to port ELECTRA
started with two prototype phases in 2014 and 2015. Their
goal was to validate the precision of the results on the
simpler uncontrolled reentry mode, and lay out the
architecture of the new ELECTRA tool.

1.2. Tool characteristics

The tool currently comprises three products:

• The ELECTRA Fortran, developed in Fortran 95
with GUI in GENESIS (a language developed by
CNES for the last 20 years). ELECTRA Fortran
takes advantage of the experience accumulated at
the CNES in the BIBMS libraries. This version
runs on Suse Linux Enterprise Server 10SP4 and
RedHat 6.4.

• The ELECTRA Java, developed in Java 1.6 with
GUI in GENIUS (a Swing-based framework
recently developed by CNES). This version is
based on the new PATRIUS [3] library developed
by the CNES as a replacement to BIBMS. This
version runs at least on Suse Linux Enterprise
Server 10SP4, Redhat 6.4 and Windows 7.

• The viewer called ORESTE, based on MapFish
which uses a multiple layers technology. This
technology simplifies the customization and
evolution. Most layers come from the cartographic
database Global Insight Plus and also from the
population database GPW (Global Population of
the World) of the University of Columbia.

2. ELECTRA FUNCTIONALITIES

ELECTRA tool can process risks for four types of contexts:
rocket launching, satellite controlled re-entry, satellite
uncontrolled re-entry and final orbit re-entry. For the first
two cases, ELECTRA takes into account degraded cases due
to a premature stop of rocket propulsion or a failure of

satellite deorbitation manoeuvre. ELECTRA computes two
complementary estimations of the risk: the probability of
causing at least one victim and the expected value of the
number of victims.

The risk computation is done by:
- Assessment of fragment impact location and their
probabilities of occurrence,
- Consideration of population distribution and habitat
protection.

2.1. Uncontrolled re-entry

Assessment of the “impact” risk during Uncontrolled Re-
entry is calculated in a different way because the debris
fallout zone is usually unknown. The potential fallout zone
corresponds to the area of the Earth’s surface between
latitudes +i and –i (i being the inclination of the spacecraft
orbit). To achieve more precise risk, the ELECTRA tool
discretizes the [+i, -i] latitude range into N latitude bands
correlated with the population grid and taking the following
elements into account:
- The population density is variable according to the latitude
band,
- The probability of falling in a latitude band depends of the
latitude of the band and of the spacecraft orbit inclination.

2.2. Computation of trajectories and impacts for
controlled re-entry, launching and final orbit

To obtain the impact coordinates (latitude and longitude)
and the energy of impact of each fragment, ELECTRA first
calculates the trajectory of the intact vehicle until its
fragmentation and then the trajectories of each fragment to
the ground. This computation is done for each considered
propulsion failure.
Several sources of dispersion and/or poor knowledge of
some parameters can influence directly on the impact point
of debris:

• The initial position of the falling object (state
vector, trajectory),

• The deorbitation maneuvers characteristics (only in
controlled re-entry),

• The intrinsic characteristics of the vehicle,
• The altitude of the feared event (rupture or

explosion) leading to the spacecraft fragmentation,
• The fragmentation characteristics (including the

ejection velocity at the loss of integrity),
• The environment.

Since the effect of these uncertainties on the risk is difficult
to predict, the ELECTRA method uses a Monte Carlo
process to compute the risk for controlled re-entry and

launching phase, taking into account all these dispersion
sources.

The forces taken into account in the computation of the
trajectory, as well for the spacecraft as for the fragments,
are:

• The gravitational attraction of the Earth: with
definition of the maximum order and maximum
degree of the terms of the spherical harmonic
development to be considered.

• The gravitational attraction of the Sun and the
Moon

• The atmospheric forces (drag and lift)
• The forces due to solar radiation pressure.

