6th International Conference on Astrodynamics Tools and Techniques

INNOVATIVE METHOD FOR THE COMPUTATION OF SAFETY RE-ENTRY AREA BASED ON THE PROBABILITY OF UNCERTAINTIES IN THE INPUT PARAMETERS

Emilio De Pasquale⁽¹⁾, Simone Flavio Rafano Carnà⁽²⁾, Laurent Arzel⁽³⁾, Michèle Lavagna⁽⁴⁾

⁽¹⁾ European Space Agency
 ^(2,4) Aerospace Science and Technology Department, Politecnico di Milano
 ⁽³⁾ PwC Strategy&

Outline

European Space Agency

pwc strategy&

- Objective of the study
- > Safety boxes definition
- Preliminary considerations
- Input-Output formulation
- > Natural formulation of the problem and issues
- ➢ Issues facing
- > Alternative formulation of the problem: studying the input space
- > Inputs' statistic method:
 - Goal
 - Solution
- > Compliance with the safety requirements
- Characteristics of the method:
 - Direct computation of the probability
 - Computational speed
 - Error estimation
- > Application to ATV-GL Shallow re-entry
- Conclusions

Objective of the study

Destructive re-entry of satellites and space objects: Rare event casualty caused by impact of a fragment generated by reentry

According to the French Space law, "the operator responsible of a spacecraft controlled reentry shall identify and compute the impact zones of the spacecraft and its fragments for all controlled reentry on the Earth with a probability respectively of 99% and 99,999% taking into account the uncertainties associated to the parameters of the reentry trajectories".

3/18 E. De Pasquale, S. F. Rafano Carnà, L. Arzel, M. Lavagna

European Space Agency POLITECNICO MILANO 1863

Safety boxes definition

Safety boxes are containment contours on the ground defined such that the probability that a fragment falls outside is a controlled value.

- **Declared Re-entry Area (DRA)**: $10^{-2} \rightarrow$ The probability that all the fragments fall inside is > 99%
- Safety Re-entry Area (SRA): 10^{-5} \rightarrow The probability that all the fragments fall inside is > 99.999%

→ Engineering design: the SRA shall not extend over inhabited regions and shall not impinge on state territories and territorial waters without the agreement of the relevant authorities

European Space Agency

pwc strategy&

Preliminary considerations

Series of uncertain parameters affect the problem

→ Relying on a statistical assessment to fulfill the international safety requirements and constrain ground population risk.

• Extremely low probability of interest (e.g. 10⁻⁵)

 \rightarrow Difficult, slow and inaccurate use of classical statistical techniques.

• Many State of the Art methods have been developed to deal with similar problems (Morio and Balesdent, 2015*):

- Crude Monte Carlo methods
- Importance sampling techniques
- Adaptive splitting techniques
- First and second order reliability methods (FORM/SORM)
- Extreme value theory:
 - i. Bloc Maxima method
 - ii. Peak over threshold method

*Jérôme Morio, Mathieu Balesdent, Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems, A Practical Approach, Woodhead Publishing, Elsevier.

European Space Agency

pwc strategy&

Input-Output formulation

Natural formulation of the problem and issues

Given Y = f(X) and the probability level of interest $\alpha = 10^{-5}$

find $d_1 < 0$ and $d_2 > 0$ such that

 $1 - \mathbb{P}(d_1 < \mathbb{Y} < d_2) \le \alpha$

 \rightarrow Analysis of the contour surfaces of the transfer function *f* identifying those two that satisfy the probability condition.

2 main issues:

- 1) Infinite number of feasible solutions (1 inequality, two unknowns d_1 and d_2)
- Contour surfaces of *f* not known and cannot be numerically built due to computational time limitations (n-dimensional numerical propagator)

$$f(x_1, x_2) = (e^{x_1} - 1)(e^{x_2/2} - 1)$$

Contour lines illustration

European Space Agency

strategy&

Issues facing

1) Infinite number of feasible solutions

→ Engineering objective: safety box design to minimize the distance between the two values d_1 and $d_2 \rightarrow d_1^{Opt}$ and d_2^{Opt}

