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ABSTRACT

An experimental campaign has been conducted to evalu-
ate the performance of docking maneuvers of two different
guidance and control algorithms based on Model Predictive
Control (MPC) and on Inverse Dynamics in the Virtual Do-
main (IDVD) control. A Linear Quadratic approach with a
Quadratic Programming solver has been used for the MPC
and the nonlinear Interior Point OPTimizer solver is used
for the IDVD approach. The docking scenario is constrained
by the presence of a keep-out zone and an entry cone. The
provided performance metrics for the conducted experiments
and simulations include control effort, time to target and con-
straint handling. The experiments have been conducted on
a planar dynamic simulator, using spacecraft simulators that
float over a granite monolith, creating a reduced gravity and
friction environment. In addition, a standard test framework
for experimental evaluation of different guidance, naviga-
tion and control approaches for planar dynamic spacecraft
simulators is proposed.

Index Terms— spacecraft proximity and docking maneu-
vers, Model Predictive Control, inverse dynamics, testing

1. INTRODUCTION

Rendezvous and proximity operations (RPO) are essential to
a wide range of space missions [1, 2]. Ground-based experi-
mental evaluation of emerging guidance, navigation, and con-
trol (GNC) approaches may be useful to raise their techno-
logical readiness level, while helping to determine their per-
formance and limitations on flight-equivalent hardware (i.e.
sensors, actuators and computational systems) [2].

An experimental campaign to evaluate the performance
of Model Predictive Control (MPC) and Inverse Dynamics in
the Virtual Domain (IDVD) has been performed at the Naval
Postgraduate School Floating Spacecraft Simulator (NPS-
FSS) test bed. By utilizing this test bed, the focus of the
research can be limited in scope to the guidance and control
of the floating spacecraft simulators, as the navigation prob-
lem can be considered solved. The NPS-FSS motion capture

system, augmented by onboard sensors, is used to provide ac-
curate navigation data to the vehicles (including the location
of the deputy and of the keep out zone).

A spacecraft docking problem has been selected for the
experimental evaluation of the two different control ap-
proaches. A keep-out zone and an entry cone have been
added to the scenario to evaluate the controllers constrain
handling ability. A Linear Quadratic MPC (LQMPC) with a
Quadratic Progamming (QP) solver and an IDVD with a Non-
linear Programming (NLP) solver were chosen for this com-
parison. While the LQMPC method requires linearization
of the constraints in order to formulate the QP problem, the
IDVD method can directly handle the nonlinear constraints,
but requires a more complex and less robust NLP solver.
In particular the open-source NLP Interior Point OPTimizer
(IPOPT) is used. These two controllers are then executed
in real-time on-board the autonomous Floating Spacecraft
Simulators (FSS) in order to achieve autonomous docking.

To help standardize the experimental evaluation, a stan-
dard test framework is proposed. A qualitative set of test sce-
narios, designed to represent a wide set of common RPO sce-
narios (unconstrained and constrained, cooperative and un-
cooperative docking and proximity operations with or with-
out obstacle avoidance) is proposed. The definition of the
quantitative parameters (e.g. initial conditions or size of the
keep-out zone) associated with each test scenario are let to be
defined by each individual test bed. Standard metrics to com-
pare different GNC approaches are also proposed. The goal
is to define a standard framework that can be used to exper-
imentally benchmark different guidance algorithms so that a
meaningful comparison of different approaches can be made.

After this framework is introduced, the problem that has
been used to evaluate the MPC and IDVD approaches is pre-
sented, and brief overview of the experimental set-up is pro-
vided. An overview of the theoretical formulation of the two
different control approaches is then presented. The practical
implementation details, as well as the simulation and exper-
imental results, are then given. Finally, a discussion about
the experimental results and the differences between the two
control approaches is provided.



2. STANDARD TEST FRAMEWORK

When experimentally comparing the performance of multiple
GNC approaches for RPO, it may be useful to have a standard
framework to benchmark and compare them. As the experi-
mental evaluation is heavily dependent on the available test
bed, this proposed framework provides qualitative guidelines
that are used to then specify the particular test scenarios for
each individual test bed. Additionally, the experimental eval-
uation results are also dependent on the test bed and thus the
comparison will only be valid between experiments made at
the same test bed and conducted with the same underlying
hardware (e.g. same sensors and actuators).