In the case of controlled re-entry, the maneuver allows to
target an uninhabited re-entry area. But for degraded cases
where the thrust is not the expected one, fragments can
impact inhabited areas. ELECTRA allows the definition of
maneuver failures with their associated probability of
occurrence. For each failure case, the intact vehicle
trajectory is calculated taking into account the failed
maneuver (cf. Fig 1.). The extrapolation of the intact vehicle
starts with an initial state vector, to the failure instant and
finally until the fragmentation. At this point, each debris is
extrapolated to the ground.

Maneuvers are simulated as continuous thrust. ELECTRA
allows the definition of the characteristics of the engine
(specific impulse and thrust level), the maneuver command
type on the satellite (maneuver commanded in time or delta-
V) and the maneuver characteristics (date, expected
direction). Each of these inputs can be scattered by a
Gaussian or uniform law.

Figure 1 : Impact calculation for Controlled Re-entry

For the risk due to a rocket launching, ELECTRA
considers failures related to the rocket propulsion premature

stop. The boosted phase trajectory is given in an ephemeris
file which contains position and velocity of the launcher
sampled at a given frequency. ELECTRA considers a stop
of the boost at each point of the ephemeris and calculates
the trajectory of the launcher to fragmentation and then,
debris trajectories to the ground (cf. Fig 2.). The probability
of occurrence of such a failure can evolve during the
boosted phase.

Figure 2 : Impact calculation for Launching

For the risk on final orbit , ELECTRA considers an
uncontrolled-reentry, but with knowledge on the vehicle
position and characteristics, albeit with uncertainties
modeled by dispersion on ballistic coefficient. From this
knowledge, an algorithm computes equidistant re-entry
points at a given altitude, called final orbit, and assigns a
probability of occurrence to each of them. ELECTRA then
estimates the risk by computing the trajectory from each re-
entry point, considering fragmentation and thus the impact
from each debris.

Depending on the distance between each re-entry point and
the dispersion on the ballistic coefficient, the final orbit can
comprise many re-entry points, which leads to significant
computation time. In order to drastically decrease the
computation time, ELECTRA only computes the full
trajectory for one in several re-entry points, called anchor.
Each anchor is approximately the middle point of an angular
portion of the final orbit, that is to say that the distance
between each point in this angular portion and the anchor is
smaller than a fixed value. ELECTRA then derives the
impacts of every re-entry point in the angular portion from
those calculated from the anchor.

Figure 3 : Impact computation in Final Orbit

2.3. Computation of risk

Once impact points have been computed with a sufficient
number of simulations with respect to the level of
confidence objective, ELECTRA calculates the probability
of incurring at least one victim, and the expected value of
the number of victims by taking into account the density and
the vulnerability of impacted populations.
ELECTRA uses as input a population file in GPW format.
This file describes the number of inhabitants per unit of a
global grid of quadrilateral latitude-longitude cells at a
chosen resolution (0.25°, 0.5° or 1°) for a given year.
For vulnerability, ELECTRA uses coefficients that represent
the level of protection (offered by a building or other
means). These coefficients depend on the latitude, the time
of day (day /night), the season (summer / winter) and the
debris impact energy. Thus, for each computed impact,
ELECTRA knows the density and the level of protection of
the population as well as the casualty area of the fragment
and can therefore calculate the probability and expected
number of victims associated with this impact.

2.4. ELECTRA GUI
The graphical interface of ELECTRA allows the user to
enter all the parameters needed to compute the risk
associated with one of the presented modes. The main
behavior of the GUI is defined only once for all modes.
Each mode is associated with a Spring XML context, which
defines what parts of the GUI should be displayed for this
mode. This way, the different situations are both
independent, yet all the same.

Re-entry point

Anchor
Fragmentation

Impact

Angular portion

Final orbit
Fragmentation
altitude

Figure 4 : ELECTRA GUI for uncontrolled re-entry

The GUI also yields several tools, mainly to display or
modify input data. For instance, ELECTRA can display a
GUI to define fragment files, used to model the lists of
debris produced by the fragmentation of the vehicle during
re-entry. Most of the parameters of this GUI can be
dispersed (surface, mass, ballistic coefficient…).

