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ABSTRACT

Predicting the re-entry of space objects enables the risk they
pose to the ground population to be managed. The more ac-
curate the re-entry forecast, the more cost-efficient risk miti-
gation measures can be put in place. However, at present, the
only publicly available ephemerides (two line element sets,
TLEs) should not be used for accurate re-entry prediction di-
rectly. They may contain erroneous state vectors, which need
to be filtered out. Also, the object’s physical parameters (bal-
listic and solar radiation pressure coefficients) need to be es-
timated to enable accurate propagation. These estimates are
only valid between events that change object’s physical prop-
erties, e.g. collisions and fragmentations. Thus, these events
need to be identified amongst the TLEs. This paper presents
the TLE analysis methodology, which enables outlying TLEs
and space events to be identified. It is then demonstrated how
various TLE filtering stages improve the accuracy of the TLE-
based re-entry prediction.

Index Terms— Re-entry prediction, GTO, geostationary
transfer orbit, rocket bodies, TLE, two line element set, filter-
ing, outliers

1. INTRODUCTION

Upper stages of rockets are large objects, which contain com-
ponents that are known to be able to survive atmospheric re-
entry. Such surviving material, for example propellant tanks,
will impact Earth’s surface and might cause ground casual-
ties. Being able to predict re-entry in advance enables miti-
gation measures to be implemented to reduce the risk to the
ground population. However, at present, re-entry can be pre-
dicted with an accuracy of 2 to 28% of the remaining life-
time in orbit [1]. A “rule of thumb” relative re-entry pre-
diction uncertainty of ±20% is recommended by Pardini and
Anselmo [1].

Such low accuracy of re-entry prediction makes imple-
menting efficient risk mitigation measures difficult because of
the large area over which the spacecraft might re-enter [1]. In

other words, current re-entry predictions do not provide infor-
mation that is actionable because for every specific location at
risk, e.g. a city, the probability that the satellite will impact
this specific point is extremely low.

Generally, re-entry prediction is done by propagating an
object until it reaches the altitude where the atmospheric
break-up occurs, which is typically between 72 and 84 km.
The main components of this approach are determining the
object’s initial orbit and accurately modelling the forces that
act on it. The latter task requires object’s physical parameters,
e.g. mass, to be known or estimated.

The inaccuracies associated with re-entry prediction have
several different origins, which are well reviewed by Pardini
and Anselmo [2] and references therein. The largest source
of uncertainty is associated with modelling of the acceler-
ation due to atmospheric drag, aD, an object of mass m,
cross-sectional areaA and drag coefficientCD, flying through
a fluid of density ρ at speed v, experiences. This acceleration
is given in Eq. (1) [3]. The object’s physical parameters in this
equation, CDA/m, are often combined into a single “ballistic
coefficient”, BC.

aD =
1

2
ρv2CD

A

m
. (1)

Based on Eq. (1), it can be deduced that the more ac-
curately the object’s parameters are known, the more accu-
rate the force modelling and hence the re-entry prediction is.
The same holds true for the acceleration due to solar radiation
pressure, which is described by object’s physical parameters
that are often combined into the solar radiation pressure co-
efficient, SRPC [3]. The initial state of the object also has to
be known and propagated as accurately as possible in order to
correctly predict its position, and hence also the local atmo-
spheric density ρ and orbital velocity v. Lastly, an accurate
atmospheric model is also required to correctly model ρ.

Currently, two line element sets (TLEs) are the only pub-
licly available data that can be used for re-entry prediction of
a space object. However, there is a number of factors that, if
unaddressed, could reduce the accuracy of re-entry prediction
based on TLEs:



1. The quality of TLEs of an object is not homogeneous;
sometimes TLEs of low quality or even belonging to
a different object (outliers) are published.

2. Occasionally, the object’s physical properties (BC or
SRPC) or its orbit can be altered by collisions, frag-
mentations or space weather phenomena. Such space
events render the TLEs of the object from before the
event inapplicable to its new, changed state.

3. TLEs do not provide information on space object pa-
rameters, notably the BC and SRPC. TLEs only in-
clude the B∗ parameter that accounts for combined at-
mospheric drag and solar radiation pressure forces, not
BC and SRPC individually.

4. TLEs can only be propagated using the SGP4/SDP4
propagator. However, this propagator is based on the
Brouwer theory and, therefore, only models the largest
perturbations affecting a satellite. The many assump-
tions of the theory limit the accuracy of the resulting
propagation and thus of the re-entry prediction.

