

Processing TLEs to facilitate re-entry prediction of spent rocket bodies from GTO

Aleksander A. Lidtke¹ David J. Gondelach¹, Roberto Armellin², Camilla Colombo¹ Hugh G. Lewis¹, Quirin Funke³, Tim Flohrer³ 1 - Astronautics Research Group, University of Southampton 2 - Departamento de Matemáticas y Computación, Universidad de La Rioja 3 - European Space Operations Center

Re-entry prediction

16 Mar 2016

How to improve TLE-based predictions

16 Mar 2016

How to improve TLE-based predictions

Problems with TLEs

Problems with TLEs

16 Mar 2016

Addressing problems with TLEs

Corrected TLEs 1. TLEs Time gaps 2. Outliers in mean motion 3. Find corrected TLEs and events that physically Find outliers in mean change the object motion Find outliers in perigee radius Outliers in eccentricity 4. Find outliers in and B^* – need to estimate inclination the ballistic coefficient Find negative B* Outliers in inclination – 5. Filtered TLEs need orbit determination to converge

Corrections

Before 2011

After 2011

Corrections

Before 2011

After 2011

6th International Conference on Astrodynamics Tools and Techniques

10

Time gaps

Mean motion outliers

Mean motion outliers

Events – change BC and SRPC

Mean motion filter tuning

Mean motion filter tuning

Outliers in n, e, *i*, and B^*

16 Mar 2016

16 Mar 2016

Outliers in n

Outliers in *e*

16 Mar 2016

Outliers in *i*

6th International Conference on Astrodynamics Tools and Techniques

Outliers in B^*

^{6&}lt;sup>th</sup> International Conference on Astrodynamics Tools an Techniques

Re-entry prediction error

Relative error:
$$\delta \tau = \frac{\Delta \tau}{\tau_A}$$

16 Mar 2016

Effects of filtering on prediction accuracy

When we filter too many TLEs

When we filter too many TLEs

16 Mar 2016

When we DO NOT filter TLEs

16 Mar 2016

Importance of filtering

16 Mar 2016

Conclusions and recommendations

- Filtering of the TLEs is key to get good predictions, however it isn't always necessary
- Filter in all orbital elements you're using
- Be wary that the TLEs change with time (2011, 2013...)
- Outliers => robust statistics

Contact:

Aleksander Lidtke

Astronautics Research Group Faculty of Engineering and the Environment University of Southampton Southampton SO17 1BJ United Kingdom

al11g09@soton.ac.uk
www.aleksanderlidtke.com

16 Mar 2016

Changes in TLE generation process

Why do we care

6th

Image credit: NASA

We don't know the re-entry epoch too well

24 hours lead time.

16 Mar 2016

We don't know the re-entry epoch too well

48 hours lead time.

16 Mar 2016

We don't know the re-entry epoch too well

74 hours lead time.

16 Mar 2016