Figure 5 : Fragment editor

3. COMPARISON OF THE FORTRAN/JAVA
ARCHITECTURES

The build of a new version of ELECTRA is the occasion to
improve the architecture of the software. It is also the
occasion to modify some parts that made maintenance
difficult. This chapter highlights the key differences
between the Fortran and the Java version of the tool.

3.1. On the language

Obviously, the change of programming language leads to
fundamental differences between the tools, especially with
the target language being Java. The point here is not to make
an exhaustive comparison of the two, but to focus on the
main observed benefits.

Java accelerates the process of porting ELECTRA to a new
platform. The Fortran version only runs on a Suse 10sp4 or
Redhat 6.4 platform. With some care given to file handling,
the Java version runs naturally on Windows 7, Suse 10sp4
and RedHat, where it is validated, and can most probably be
used on many other platforms. Validation is still needed to
verify the results, but porting to a new platform no longer
requires checking every library needed by the tool or
installing appropriate ones when necessary. Moreover, the
installation of ELECTRA is handled by an installation
wizard. One of its roles is to search the system for all the
required libraries and their versions. This will be highly
simplified for the Java version since the only requirement
will be the 1.6 version of Java.

Another key benefit comes from the development
environment. For all development using Java, CNES has set
a workshop based on Eclipse, with embedded quality
plugins for Checkstyle, PMD, Findbugs. With fixed plugins,
CNES can distribute a fixed configured set of quality rules,
and ensure the coherence of this quality referential
throughout every project.

The last key benefit is about unit testing. ELECTRA makes
use of JUnit for unit tests, that were very difficult to develop
and use in Fortran. Now, they are directly available in
Eclipse. Most importantly, they are run nightly by Hudson
on a continuous integration platform. Hudson gives us
crucial feedback on integration of the code of ELECTRA,
which is developed by a team of five persons. The project
also uses Sonar to give metrics, quality rules compliance
and code coverage, which leads to a much better quality of
the code.

3.2. Simplifications

The first significant simplification comes from the change of
CNES library suite. The Fortran version used a panel of
Fortran libraries from the BIBMS suite for different
applications. These tools had to be installed and configured
separately, which defined a complex architecture. Since
2009, in the Sirius project, CNES started the development of
a new Java suite of libraries and tools to replace BIBMS.
ELECTRA is based on one of them, Patrius, which
combined with Java functionalities replaces every BIBMS
tool. Here is a quick overview of the correspondence of the
Fortran tools with their equivalent in Java (SD=Space
Dynamics):
MSLIB90 Basic SD components

Patrius
MECASPA High level SD components

PSIMU
Earth or Mars orbit
extrapolation

COMPAS SD models data
MAGE Warning and error handling Java

Similarly, the new GENIUS library, developed by CNES to
implement scientific GUI, replaces both GENESIS and
MADONA (file format). Contrary to the GENESIS code
files that mixes Fortran to custom code GENIUS is based on
Swing and thus, can be directly written in Java, which
makes it much easier to integrate in ELECTRA.

The second significant simplification derives from the use of
Maven. The different computation modes (random re-entry,
launching…) are all clearly separated in dedicated Maven
projects. This simplifies integration as working on code
specific to one mode doesn’t impact any other. Shared
functionalities are placed in a “commons” Maven project.
This architecture enables a clear chain of dependencies.
The independence of the modes makes it possible to install
them separately.
The Fortran version contained complicated compilation,
generation and installation scripts. In the Java version,
everything is handled by Maven’s Assembly goal, defined
for each project. This goal also manages the packaging of
every dependency. The result is an easy-to-install zip file
that contains everything needed to run the software.

3.3. Specific improvements

ELECTRA uses many dispersed variables. As these
variables apply to very diverse models, such as fragment
size or atmospheric density, they are naturally scattered in
the code. In Fortran, the values were drawn at the usage of
the variable value, resulting in a code that was sometimes
hard to follow. Moreover, these values can be written in an
output file for investigation, and their dissemination makes

it difficult to retrieve the information. To prevent this, the
Java version centralizes the drawing of the variables. In
effect, the variable are still attributed to their respective
model, but they are all registered to a single service at
creation. This service therefore has access to every variable,
and is in charge of launches the drawings. It can also access
to all drawn values, and is able to write the dispersion file
more easily.