5. TLEs are not supplied with uncertainty information,
e.g. a covariance matrix. It is thus challenging to esti-
mate the accuracy with which the re-entry is predicted
based on these ephemerides.

In order to overcome these difficulties in TLE-based re-
entry prediction, a multi-step procedure is proposed. The first
step consists of analysing TLEs, with the goal of identify-
ing outliers and space events (addresses points 1 and 2 on the
above list). The filtered TLEs are then used to estimate the
unknown spacecraft BC and SRPC, which are needed to accu-
rately propagate the object’s state (point 3). Different BC and
SRPC are estimated between events in order to account for the
fact that object’s physical properties may change during e.g.
collisions or explosions. The last step consists of performing
orbit determination, in which the TLEs are used as pseudo-
observations. A state obtained from the orbit determination
can be propagated using any propagator, notably more accu-
rate than SGP4/SDP4, and the associated uncertainty can be
estimated (points 4 and 5). The functional flow of the re-entry
prediction algorithm is shown in Fig. 1.

This paper presents the approach adopted to process the
TLEs to improve the accuracy of re-entry prediction (“TLE
filtering” block in Fig. 1). The remaining steps of the re-entry
prediction algorithm are described by Gondelach et al. [4].
The re-entry prediction algorithm is tailored to rocket bodies
(R/Bs) located in geostationary transfer orbits (GTO). A a set
of 116 R/Bs will be used as a reference sample of such ob-
jects. The space surveillance catalogue numbers (SSCs) of
these R/Bs are given by Gondelach et al. [4].

This TLE processing is based on methods previously em-
ployed to detect space weather events and manoeuvres, e.g.
by Patera [5] or Song et al. [6]. However, developing a set of
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Fig. 1. Block diagram of the TLE-based re-entry prediction
algorithm.

tools that allow outlying TLEs to be identified is a novel ap-
plication of such algorithms. Details of the algorithm, which
enables outlying TLEs to be identified in TLE time series of
varying quality and generated in different phases of re-entry,
are given. An approach to splitting the TLE time series into
internally consistent sequences, where BC and SRPC esti-
mates are believed valid, is described. The trade-off between
the number of false positives and negatives, i.e. incorrectly
identified and missed outliers, is emphasised and suitable al-
gorithm settings are chosen. Lastly, the results of the TLE
filtering algorithm are discussed in the context of the accu-
racy of the resulting re-entry prediction.

2. TWO LINE ELEMENT SET FILTERING

Details of every step of the TLE filtering algorithm from
Fig. 1 will be described in turn. Finding outliers in mean
motion is performed simultaneously with splitting of the TLE
time series into internally consistent sequences. A sequence
is defined as a set of TLEs that does not contain any events,



which might change object’s physical properties (events are
sequence endpoints). If a large time gap is present in the
history of the TLEs for a given object, it cannot be reliably
established whether the object’s properties changed because
TLEs cannot be reliably propagated from the beginning to
the end of the time gap. Thus, large time gaps may also be
endpoints of TLE sequences and a process for identifying
those will be described.

2.1. Corrections

It is not uncommon for a TLE to be released soon after a pre-
vious one when the orbital elements in the TLE have been
corrected [7]. Kelecy et al. filter TLEs so that only one ele-
ment set is left in a 24-hour window, whereas Lemmens and
Krag use half an orbital period [7, 8]. The time separations be-
tween consecutive TLEs of 116 R/Bs in GTO were computed
and normalised w.r.t. the orbital period, computed using the
mean motion in the more recent TLE. A subset of these data,
where the time separation was at most five orbital periods, is
shown in Fig. 2.

It can be noticed in Fig. 2 that most of the TLEs get up-
dated at integer multiples of the orbital period. This supports
the hypothesis that if a TLE is issued less than half an orbital
period after the preceding one, it is a correction. If the up-
date interval is between half of orbital period and one orbital
period, the TLE could be an early release of the catalogue
update. In the approach described herein, half an orbital pe-
riod is taken as the correction threshold. This is to say, if two
TLEs are separated by less time than half an orbital period,
the more recent one is kept in the analysis and the older one is
discarded. Should the more recent TLE be an outlier, it will
be removed from the sample at a later stage of the filtering
process.