The goal of this test framework is to define a standard set
of test scenarios so that the different GNC approaches can
be evaluated under equal conditions. A test facility may use
these test scenarios to evaluate different control approaches
and thus build up a historical data-set helping them compare
all of the different GNC approaches that have been tested. A
standard set of metrics is also provided, generating an objec-
tive and quantitative measure of the GNC approach perfor-
mance.

As an initial attempt to define this standard test frame-
work the following qualitatively standard test scenarios are
proposed.

1. Straight-on docking. The chaser starts in-line with the
deputy and it has to simply move in a straight line to
dock with the deputy. Obstacles may be present forc-
ing the deputy to deviate from a simple straight line
approach.

2. Lateral approach. The chaser starts from a lateral posi-
tion where it must first navigate around the deputy and
any obstacles before docking. The purpose of this test
is evaluate the constraint handling capabilities of the
Guidance algorithm. A variation on this would be an
approach from the back, where the chaser must entirely
circumnavigate the deputy to get into the entry cone.

3. Trajectory Following. In a more general case the chaser
may need to follow a prescribed trajectory (e.g. circum-
navigation for inspection).

Adding a keep out zone (i.e. obstacle) can be used as a vari-
ation of the above described scenarios to test obstacle avoid-
ance capability and path re-planning. Another variation may
be to have a moving deputy (e.g. spinning) or a moving obsta-
cle so the ability of the GNC approach to adapt to a dynamic
environment is also tested.

As these scenarios are intended to be used for experimen-
tal campaigns they need to be adapted for a specific experi-
mental test-bed. Therefore the initial conditions of the chaser,
the location and orientation of the deputy, and the size and
location of the keep-out zones will need to be specified ac-
cording to the properties of that specific test bed .

2.1. Metrics

In order to compare the performance of the different control
approaches, three different metrics are proposed. The first
proposed metric is the control effort, uT , which is defined as

uT =

∫ tf

t0

‖u‖ dt. (1)

The control effort measures how efficient the guidance and
control approach is. An L1-norm has been selected as its
output is in Ns, providing results that are intuitive and that
can be converted into other meaningful quantities (i.e. fuel
and thruster on-time). The time to complete the maneuver,
∆t = tf − t0 and the constraint handling (i.e. constraint
violation) are also important metrics. In some applications a
faster maneuver time may be preferred over reducing the con-
trol effort and when constraints are imposed it is important
to establish whether the proposed approach can handle such
constraints, which may be a limiting factor for other proposed
approaches.

The computational cost to solve the control algorithm is
the final proposed metric. An example of computational cost
can be the CPU time required to solve the control algorithm.
Some advanced control approaches can be very computation-
ally intensive, limiting their applicability in computationally
constrained vehicles.

It has to be noted that the performance of a GNC approach
is heavily dependent on its implementation and the available
hardware used during the testing. Substantially different re-
sults can potentially be obtained by using a different imple-
mentation or different hardware.

Zappulla [3] used the same methodology to experimen-
tally compare the performance of Artificial Potential Func-
tions (APF) and an Adaptive APF using the NPS-FSS test fa-
cility. In that particular work three different initial conditions
and multiple obstacle configurations are explored.

3. PROBLEM FORMULATION

One case, from the multiple test cases defined in the previ-
ous section, has been selected to experimentally compare the
MPC and IDVD control approaches at the NPS-FSS experi-
mental facility. Figure 1 schematically shows the test setup
with the problem initial conditions at the NPS-FSS. The nu-
merical parameters for this test case are provided in Table 1.
The selected test case is a straight-on docking with a static
obstacle and an entry cone constraint.

It is worth noting that the FSS positions are measured
from their respective VICON motion capture object frames,
which have been setup to be approximately coincident with
their geometric center. The desired end state of the chaser
will then have an offset with respect to the deputy’s position.
From the same reason, and to ensure a safe obstacle avoid-
ance, a keep-out constraint is placed around the obstacle. The
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Fig. 1: Experiment initial conditions on the NPS-FSS test
bed.