It is possible to execute the computations on parallel
processes in ELECTRA. In Fortran, this was done through
Open-MPI, which had two issues : it is sometimes hard to
investigate problems with it, and it implies another
dependency for the software. Another issues stem from the
software code itself, which duplicates most of the code to
provide either a sequential or parallel computation. These
issues made the software difficult and time-consuming to
maintain. In Java, the parallelization is addressed
differently. This version uses the native Java Executor
framework. A CompletionService is running, and waits for
jobs (typically the computation of one failure or re-entry
point) to be submitted. As soon as the result is available, it
forwards it to an outputs handler. This handler also manages
error cases. The management of the pool of thread is done
by native Java objects. To make the code easier to maintain,
there is no difference between sequential and parallel modes
: every portion of parallelizable code (one for each mode) is
written as a Callable object, which is a more flexible version
of a Thread.

4. VALIDATION OF ELECTRA JAVA

The reference in validating the Java version of ELECTRA is
given by the results of the Fortran version. Although this
principle is quite simple, it can rapidly become complicated
to apply, due to three main issues:

• The difficulty to extract results of specific
functions from the Fortran version,

• The unavailability of models,
• The changes in the dispersion of variables.

The following paragraphs will focus on each case and
explain how they were solved through examples.

4.1. Validating specific methods

In the Java version, the trend is to validate each computation
method with unit tests. Thanks to object oriented design, it
is possible to isolate these methods rather easily, even if
some mocks are required. In the Fortran version though, this
is usually not possible. In this case, the validation is done
from scratch, and several means are used:

• Production of a reference with a script,

• Result analysis with Excel, by copying the
algorithm,

• Special analysis, with a specific method.
The third case was applied on ELECTRA for the validation
of the uniform distributions. The value drawing is done by
Apache commons-math (which is a dependence of Patrius),
but since the subject lies at the very heart of ELECTRA, the
variable drawing had to be validated. In this case, the
method was as follows, for a variable drawn uniformly in a
given interval:

• Draw the variable a large number of times,
• Divide the interval in N boxes,
• For each box, count how many times the value is

drawn in its interval,
• Check that each box contains the same number of

drawings.

This is visually summed-up in the following graph that
shows the deviation in percentage on the number of
drawings per box, for 10’000’000 drawings and 50 boxes.
This shows that the mean deviation is of 10-3 order, which
is correct for ELECTRA.

Figure 6 : Uniform distribution deviations

4.2. Unavailability of models

The Fortran version of ELECTRA is based on the BIBMS
set of tools, whether the Java version uses the much more
recent Patrius. Therefore, most of the models, such as
atmosphere models, are only available in one version of
ELECTRA. In order to validate all the possibilities of the
newer version, one must begin with validating one case with
the common models. In effect, considering the atmosphere
models, only US76 is available in both BIBMS and Patrius,
and is consequently chosen for the validation case.
Moreover, what happens to the atmosphere models also

occurs for the Earth potential models, the solar system
ephemeris, or even the type of integrator.

Fortunately, the use of an object-oriented language, and a
carefully designed library, meets this problem perfectly. The
solution lies in the usage of interfaces. For instance, all the
atmosphere models in Patrius implement the interface
Atmosphere, which defines what each model can compute,
for instance the atmospheric density at a given point and
date. In ELECTRA, the computations only work with this
interface, with absolutely no knowledge on the explicit type
of model. As a consequence, each model can be substituted
with another, and this has no impact on the ELECTRA
algorithm. With this crucial point in mind, we can conclude
that if ELECTRA is validated with one model, then the
main algorithm is valid for any other model.

4.3. Changes in the dispersion of variables

The dispersion of the variables is done by using the
Mersenne-Twister algorithm. This method generates random
series of numbers, initialized with a seed. With this seed, it
is possible to reproduce random drawings, and thus validate
specific results, i.e. for each Monte-Carlo simulation, based
on dispersed values. The issue here is that the two versions
of ELECTRA use the random series differently.