TLE epochs being separated by integer multiples of or-
bital period is associated with the fact that, in the past, TLEs
were released when objects were at their ascending nodes.
However, as can be noted in Fig. 3, this no longer seems to be
the case for most of the objects since approx. 2011. Had the
objects been located at their ascending nodes at the epochs of
their TLEs, the sum of the true anomaly and the argument of
perigee would be equal to zero. This was the case for most of
the TLEs published before 2011, but since then the spread in
the position along the orbit at the TLE epoch is larger. This
can also be seen in Fig. 4, which shows that the time spacing
of TLEs published after the beginning of 2011 is more dis-
persed than before. However, there still appears to be a con-
centration of TLE updates at the integer multiples of orbital
period, therefore the suggested threshold remains valid.

2.2. Time gaps

Large time gaps make it impossible to determine whether an
event has taken place, i.e whether object’s BC and/or SRPC
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Fig. 2. Cumulative density function of the TLE update fre-
quency for 116 example rocket bodies in GTO. Normalised to
the orbital period computed from the more recent TLE. Only
showing a subset of the data with update frequency of at most
five orbital periods.

should be re-estimated to reflect the current object’s parame-
ters. This is because the state from the beginning of the large
time gap cannot be reliably propagated until the end of the
gap. If a TLE is both preceded and followed by a large time
gap, it is deemed as an outlier.

It is unclear for how long a TLE can be accurately prop-
agated. A TLE might cause automatic tracking of the object
difficult if it is older than five days [9]. However, enhanced
TLEs for highly-elliptical orbits (period greater than 225 min-
utes, eccentricity greater than 0.25) do not suffer almost any
loss of accuracy c.f. numerically propagated states in the first
week since the epoch of the element set [9]. Therefore, no va-
lidity period of the TLEs can be definitively established and
the duration of the large time gaps has to be estimated.

Time spacing between TLEs of one object will vary,
sometimes by tens of orbital revolutions. Such large time
gaps may be present in the history of TLEs of an object with
otherwise approximately constant TLE update frequency.
Moreover, the TLE update frequency will vary from object
to object. Thus, the threshold for the duration of large time
gaps has to be computed for every object individually. Ex-
traordinarily large time gaps, orders of magnitude longer than
the typical TLE update interval for a given object, have been
observed. Therefore, it was imperative that robust statistical
metrics (e.g. median and median absolute deviation instead
of mean and standard deviation) be used to reduce the effect
of such outlying data points on the time gap threshold.

It was observed that the TLE update frequencies for most
objects follow distributions, on which the extraordinarily
large time gaps manifest themselves as tails. Thus, identify-
ing the TLE time separation corresponding to the beginning
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Fig. 3. Sum of the argument of perigee and the true anomaly
of all the TLEs of the 116 GTO re-entry test cases at the TLE
epochs.

of this tail enables all large time gaps to be detected. This is
advantageous c.f. using a threshold based on e.g. median plus
a number of median absolute deviations (MADs), because it
does not a priori assume that time gaps will be present; if the
TLE time spacing distribution does not have a tail there are
no unexpectedly large time gaps.

The tail of the distribution is found by first computing the
time separations between the consecutive TLEs for a given
object, as well as their median and MAD. Time separations
in a percentile of choice are binned in equally spaced bins.
The width of the bins is defined as the median time separa-
tion plus a number of MADs. The time separation of the first
empty bin corresponds to the beginning of the tail of the dis-
tribution of the time separations, i.e. time separation at which
the distribution stops being continuous.

The performance of this algorithm is shown in Fig. 5,
where a large time gap in the TLEs was identified. The prob-
ability plot showing the distribution of the time separations
between TLEs of this object, together with the identified large
time gap duration, is shown in Fig. 6.

2.3. Outliers in mean motion and sequence endpoints

It was decided to detect events, which affect object’s physi-
cal properties, by analysing the mean motion n contained in
its TLEs because this parameter is proportional to object’s or-
bital energy [3]. Mean motion and related semi-major axis
were used to detect propulsive manoeuvres by Song et al. and
Kelecy et al. [6, 8], and manoeuvres in the order of centime-
tres per second were detected in 95% of the cases [8]. Even
though the objects nearing the re-entry are likely derelict, and
so do not conduct manoeuvres, they interact with the atmo-
sphere. Thus, if their physical properties change, so will the
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Fig. 4. Cumulative density function of the TLE update fre-
quency for 116 example rocket bodies in GTO. Normalised to
the orbital period computed from the more recent TLE. Data
from Fig. 2 but only up to update frequency of five days and
released after the beginning of 2011.

drag force acting on them, and consequently their orbital en-
ergies and n.