Table 1: Numerical parameters of the test case.

Parameter Value
Chaser initial state xc0 =

[
3.5 3, 5

]
m

Deputy location xd =
[

0.5 0.5
]

m
Obstacle location xobs =

[
2.5 2.5

]
m

Obstacle keep out radius robs = 0.4 m
Entry cone orientation θ = 45 deg.
Entry cone half-angle θhc = 10 deg.

Entry cone range rcone = 0.75 m

keep-out zone size, imposed on the chaser’s reference frame
origin, is defined to avoid any collision (regardless of the ob-
stacle or chaser’s relative orientation). It is also important to
note that the chaser will need to avoid the keep-out zone, as
this one is in the middle of what would be the optimal straight
line trajectory if no obstacle was included. This can be clearly
seen in Fig. 1.

The focus of this experiment campaign is to compare two
control approaches and thus the navigation problem will be
considered solved. The obstacle and the deputy’s position
will be available to the chaser vehicle. Additionally, the al-
gorithms to be evaluated will only be used to control the vehi-
cle’s position - the attitude will be controlled using a com-
bination of a fuel-optimal slew and a simple Proportional-
Derivative (PD) controller. Resultantly, only the translational
forces will be considered in the control effort evaluation.

3.1. Experimental Set-Up

The experiments have been conducted using two approxi-
mately 10 kg Floating Spacecraft Simulators (FSS). These
vehicles float via air-pads over a 4-by-4 meter polished gran-
ite monolith surface recreating a reduced gravity and a quasi-
frictionless motion in two translational and one rotational
degrees-of-freedom (planar motion) [3, 4, 5, 6, 7, 8, 9, 10,
11, 12]. Figure 2 shows the deputy, chaser and obstacle FSS
over the granite surface in the initial conditions used for this
particular test.

Eight cold-gas thrusters provide autonomous motion ca-
pability to the FSS. An onboard tank of compressed air (pro-
pellant), a power system and on-board computer give them
full autonomy. All the required processing (sensor readings,
communications, navigation, guidance and control, and actu-
ator commanding) is handled on-board in real-time.

Navigation data is provided by an overhead optical mo-
tion capture system (VICON). The provided position and
attitude information is augmented by an on-board one-axis
Fiber Optic Gyroscope (FOG). Communication between mul-
tiple FSS, the VICON workstation and other PC (used for
telemetry monitoring and software upload) is achieved via
TCP/UDP protocol over an ad-ho Wi-Fi network.

3.2. FSS Dynamics Model

The FSS can be modeled as a double integrator with two
translational and one rotational degree-of-freedom. The equa-
tions of motion of the FSS are written as follows

ẍ =
Fx

m
,

ÿ =
Fy

m
, (2)

θ̈ =
τ

Iz
,

where m denoting the mass of the FSS, Iz the moment of in-
ertia about the vertical axis, and Fx, Fy, τ the control forces
and torque, respectively. These equations can then be written
in state-space form as

ẋ = Ax +Bu, (3)

where x = [x, y, θ, ẋ, ẏ, θ̇]T denoting the state vector,
u = [Fx, Fy, τ ]T the control vector, and A and B the corre-
sponding state and control constant matrices, respectively.

A control method can then be designed to control the
linear-time invariant (LTI) system described by Eq. (3). In
this case, the MPC and IDVD algorithms will be used to con-
trol the translational states, as the focus of this experimental
campaign. Attitude control of the FSS is achieved through
a fuel-optimal, bang-off-bang slew, which switches to a PD
control law to maintain pointing at the desired angle.



Fig. 2: Floating Spacecraft Simulators on top of the 4-by-4 meter granite surface in the initial conditions used for the experiment
campaign .

4. CONTROLLER DESIGN

Two different control approaches have been experimentally
evaluated for this paper.