- 2) Contour surfaces of *f* not known and cannot be numerically built
- \rightarrow Two possible approaches:
- i. State of the Art Monte Carlo based: creating a cloud of outputs (footprint) by sampling all over the input domain and post-processing this output statistics to get a *probabilistic* information (safety boxes)
- **ii. Inputs' statistics approach:** approximated solution of an *alternative* formulation of the problem

$$f(x_1, x_2) = (e^{x_1} - 1)(e^{x_2/2} - 1)$$

Contour lines

European Space Agency

pwc strategy&

Alternative formulation of the problem: studying the input space

Given $Y = f(\mathbf{X})$, $\alpha = 10^{-5}$ and introducing $p = \text{pdf}_X(\mathbf{X})$ find $d_1 < 0$ and $d_2 > 0$ such that $1 - \int_{\Omega} p(\mathbf{x}) \, d\mathbf{x} \le \alpha$

Where $\Omega = \{ \mathbf{X} \in \mathbb{R}^n : d_1 < f(\mathbf{X}) < d_2 \}$

Main issues still there:

- 1) Problem not well posed: infinite possible choices of Ω
 - → looking for Ω^{Opt} such that $d_2^{\text{Opt}} d_1^{\text{Opt}}$ is minimum, i.e. smallest possible safety box
- 2) Contour surfaces of *f* not known
 → Approximating Ω^{Opt} using conservative considerations: *the Inputs' Statistics method*

$$f(x_1, x_2) = (e^{x_1} - 1)(e^{x_2/2} - 1)$$

Contour lines illustration

European Space Agency

strategy&

Inputs' Statistics method: goal

In a nutshell:

Being \tilde{E} the contour surface of the PDF enclosing a probability equal to $1 - \alpha$, then $\tilde{\Omega}$ is the region identified by contour surfaces of the transfer function f corresponding to the thresholds \tilde{d}_1 and \tilde{d}_2 being the minimum and maximum cases which may occur inside \tilde{E} . \tilde{d}_1 and \tilde{d}_2 are the safety box dimensions.

Goal of the method:

Find $\tilde{d}_1 < 0$ and $\tilde{d}_2 > 0$ such that $1 - \int_{\widetilde{\Omega}} p(\mathbf{x}) \, d\mathbf{x} \le \alpha$ Where $\widetilde{\Omega} = \{ \mathbf{X} \in \mathbb{R}^n : \tilde{d}_1 < f(\mathbf{X}) < \tilde{d}_2 . \} \cong \Omega^{\text{Opt}}$

$$f(x_1, x_2) = (e^{x_1} - 1)(e^{x_2/2} - 1)$$

10/18 E. De Pasquale, S. F. Rafano Carnà, L. Arzel, M. Lavagna

pwc strategy&

European Space Agency

Inputs' Statistics method: solution

Solution: introduction of the contour surfaces of the PDF rather than of f

Supposing to have only *normal distributed* input variables, then

$$p(\mathbf{x}) = p_{MVN}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|\boldsymbol{\Sigma}| (2\pi)^n}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

and its contour surfaces are n-dimensional ellipsoids:

$$\mathcal{E}(\mathbf{t}) = \{ \mathbf{X} \in \mathbb{R}^n : (\mathbf{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \le \mathbf{t} \}$$

Then, compute $\boldsymbol{\tilde{t}}$ such that

$$1 - \int_{\widetilde{E}(\widetilde{t})} p(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \alpha$$

then, using an optimization process:

$$\tilde{d}_1 = \min f(\mathbf{X}) \text{ and } \tilde{d}_2 = \max f(\mathbf{X})$$

subjected to $\mathbf{X} \in \tilde{\mathbf{E}}$

$$f(x_1, x_2) = (e^{x_1} - 1)(e^{x_2/2} - 1)$$

11/18 E. De Pasquale, S. F. Rafano Carnà, L. Arzel, M. Lavagna

European Space Agency POLITECNICO MILANO 1863

strategy&

Compliance with the safety requirements

By construction, $\widetilde{\Omega}$ includes \widetilde{E} , i.e. \widetilde{E} is a subset of $\widetilde{\Omega}$: $\widetilde{E} \subseteq \widetilde{\Omega}$ then, by definition of \widetilde{E} , the solution identified by the Inputs' Statistics method *always* satisfies the safety condition:

$$1 - \int_{\widetilde{\Omega}} p(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq \alpha$$

Since, by definition:

$$1 - \int_{\Omega^{\text{Opt}}} p(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \alpha$$

Then

 $\tilde{d}_1 \leq d_1^{Opt}$ and $\tilde{d}_2 \geq d_2^{Opt}$ i.e. the result in terms of safety boxes dimensions is always conservative with respect to the optimal solution

$$f(x_1, x_2) = (e^{x_1} - 1)(e^{x_2/2} - 1)$$

European Space Agency

strategy&

Characteristics of the method Direct computation of the probability

The Inputs' statistics method:

1. implements directly the international requirement

→ The probability of the fall-back zone is the probability of the inputs and not a probability derived from an estimation of statistical distribution of the fragments (as for MC simulations). Working on the input domain, the probability can be directly and exactly computed.