Single outlying TLEs and events are detected by sliding
a window, containing a fixed number of TLEs, through the
TLE time series. A polynomial of the chosen order is re-
gressed through the TLEs contained in the window and the
TLE following the window is examined (i + 1, where i is
the last TLE in the window). Theil-Sen-Seigel robust linear
regression or bisquare weighted least-squares regression are
used in order to reduce the impact of the outliers, which may
be present in the window, on the regressing function.

The threshold for identifying outliers and events is recom-
puted throughout the analysis [7, 10] rather than using e.g.
a fixed number of standard deviations above the mean [5].
Recomputing the threshold is advantageous because the or-
bit will naturally evolve and the same difference between the
TLE and the regressing function at one instant in time might
signify an outlier, but otherwise it might correspond to a fast,
natural evolution of the orbit. Also, the time spacing between
the TLEs is not constant, as shown in section 2.1, and thus
the differences between the regressing function and individ-
ual TLEs will vary.

The tolerance is set on a quantity called the relative thresh-
old, TR. TR is the ratio between the difference between n of
i+1 TLE and the regressing function (this difference is called
the residual, ∆A), and the change predicted between the i and
i+ 1 TLE, ∆P . TR is given in Eq. (2) and the quantities used
to define it are shown in Fig. 7.

TR =
∆A

∆P
. (2)

The predicted change, ∆P , will be close to zero when the
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Fig. 5. Large time gap around year 1993.97 found for object
22906 by analysing data in the 95th percentile by binning the
time separations into bins with width equal to median plus
one MAD.

mean motion does not vary significantly between the first and
the last TLEs in the sliding window. This will cause TR to be
amplified and, occasionally, fall above the set tolerance, even
if the TLE following the window is not an outlier or a be-
ginning of an event. In order to avoid such false positives,
or incorrectly marking TLEs as outliers, an absolute thresh-
old, TA, is used. The tolerances on both TR and TA need to
be exceeded in order for a TLE to be classified as an outlier
or a sequence endpoint. TA is the previously defined resid-
ual ,∆A, normalised with the regression mean motion at the
epoch of the last TLE in the window, nREG(ti). Expression
for TA is given in Eq. (3) and the quantities used to define it
are shown in Fig. 8. Due to the normalisation, TA is in fact
a relative quantity. However, it is used to set a threshold on
the absolute value of n, while the relative threshold refers to
difference in changes from the last TLE in the window to the
next.

TA =
∆A

nREG(ti)
. (3)

As the window is slid through the TLEs (index of the last
TLE in the window, i, is incremented), TR and TA are com-
puted at every i + 1 TLE. If both TR and TA are above the
set tolerances, i+ 2 TLE is investigated. If the relative differ-
ence between the mean motions ni+1 and ni+2 of the i + 1
and i + 2 TLEs, given in Eq. (4), is less than the absolute
tolerance, then those two TLEs are considered consistent and
a start of a new sequence is declared. This situation is shown
in Fig. 9. Note that due to how the absolute tolerance is de-
fined (to be used with TA as well), ∆i+2 has to be normalised
by the regression mean motion at the i+1 TLE, nREG(ti+1).
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Fig. 6. Distribution of time separations between consecutive
TLEs for object 22906. Beginning of the tail, identified by
analysing data in the 95th percentile by binning the time sep-
arations into bins with width equal to median plus one MAD,
is indicated with a magenta circle.

Fig. 7. Definition of the residual, and the predicted change
between the regressing function at the epoch of the last TLE
in the sliding window and the following TLE. The differences
are computed using the value of the regressing function at the
epoch of the last TLE in the window, not the value of that
TLE. Used to define the relative threshold from Eq. (2).

∆i+2 =
ni+2 − ni+1

nREG(ti+1)
. (4)

2.4. Outliers in eccentricity and inclination

Once the corrected TLEs are filtered out and the element sets
with outlying mean motion are removed from the sample,
some of the remaining TLEs may still have outlying orbital
elements.

As far as the ballistic coefficient estimation is concerned
(second step in the block diagram in Fig. 1), eccentricity e is
particularly important because it affects the perigee altitude
and thus also the drag force acting on the object. If eccen-
tricity in the TLE is incorrect the BC will be estimated incor-
rectly, thus reducing the accuracy of re-entry prediction. Once



Fig. 8. Definition of the residual and the value of the regress-
ing function at the epoch of the last TLE in the window, used
to define the absolute threshold from Eq. (3).