4.1. Linear-Quadratic Model Predictive Control

Model Predictive Control (MPC) is a receding horizon control
approach that can be used to solve constrained trajectory opti-
mization problems. MPC is fundamentally based on the Lin-
ear Quadratic Regulator (LQR) problem, but can also be im-
plemented in a nonlinear fashion. The main advantage is that
the optimization problem formed through the MPC frame-
work can be solved efficiently since only the solution over a
finite prediction horizon is considered. A LQ-based approach
(LQMPC) formulation has been considered for this compara-
tive study.

Implementation of MPC for spacecraft RPO maneuvers
have been studied in the past. A survey of guidance algo-
rithms that can be used for on-board RPO trajectory plan-
ning is presented in [13], which includes an implementation
of MPC in simulation. An experimental validation of an MPC
algorithm provides further confidence in its ability to be im-
plemented on-board a real system. Simulation results of ap-
plications of MPC to a constrained rendezvous problem have
also been shown in [14] and [15]. The types of constraints en-
forced in these simulations include thrust constraints, a line-
of-sight constraint linearized through polyhedral approxima-

tions [14], and an obstacle avoidance constraint linearized
through a rotating hyperplane [15]. These references provide
the basic framework for the MPC formulation implemented
for this experimental campaign.

As an LQ-based method, LQMPC can be used to solve
a constrained optimization problem, where a quadratic cost
function is minimized subject to linear dynamic constraints,
and linear inequality constraints. This problem formulation
results in a convex, quadratic programming (QP) problem that
can be solved using readily available solvers [16]. The obsta-
cle avoidance constraint is linearized through a rotating hy-
perplane method [15]. The approach cone constraint is lin-
earized by constructing two hyperplanes that define the edges
of the cone, and intersecting at the target docking point. When
these constraints are activated the FSS will be forced to stay
within the two hyperplanes until docking is achieved. The
LQMPC problem, in discrete form, is formed as follows.

Minimize:

J = (x(N)− xt)
TP (x(N)− xt) +

N−1∑
i=0

(x(k + i)− xt)
TQ(x(k + i)− xt)

+u(k + i)TRu(k + i), (4a)



subject to

x(k + 1) = Adx(k) +Bdu(k), (4b)
|u1(k)| ≤ umax, (4c)
|u2(k)| ≤ umax, (4d)

n̂obs · r(k) ≥ n̂obst · pobs, (4e)
n̂c1 · r(k) ≥ n̂c1 · pdock, (4f)
n̂c2 · r(k) ≤ n̂c2 · pdock. (4g)

The length of the horizon is denoted byN , andAd, Bd are the
discrete state and control matrices, which can be derived from
the continuous dynamics in Eq. (2), and xt is the targeted
final condition. As mentioned before, only the translational
motion is included in the MPC formulation. The matrices P ,
Q, and R in Eq. (4a) define the cost function weights on the
final condition, state, and control variables, respectively. Eq.
(4b) defines the equality constraint enforcing the dynamics
of the system. Eq. (4c) and (4d) enforce constraints on the
control variables. Finally, Eq. (4e-4g) enforce hyperplane
constraints for the obstacle and cone, where n̂() defines the
normal vector of the hyperplane and p() defines a point on the
hyperplane. This problem is transformed into a QP problem
[16], and solved using a publicly available MATLAB-based
solver. The QP solver outputs the required control inputs for
the entire horizon. In order to introduce a degree of robustness
through feedback action, the first control input is extracted
from the solution and applied. The QP is then resolved at the
next iteration.

The LQMPC formulation is implemented in Simulink as
an embedded MATLAB function, which is suitable for au-
tomatic code generation. The C code is then automatically
generated from Simulink. It is then later compiled targeting
the embedded hardware architecture and executed on-board
the FSS’s real time operating system.

4.2. Inverse Dynamics in the Virtual Domain

An IDVD controller uses a function that depends on a set of
parameters (e.g. as polynomials, splines) to parametrizes the
complete trajectory (from the current state up to the desired
end state) and also the time [17, 18, 19, 20, 21]. The trajectory
parameters (e.g. polynomial coefficients) are found via an op-
timization algorithm such that the control effort is minimized
while meeting the imposed constraints. Once the trajectory
parameters are obtained, the control input can be easily deter-
mined. This procedure is repeated at every time step to guide
the vehicle towards the desired end state.