2. has an explicit physical meaning

 \rightarrow It works directly with the statistic distribution of the inputs and so with the causes of the rare event.

Characteristics of the method Computational speed

The Inputs' statistics method:

- **3.** decreases the computation time of the safety boxes by more than one order of magnitude (typically from hours/days to minutes).
 - → The time Δt_{integr} of a single integration of atmospheric re-entry dynamics requires about 1s, then:

State of the Art computational time:

$$T_{SoA} \cong T_{Montecarlo} =$$

= $N_{samples} \cdot \Delta t_{integr}$
= $10^6 \cdot O(1s)$
= $O(10^6s)$
= $O(days)$

Inputs' statistics computational time:

 $T_{InpStat} \cong T_{OptIter} \cdot N_{integr} \cdot \Delta t_{integr} = 0(10) \cdot O(10) \cdot O(1s)$ $= O(10^2 s)$ = O(minutes)

European Space Agency

strategy&

POLITECNICO MILANO 1863

4. requires a computational effort that doesn't depend on the computed probability

Characteristics of the method Computational speed

The Inputs' statistics method:

- **3.** decreases the computation time of the safety boxes by more than one order of magnitude (typically from hours/days to minutes).
 - → The time Δt_{integr} of a single integration of atmospheric re-entry dynamics requires about 1s, then:

Inputs' statistics computational time:

$$T_{InpStat} \cong T_{OptIter} \cdot N_{integr} \cdot \Delta t_{integr} = 0(10) \cdot 0(10) \cdot 0(1s)$$

= 0(10²s)
= 0(minutes)

European Space Agency

pwc strategy&

POLITECNICO MILANO 1863

4. requires a computational effort that doesn't depend on the computed probability

Characteristics of the method Error estimation

The Inputs' statistics method:

- 5. gives results whose conservatism is difficult to be estimated
 - → No control on the distance from the optimal solution: it does not provide the smallest safety box, but a larger one.
 - \rightarrow The minimum safety box is approached from a conservative direction.
 - \rightarrow Accurate results are not guaranteed for whichever transfer function.

Application to the ATV-GL Shallow re-entry

Input variables:

4 normally distributed random variables

- magnitude of the ΔV of the second de-orbitation manoeuvre (DEO2) ΔV_{man} ;
- explosion altitude h_{Expl} , •
- pitch angle of thrust orientation δ , •
- vehicle overall mass m_0 . •

Results given by Inputs' Statistics method:

- Number of iterations of the programming ٠ algorithm: 33
- Computational time: 850 seconds •
- SRA dimension: 4310 km

Results given by Monte Carlo Simulation + Peaks over threshold method:

- Number of samples: 40000 (half for short frag. and half for the long frag.) ٠
- Computational time: about 22 hours ٠
- SRA dimension: 3900 km

-30 SRA_{SoA} SRAIS

Probability requirement: Safety Re-entry Area $\alpha = 10^{-5}$

European Space Agency

pwc strategy&

Conclusions

- Presentation of a new approach for the estimation of rare events applied to the computation of the SRA
 - It is always conservative and it approximates the optimal solution
 - Computational time is few order of magnitude smaller than state of art methods
 - Not sensitive to the dimensions of the input parameters
 - Computed solution is close to the optimal one
- Good performances in comparison with state of art methods
 - \rightarrow SRA of ATV-GL shallow re-entry
- Several potential applications for engineered problems
 - Destructive controlled re-entry of large structures (e.g. ISS and visiting vehicles at its EoL)

European Space Agency

strategy&

- Destructive re-entry of uncooperative satellites orbiting LEO and MEO (Active Debris Removal)
- Destructive controlled re-entry of last stages launchers