Fig. 9. Start of a new sequence after an event that affected the
mean motion of the object.

the object parameters are estimated, orbit determination (OD)
is performed (third step in Fig. 1). Individual TLEs (or orbital
elements derived from them) are used as pseudo-observations
in the OD process. It was found that TLEs outlying in in-
clination, i, may lead to poor estimates of the state, which is
propagated until the re-entry, and consequently inaccurate re-
entry predictions. Therefore, after filtering out outliers in n,
TLEs with aberrant e and i also need to be removed from the
sample before subsequent analyses are performed.

Instead of filtering TLEs based on eccentricity directly,
perigee radius, rP , is used instead. The two quantities are
equivalent because rP = (1− e)a, where a is the semi-major
axis [3]. If the outliers in mean motion n are already filtered
out, there should be no outliers in a present in the sample
(n =

(
µ/a3

)1/2
[3]). Thus, any outliers in rP will be present

only due to outliers in e. It was found that filtering outliers in
rP is easier than using e directly due to scaling. Inclination
extracted from the TLEs was used directly to filter out the
outliers in this orbital element.

Outliers in inclination and eccentricity are identified
within every internally consistent sequence found accord-
ing to the algorithm described in Section 2.3, i.e. within
sequences terminated by events and large time gaps. Be-
cause all the events have already been identified at this stage,
a simpler filtering technique is used for i and rP than for n.
A window of a fixed length is slid through the time series of
the given orbital element in every consistent sequence, and
the median value in the window is computed. This median

Table 1. Parameters of the algorithm used to identify outliers
in inclination, i, and perigee radius, rP . Showing lengths of
the windows used to compute the median and MAD of the
orbital element. Window lengths are given as the number of
data points (TLEs) in the window. Where applicable, settings
for every pass of the filtering algorithm are listed in sequence.

Filter setting Orbital element
i rP

Window length - median 11 21,11
Window length - MAD 50 All TLEs,50
Number of MADs 12 15,15
Number of filter passes 1 2

value is subtracted from the TLE in the middle of the window,
thus converting the time series of TLE values to a time series
of differences (data are detrended). Another window may
be slid through the time series of differences, and MAD of
the differences may be computed for the TLEs in this sliding
window. Alternatively MAD may be computed from all the
differences for a given object. Lastly, TLEs that have a given
orbital element further than a fixed number of median abso-
lute deviations away from the median are marked as outliers.
This filtering process may be repeated a number of times
with different settings for every orbital element to filter more
outliers. The settings for the filtering in i and rP are given in
Table 1.

2.5. B∗ filtering

TLEs contain a B∗ parameter that is proportional to the bal-
listic coefficient BC (BC = 12.741621B∗ [3]). It was ob-
served that even 30 to 60 days before the actual re-entry, when
the perigee altitude is low and the atmospheric drag is the
most prevalent force disturbing the satellite, TLEs may con-
tain negative B∗ values. Negative B∗, corresponding to neg-
ative ballistic coefficient, signifies that the orbital energy of
the object is increasing secularly. A situation like this is pos-
sible if the solar radiation pressure force acting on the object
is strong. However, close to re-entry the atmospheric drag
is stronger than the solar radiation pressure, therefore a long-
term increase in the orbital energy is impossible (drag reduces
the orbital energy). Only short period (less than orbital pe-
riod), not secular increases in the orbital energy are possible
in circumstances like this. Therefore, it was decided to filter
out TLEs with negative B∗ values because they would cause
incorrect estimates of the ballistic coefficient.

3. FILTER TUNING

Settings for the correction, time, and the inclination and ec-
centricity filters, which are presented in Sections 2.1, 2.2 and
2.4, respectively, are the parameters that were found best in



this study. Arriving at the chosen settings for the correction
filter is described in Section 2.1, whereas the cited values for
the remaining three filters (time, e and i) were chosen based
on a “trial-and-error”search. In particular, the e and i filters
were tuned to remove the largest, most evident outliers in the
TLE time series. Because the tuning of these filters’ settings
cannot be quantified, it will not be presented here. However,
the mean motion filter was tuned rigorously because identi-
fication of events is crucial for the accuracy of re-entry pre-
diction. Moreover, careful tuning of this filter was necessary
in order to ensure that outliers are not misidentified as events
and vice versa. The process of arriving at the optimal settings
for the n filter will be described in this section.