In this IDVD implementation, the trajectory will be con-
structed as a polynomial that is a function of the virtual time
κ as

x (κ) =

nx∑
i=0

aiκ
i, y (κ) =

ny∑
i=0

biκ
i. (5)

The time t is also modeled as a polynomial of the virtual time
κ as

tx (κ) =

nt∑
i=1

daiκ
i, ty (κ) =

nt∑
i=1

dbiκ
i. (6)

The virtual time is then κ ∈ [0, κf ]. The time is also param-
eterized as to provide extra optimitzation variables and thus
reduce the final control effort or provide an improved con-
straint handling.

It is worth noting that different polynomial orders can be
used for each of the trajectory components nx 6= ny . Ad-
ditionally, different virtual time polynomials (see Eq. (6))
can be used for each of the trajectory components, imposing
tx (κf ) = ty (κf ). It is also worth pointing that the time t has
to be monotonically increasing and thus t′ = dt/dκ needs to
be positive (so that time t is univocally determined by κ),

t′ =
dt

dκ
=

nt∑
i=1

idiκ
i−1 > 0. (7)

The time derivatives of the trajectory are then computed as
follows,

t′′ (κ) =
d2t

dκ
=

nt∑
i=2

i (i− 1) diκ
i−2, (8)

ẋ =
dx

dt

dκ

dκ
=
x′

t′
, (9)

x′ = t′ẋ, (10)

ẍ =
dẋ

dt

dκ

dκ
=
d (x′/t′)

dκ

1

t′
=
x′′

t′2
− x′

t′3
t′′ =

x′′

t′2
− ẋ

t′2
t′′,

(11)

x′′ = t′2ẍ+ t′′ẋ. (12)

The derivatives with respect to the virtual time are easily
computed as follows,

x′ =

nx∑
i=1

iaiκ
i−1, (13)

x′′ =

nx∑
i=2

i (i− 1) aiκ
i−2. (14)

The initial conditions of the FSS are known and the final con-
ditions of the FSS are set based on the desired final state,

x(0) = x0, ẋ (0) = ẋ0, (15)

x(tf ) = xf , ẋ (tf ) = ẋf , ẍ (tf ) = ẍf . (16)

In general, for a docking scenario, the final acceleration will
be set to zero ẍf = 0 and the final velocity may be also set
to zero or to certain small terminal velocity as to ensure a
successful latching.



As the trajectory must comply with the initial and the de-
sired final states, these are used to set the first five trajectory
coefficients. The polynomial order will then need to be larger
or equal to four nx,y ≥ 4. The coefficients that are left to
shape the trajectory, minimizing cost function while meeting
constraints, are the trajectory coefficients ai and bi with i ≥ 5,
the virtual time coefficients di where i ≥ 1 and the final vir-
tual time κf . It has to be noted that if different time polyno-
mials are used for the different components then the db1 is set
to that tx (κf ) = ty (κf ) is met.

4.2.1. Constraints

The final time shall be less than the maximum user defined
time as

t (κf ) < tmax. (17)

Additionally, the time shall be monotonically increasing with
κ (see Eq. (7)). Although not providing an optimal solutions,
this last constrain will be enforced by a imposing a lower
bound on the di coefficient as di > 0.

The force that the FSS can produce is limited and thus this
also included as a constraint.

Fx (κ) < Fmax, Fy (κ) < Fmax. (18)

Finally, the scenario’s obstacle and entry cone constraints are
also imposed.

4.2.2. IPOPT implementation

The IDVD problem, as implemented here, is inherently
non-linear. The open-source NLP Interior Point OPTimizer
(IPOPT) [22] solver is used to find the solution to the IDVD
problem at each time step.

The IPOPT routine is wrapped as a Simulink S-functions
suitable for automatic code generation. The resulting C code
is compiled for the target hardware and is executed in a real-
time operating system on-board the FSS. The IDVD problem
is subsequently solved at a 5 Hz frequency.

5. SIMULATION AND EXPERIMENTAL RESULTS

A simulator that recreates the FSS dynamics and emulates the
different on-board sensors and actuators is first used to design,
validate and tune the controllers.