In Fortran, one series was used for each failure or re-entry
point, and the variables were drawn by using successive
values of this series. In Java though, this was changed, to
use one random series per variable. So, for the same
configuration, the drawn values are different, and it is no
longer possible to validate specific results based on
dispersed values.

In order to bypass this issue, one has to consider large
amount of drawings, and analyze the result from a statistical
point of view. This principle was applied for the random re-
entry mode, with a configuration using a dispersed
fragment. The dispersions affect the resulting risk, which
means that the risk computed on both versions of
ELECTRA should converge to each other for a large
number of simulations. The result of such an analysis is
shown Figure 7.

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

Number of drawings per box deviation

Deviation (%)

With even more simulations, one curious behavior can be
observed. One would expect the risk to converge with a very
high number of simulations, but due to the order of
magnitude of the risk (generally about 10-6 to 10-4), the
machine precision is reached and small variations of the risk
are still observed. Figure 8 shows what happens for more
than 300’000 simulations, on the same configuration as
above.

Figure 8 : Risk evolution for up to 1 million simulations

This behavior has to be taken into account for future
validations in the form of a threshold on the results. The
observation shows that the relative deviation between
Fortran and Java on this case is of the order of 10-5, hence

future validations on the risk values will use a 10-4 relative
threshold.

5. CONCLUSION

The Java version of ELECTRA is one of the first software
to use the new CNES set of Java tools, with Patrius and
Genius. As such, it is in a way a test platform of this new set
of tools.
The use of Java, Eclipse and Maven lead to software that is
easier to develop, maintain, generate and install, especially
for portability. Indeed, at the cost of an overhead in the
conception phase, the object oriented language ensures that
the development models closely the problem to solve with
objects representing real problem elements. This also allows
the definition of many extension points as long as interfaces
and inheritance schemes are chosen carefully.
These extension points also facilitate the validation, because
if every implementations of an interface are individually
validated, it is possible to validate the higher level algorithm
with only one of these implementations.
All these changes, though, make validation a very delicate
business, and one has to conduct detailed validation in some
specific cases to ensure that the results are correct. Another
point that has to be closely monitored, but was not examined
in the development of the Java version of Electra yet, is the
performance of the computation.

2,99135

2,99140

2,99145

2,99150

2,99155

2,99160

2,99165

2,99170

300000 800000E
xp

ec
te

d
 n

u
m

b
er

 o
f v

ic
ti

m
s

(x
10

-
5)

Number of simulations

Risk evolution WRT the simulation number

Ec Fortran

Ec Java

Limit

2,980

2,982

2,984

2,986

2,988

2,990

2,992

2,994

2,996

0 50000 100000 150000 200000 250000 300000

E
xp

ec
te

d
 n

u
m

b
er

 o
f

vi
ct

im
s

(x
10

-5
)

Number of simulations

Risk evolution WRT the simulation number

Ec Fortran

Ec Java

Limit

Figure 7 : Risk evolution for one to 300’000 simulations

In the coming months, the development of ELECTRA will
have to tackle these issues on the more difficult cases of the
launching failure and controlled re-entry. The tool will then
be put into service in the frame of the French Space
Operations Act.
The experience of the development of ELECTRA Java,
could be put in use to avoid pitfalls for the development of
other tools, allowing to concentrate on creating more value
and consolidate their functionalities.

10. REFERENCES

List and number all bibliographical references at the end of
the paper. The references can be numbered in alphabetic
order or in order of appearance in the document. When
referring to them in the text, type the corresponding
reference number in square brackets as shown at the end of
this sentence [1].

[1] C. Hourtolle, A. Gaudel-Vacaresse, and A. Blazquez,
“ELECTRA : launch and re-entry analysi tool”

[2] F. Chemama, B. Lazare, and C. Aussilhou, ”ELECTRA tool
launch and re-entry safety analysis”, ICATT2010.

[3] Patrius, CNES astrodynamics commons library, developed in
Java.