3.1. Mean motion filter tuning

Manual analyses of quality of the TLEs of the sample GTO
objects revealed that certain TLEs will be difficult to classify
as outlying or correct, even to an operator. In order to pro-
vide a time series of mean motion with unambiguous outliers,
thus enabling the performance of the filtering algorithm to
be quantitatively assessed, a synthesised TLE time series was
used.

To this end, the time series of the mean motion of the
object 13025 (Ariane 1 R/B) was used because it was long
(spanned 6.9 years) and contained a number of phases of high
drag (rapidly increasing n) separated by phases of low drag
(slowly varying n). These properties made it possible to test
the filter for a number of gradients of n, denoted as ṅ. This
gradient may affect the absolute value of the residual between
the regressing function and the TLEs, as described in Sec-
tion 2.3, and consequently also the filter performance. There-
fore, testing the algorithm for a range of values of n and ṅ
was needed to find robust settings for the filter. TLE history
of 13025 also contained several large time gaps, enabling the
filter to be tested when restarting the sliding window analysis
with no information about the preceding TLEs (no TLE from
before a large time gap is used to filter after the gap). Other-
wise, manual inspection of the TLEs of 13025 revealed it did
not contain significant outliers, making its TLE time series
trustworthy relatively to other investigated objects.

Corrected TLEs were removed from the 13025’s time se-
ries and the resulting time series of n was smoothed using
a running window with robust quadratic polynomial regres-
sion. Different outlier combinations, which included single,
two or three consecutive outlying TLEs, were distributed in
the time series. Multiple outlying TLEs of different magni-
tudes and directions (e.g. n increasing in one and decreasing
in the following TLE), were found to be particularly prone to
cause false positives and negatives, therefore such combina-
tions of outliers were included in the data. The resulting time
series with the simulated outlier locations is shown in Fig. 10.
A number of outlier magnitudes, OM , was used to scale the
n of the TLEs in the simulated outlier locations. To simulate
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Fig. 10. Time series of the mean motion of object 13025 used
to test the mean motion filtering algorithm. Locations, where
the outliers were simulated, are marked with red. Details of
outlier simulation are given in text.

an outlier, n of the TLE was scaled to an outlying no as no =
n + OM × n for all simulated outlier magnitudes. The used
outlier magnitudes were ±{0.005, 0.01, 0.05, 0.1, 0.5, 0.75}.

The outlier detection algorithm was run on the TLE time
series with all the outlier magnitudes. The automatically iden-
tified outliers were compared to the known outlier locations.
In cases where the algorithm detected an outlier, which was
not present in the data, a false positive (a false outlier), was
recorded. Conversely, when the algorithm did not identify
a simulated outlier, a false negative (a missed outlier), was
recorded. The numbers of false positives and negatives for
all outlier magnitudes were summed to produce a single met-
ric for the given algorithm run. The runs were repeated with
all the combinations of the investigated settings and three or-
ders of three regressing polynomial, namely 1st (Theil-Sen-
Seigel), 3rd and 5th. The tested values of the relative and ab-
solute tolerances, and window lengths are shown in Table 2.

The number of false positives and negatives produced by
every tested combination of algorithm settings is shown in
Fig. 11. No algorithm setting was able to produce zero false
positives and negatives, i.e. perfect results. It appears that
the investigated filter setting combinations spanned the entire
spectrum of filter performance, because solutions with both
many false positives and negatives, as well as solutions in be-
tween, were found for every polynomial order. Thus, it is
unlikely that a combination of settings that yields perfect per-
formance exists at all. Figure 12 shows the number of false
positives and negatives for the Theil-Sen-Seigel regression.
It can be noted that the larger the absolute and relative tol-
erances are, the fewer false positives, or false outliers, are
identified. This is because the algorithm tolerates larger de-
viations from the regressing polynomial. However, large tol-
erances also give rise to many false negatives, i.e. missed



Table 2. Tested values of the absolute and relative tolerances
(tolerances on TA and TR from Section 2.3) and window
lengths that were tested with different regressing polynomial
orders.

Filter setting Regression order
1st 3rd 5th

Absolute tolerance
{5E−4, 1E−3, 5E−3, 1E−2, . . .