Table 2 shows the parameters used for the LQMPC algo-
rithm to run both the simulator and experimental cases, where
P̄ is the solution to the Algebraic Riccati equation for the dis-
crete LQR problem.

Table 3 shows the parameters used for the IDVD con-
troller. The total number of available variables for the IPOPT
solver is 6 (a5, b5, da1, da2, db2 and κf ). As the IDVD ap-
proach has a tendency to hug the constraints it was observed
that small cone constrain violations could occur on the edge

Table 2: LQMPC Parameters.

Parameter Value
Q diag

(
102 102 105 105

)
R diag

(
103 103

)
P 100P̄

Maximum force Fmax = 0.30 N
Sample Time Ts = 5 s

Horizon Length N = 20
Maximum number of iterations n = 100

Table 3: IDVD parameters.

Parameter Value
Maximum time tmax = 150 s

Polynomial orders nx,y = 5 ntx,y = 2
Entry cone range rIDVDcone = 1 m
Maximum force Fmax = 0.075 N

Sample Time Ts = 0.2 s
Maximum number of IPOPT iterations n = 25

of the cone. To alleviate this concern of not meeting the prob-
lem’s cone constraint as defined in Table 1, the IDVD cone
constraint was extended.

Figure 3 shows the trajectories followed by the FSS, while
Table 4 provides the performance metrics for the MPC and
IDVD controllers when executed on the simulator. The solid
black circles located along the trajectory represent the con-
trol effort expended during the last 10 seconds, thus visually
indicating the distribution of the control effort along the tra-
jectory. As these black circles are evenly spaced in time they
also indicate the velocity at which the FSS traversed the tra-
jectory.

These controllers are then compiled and executed on a
real-time environment onboard the FSS. Figure 4 shows the

Table 4: Comparison of simulation performance metrics for
MPC and IDVD.

Metric (Simulation) MPC IDVD
Control effort [Ns] 5.5 2.4

Time [s] 132 148.0
Constraint Violation No No

Table 5: Comparison of experiment performance metrics for
MPC and IDVD.

Metric (Experiment) MPC IDVD
Control effort 5.1 2.7

Time [s] 108.5 146.1
Constraint Violation No No
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Fig. 3: Trajectories for MPC and IDVD on the simulator.
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Fig. 4: Trajectories for MPC and IDVD for the experimental campaign.

trajectories followed by the FSS while Table 5 provides the
performance for the experiment campaign.

6. DISCUSSION

The results in the previous section showed slight differences
between the simulation and experiment, most notable in the
case of the LQMPC algorithm. Differences are expected due
to physical attributes of the test bed that cannot be fully mod-

eled in simulation, such as thruster misalignment or uncer-
tainties in the FSS state and in the thrust levels. Although the
navigation problem has been considered solved, the VICON
motion capture system only provides position and attitude in-
formation. A discrete Kalman filter is then used to obtain
the velocity estimates, which in the case of the angular rate,
are augmented by an onboard FOG. The velocities thus suf-
fer from a certain amount of noise which can slightly alter
the controller’s behavior. Additionally, the output from both



control methods go to a delta-sigma modulator for thruster
actuation.

However, it can be seen from Figures 3 and 4 that similar
trajectories were followed by the FSS in simulation and ex-
periments. It is also clearly seen in these figures that both al-
gorithms successfully reach the final docking condition while
meeting constraints.

It is also worth pointing that the simulation results for the
IDVD are much smoother, in terms of thrust, than the exper-
iment results. With increasing polynomial order and the sub-
sequent solving at each time step, the IDVD approach tends
to converge to a bang-off-bang type of solution. This can be
clearly seen on the simulation results (see Fig. 3). During the
experiments, a slightly different thrust output was observed.
Mainly, it can be seen that when it gets within range of the
entry cone constraint (see Table 3) the thrusting become more
aggressive. Due to the nature of the IDVD approach, the FSS
tends to get very close to the constraint limits. Under these
conditions, small uncertainties in state estimation and thruster
misalignment can bring the FSS in a trajectory that violates
the constraint and thus the IDVD approach tries to correct
this condition at all cost. The IDVD approach is then sensi-
tive to these type of uncertainties when navigating close to the
constraint border.