2.5E−2, 5E−2, 1E−1, 2.5E−1, 5E−1}

Relative tolerance


0.01
0.05
0.10
0.25

...



0.50
0.75
1.00
1.25
1.50



3.0
3.5
4.0
5.0

...



6.0
7.0
8.0
9.0
10.0



Window length


3, 4,
5, 10,
15, 20,
25, 30,
50



5, 10,
15, 20,
25, 30,
40, 50,
60



7, 10,
15, 20,
25, 30,
40, 50,
60



outliers. The same behaviour is observed for all regressing
polynomials and window lengths. A situation like this neces-
sitates a trade-off between the number of false positives and
negatives. In the context of re-entry prediction, false posi-
tives (false outliers) will reduce the number of TLEs that can
be used, whereas false negatives (missed outliers) will deteri-
orate the accuracy of the results because subsequent analyses
will use incorrect TLEs.

Because no perfect filter settings have been identified,
a trade off study was performed. Points closest to the origin,
which minimise the number of false positives and negatives,
were chosen for every polynomial order from Fig. 11. The
corresponding settings, together with the associated numbers
of false and missed outliers, are presented in Table 3. The
3rd order polynomial had the fewest false outliers. Generally,
higher-order polynomials are better able to represent the vari-
ation of n with time, thus they result in fewer false outlier.
However, this reduced number of false positives is associated
with increased number of missed outliers. Missed outliers
will deteriorate the accuracy of the re-entry prediction, thus
this performance metric is deemed more important. There-
fore, using 1st order polynomial regression, which had the
fewest missed outliers, was favoured.

Even with the best settings found here, the algorithm did
not identify 101 outliers. The total number of outliers sim-
ulated in the study was 59 049, meaning that the algorithm
correctly identified 99.83% of the simulated outliers. The set-
tings from Table 3 could be further optimised by evaluating
more combinations of the parameter values close to the best
combination found so far. However, this was not performed
because, in reality, other parts of the re-entry prediction algo-
rithm will have a larger impact on deteriorating the prediction
accuracy. Therefore, the settings from Table 3 for the 1st or-
der polynomial were used in the remainder of this study.

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900

1000

Sum of all false positives (false outliers)

S
u
m

 o
f 
a
ll 

fa
ls

e
 n

e
g
a
ti
v
e
s
 (

m
is

s
e
d
 o

u
tl
ie

rs
)

13025 filter performance for different regression orders

 

 

1
st

3
rd

5
th

Fig. 11. Filter performance for all the combinations of set-
tings from Table 2. Each dot represents one run of the al-
gorithm, i.e. one combination of the settings for the given
regression order. Points closest to the origin indicated with
a cyan circle.
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Fig. 12. The number of false positives (false outliers, left) and
negatives (missed outleirs, right) identified with all the com-
binations of settings from Table 2 for 1st order polynomial
regression.

4. IMPACT OF TLE FILTERING ON RE-ENTRY
PREDICTION

Re-entries of 92 test objects listed by Gondelach et al. [4]
were predicted 30 days before the actual recorded re-entry
date according to the algorithm given by Gondelach et al. [4]
(TLE filtering, followed by BC and SRPC estimation, and
orbit determination). All these objects have decayed already,
therefore their re-entry epoch is made publicly available
via www.space-track.org (these reference epochs are
rounded to one day). This enables the discrepancy between
the actual time that the object spent on-orbit since the pre-
diction epoch, τA, and the predicted time on-orbit, τP , to be
compared. The percent prediction error, δτ , of τP relative to
τA was computed as per Eq. (5) for different filtering levels.
The investigated filtering levels and their acronyms are given

www.space-track.org


Table 3. Optimised parameters of the TLE filtering algo-
rithm, together with the corresponding numbers of missed and
false outliers (false negatives and positives, respectively).

Filter setting Regression order
1st 3rd 5th

Window length (no. TLEs) 5 20 40
Absolute tolerance 5E-3 1E-3 1E-3
Relative tolerance 5E-1 4.0E0 6.0E0

Performance metric
Missed outliers 101 210 265
False outliers 152 80 131
Fraction of missed outliers 0.17% 0.36% 0.45%

Fraction of false outliers 0.26% 0.14% 0.22%

in Table 4.
δτ =

τP − τA
τA

× 100. (5)

Figure 13 shows the fraction of the sample that had a given
re-entry prediction error when the raw, unfiltered TLEs were
used as well as when full filtering from Table 4 was employed.
80% of the sample had δτ less than 14%. Up to that point,
TLE filtering had little impact on the accuracy of the predic-
tions, meaning that filtering was surplus. For three objects,
however, maximum δτ of 50% was recorded if no filtering
was performed. When the TLEs for these objects were fil-
tered before predicting the re-entry, the error decreased to at
most 37%. This shows that TLE filtering may not be nec-
essary in all cases, however it is key to achieving consistent
accuracy in the order of 10%.

Figure 14 shows the relative errors in predicting the re-
entry epoch for four example R/Bs when different filtering
stages were used. These objects exhibit typical types of be-
haviour that have been observed amongst the investigated
sample. Note that the prediction for 25496 was performed 30
and 31 days before the actual re-entry.

Different filtering stages may improve the prediction ac-
curacy by removing outliers. For example, filtering outliers
in mean motion of 37949 improved the accuracy from over
50% to 14.3%. In certain cases, however, filtering TLEs may
decrease the number of usable element sets and reduce the
prediction accuracy, which was the case for 25051. In this
case, the number of TLEs, which were used to predict the re-
entry, reduced from three to one. These samples were small
in both cases, which resulted in errors of 13.4 − 27.7% for
all filtering levels. Such small TLE samples do not, generally,
result in accurate re-entry predictions [4]. Therefore, this re-
duction of accuracy with more filtering does not invalidate
the approach to filtering because re-entry predictions based
on too few data points are not reliable anyway.

The accuracy improvements brought by filtering may not
always be visible because outliers are not always present in
the used TLE set, e.g. for 22254 or for 25496 when the

Table 4. Investigated TLE filtering levels and the acronyms
by which they are referred to.

Filter acronym Included filters

n, e, i, B∗ Correction, time, mean motion,
perigee radius,inclination, B∗

n, e, i
Correction, time, mean motion,
perigee radius,inclination

n, e
Correction, time, mean motion,
perigee radius

n Correction, time, mean motion

NONE No filter

Relative re-entry epoch errror, δ τ (%)
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Fig. 13. Relative errors in predicting the re-entry
epoch with full and no TLE filtering for 92 cases from
Gondelach et al. [4], 30 days before the actual re-entry. The
errors were capped at 50%.

prediction was performed 30 days before the actual re-entry
(cyan series on Fig. 14). However, in the presence of outliers,
in particular when an outlying TLE is being used for BC es-
timation, for example, filtering plays a key role, as shown in
Fig. 13. This can be seen by examining the prediction accu-
racy for the same object, 25496, but done a day earlier, with
a different TLE set (magenta series on Fig. 14). The TLEs of
25496 31 days before re-entry contained an outlier in inclina-
tion, which was causing the re-entry prediction to be accurate
to 16.1%. However, when the outliers in i were filtered out,
the accuracy improved to 9.3%. This shows that filtering does
not always improve re-entry prediction accuracy. However, it
is necessary to ensure that the accuracy is as high as possible,
should any outliers be present in the data. This was shown for
the n and i filters here, however it was observed for all the
discussed orbital elements.
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Fig. 14. Relative errors in predicting the re-entry epoch with
different TLE filtering levels from Table 4 for four objects
30 days before the actual re-entry. The errors were capped
at 50%. The prediction for 25496 was performed 30 and 31
days before the actual re-entry.

5. SUMMARY AND CONCLUSIONS

A multi-stage TLE filtering methodology was developed, and
applicability of the filtering stages to improving the accuracy
of re-entry prediction was discussed. It was observed that
re-entry prediction accuracy may reduce due to TLE filter-
ing because fewer TLEs are available to perform object’s pa-
rameters estimation and orbit determination. However, it was
shown that filtering out the outlying TLEs is vital in order
to reduce the prediction errors. Thus, it is recommended to
used filtered TLE time series, but without relying on a single
prediction. It may prove useful to manually analyse the time
series, however often it is difficult for a person to distinguish
between a correct and an outlying TLE.

During the development of the TLE filtering algorithms,
use of robust statistics and regression methods was found cru-
cial. TLE time series may contain significant outliers, which
render non-robust algorithms unreliable.

It was shown that the TLEs changed after 2011. More-
over, the TLE generation process changed further in 2013 [9].
Therefore, it is recommended to use different algorithms, or
different algorithm settings, when working with TLEs gener-
ated before and after these years.
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