Another, potentially undesirable, effect of to the IDVD
approach is the tendency to only decelerate when it gets very
close to its desired end state. This behavior can be attributed
to the tendency to behave in a similar manner as a bang-off-
bang type controller. Safety and operational constraints may
limit the velocity at which the chaser approaches the deputy,
or my limit the amount of thrusting that is allowed in the im-
mediate vicinity of the deputy. To limit this aggressive de-
celeration, the force constraint on IDVD controller has been
artificially reduced. The available maximum force has been
lower to a quarter of the actual achievable level by the FSS
to limit. By adding an upper velocity limit constraint a sim-
ilar modification of this tendency could be obtained (at the
expense of increasing the computational burden).

In comparing the two algorithms from the results in Table
5, a few conclusions can be drawn. The IDVD algorithm
provided a more fuel efficient solution, since the control
effort was smaller. However, the LQMPC solution took
less time to achieve final docking condition. This result is
expected since IDVD solves the nonlinear optimization prob-
lem without approximating the obstacle avoidance, whereas
LQMPC approximates the non-convex constraint through the
rotating hyperplane method. This approximation tends to
over-constrain the problem, leading to a less optimal solu-
tion, but provides a problem that can be solved much more
efficiently with guaranteed of convergence. Additionally, the
LQMPC cost function includes both state and control terms,
whereas IDVD minimizes the control effort directly. This
is illustrated by the fact that the LQMPC method minimizes
both state error and control effort via the Q and R matrices

respectively. Increasing the R weighting values could, for
example, result in a trajectory that uses less control effort, but
would take longer to reach docking conditions.

Another interesting difference between the MPC and the
IDVD approach is that the IDVD approach includes a max-
imum docking time constraint. The MPC approach time to
dock is governed, by the problem itself, but can be controlled
via the Q and R matrices. In the conducted experiment the
time to dock between the MPC and the IDVD approach are
significantly different. A fairer comparison could be drawn if
the controllers where tuned to achieve a similar docking time.

The computational cost of the MPC and IDVD ap-
proaches has not been specifically measured and thus a direct
quantitative comparison on this magnitude can not be made
at this time. With its guaranteed convergence the LQMPC
approach limited its number of iterations to 100. This limit
was rarely reached, only when the FSS found itself close to
a region of local infeasibility. However, in these cases, the
resulting LQMPC control input pushes the FSS towards the
feasibility region and thus the LQMPC did not suffer from
reaching this limit. The NLP IPOPT solver used for the IDVD
approach has no guaranteed convergence and thus more pre-
cautions had to be taken. In order to meet the 5 Hz rate, a 25
iteration limit on the IPOPT solver was imposed. That limit
was actually reached on a few occasions, mainly when the
FSS found itself close to an infeasible region (e.g. close to a
constraint boundary). In the IPOPT, failing to converge can
produce a completely erroneous control input. To help the
FSS recover from this situation the IDVD algorithm had to
run at a faster rate. Using the IPOPT warm start capabilities,
convergence was usually achieved in under 10 iterations.

These experimental and simulation results show a good
example of the trade-offs that must be considered between
optimality in terms of time and fuel. The set of standard cases
presented in this paper, along with the results from a specific
test case, can be used to benchmark these guidance algorithms
and study these trade-offs in order to compare algorithm per-
formance. These types of studies could be used as a basis for
providing quantitative information when selecting algorithms
for specific applications.

7. CONCLUSIONS

A Linear Quadratic Model Predictive Control (MPC) based
approach and an Inverse Dynamics in the Virtual Domain
(IDVD) based approach have been experimentally evaluated
on a planar air-bearing table experimental set-up. The chaser
spacecraft had to autonomously dock with the deputy in the
presence of a keep out zone and an entry cone constraint.
Both approaches achieved its goal with IDVD exhibiting
a slightly smaller cost while MPC achieved faster docking
times. A real-time implementation of both controllers has
been achieved. Additionally a standard experimental test
framework has been proposed with the aim to help provide



meaningful experimental comparisons of different spacecraft
guidance, navigation and control algorithms.
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