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ABSTRACT 

 

The risk reduction measures required for the reentry of a 

spacecraft at its end of life are regulated in Europe by 

requirements documented in Space Agencies’ instructions 

and guidelines. According to European Space Agency 

guidelines [1] the Safety Re-entry Area (SRA) delimits the 

area where the debris should be enclosed with a probability 

of 99,999%. The computation and design of SRA is required 

in the risk assessment of a significant number of space 

missions like spacecraft in low Earth orbits at its end of life 

and last stages of launchers that shall be controlled to a 

destructive reentry.  

This paper describes an innovative method to compute the 

SRA, considering that the input models and its uncertainties 

are well defined. The method focuses on the statistical 

distribution of the input parameters uncertainties contrary to 

classical methods that generates a large number of impact 

points with Monte Carlo simulation and processes the 

outputs of this computation.  

The paper presents the results of the computation of the 

SRA for the re-entry in the South Pacific Ocean of the fifth 

and last European ISS cargo (ATV).  

The SRA is also assessed using the classical Monte Carlo  

approach and the results are compared with this innovative 

approach highlighting advantages and drawbacks in terms of 

accuracy, level of conservatism and computational time. 

 

Index Terms— Re-entry, Safety, Statistic, SRA, ATV 

 

1. INTRODUCTION 

 

According to the French Space law, “the operator 

responsible of a spacecraft controlled reentry shall identify 

and compute the impact zones of the spacecraft and its 

fragments for all controlled reentry on the Earth with a 

probability respectively of 99% and 99,999% taking into 

account the uncertainties associated to the parameters of 

the reentry trajectories”. 

 

Safety boxes are containment contours on the ground 

defined such that the probability that a fragment falls 

outside is below a controlled or known value. The Safety 

Re-entry Area (SRA) is the safety box associated with the 

probability 99,999%; it is used to design the re-entry 

trajectory such that the SRA does not extend over inhabited 

regions, does not impinge on state territories and territorial 

waters without the agreement of the relevant authorities [1]. 

The Declared Re-entry Area (DRA) is the safety box 

associated with the probability 99%; it is used to implement 

the procedures of warning and alerting the maritime and 

aeronautic traffic authorities. 

 

The challenge of the SRA design is the extremely low 

probability of interest (10-5) associated to its contour, which 

makes quite difficult and inaccurate the use of classic 

statistical techniques. The state of arte methods use Monte 

Carlo analysis to estimate the SRA, but the number of 

samples generated determines the accuracy and confidence 

level achieved while it is proportional to the computational 

time needed. Therefore the quantile of interest is estimated 

by extrapolating the density of probability obtained by the 

Monte Carlo  simulation with a number of outputs samples 

smaller than required [2].  

 

The method described in this paper, hereafter called Inputs’ 

Statistics method, works on the domain of the input 

uncertainties, being a priori statistically modelled, and, 

consequently, it does not require generating Monte Carlo  
simulations and processing the statistics of the output. The 

probability of interest is computed integrating the known 

multivariate density function of the input parameters and, 



then, an optimization process is used to find the minimum 

and maximum within a reduced set of inputs corresponding 

to an aimed probability.  

 

Three advantages can be recognized:  

1) the probability of the impact contour is directly 

derived by the causes of the impacts (initial 

conditions and model dispersions) highlighting its 

physical explanation (the impact is located in a 

specific point if a set of initial conditions happen);  

2) a large amount of computational time is saved 

since a Monte Carlo simulations are not required;  

3) the level of probability can be set arbitrarily small 

without having any impact on the computational 

time because it is not sensitive to the probability 

level to be achieved.  

The drawback of the method is related to the simplification 

that is introduced in the identification of the overall input 

domain associated to the aimed probability. This 

simplification may lead to an overestimation of the size of 

the box but it provides always a conservative solution to the 

problem. Considering that there is no worst case for a 

statistical distribution, this assessment can be also retained 

as a conservative envelope of the optimal solution. 

 

The Input’s Statistics method is suitable for many future 

applications taking advantage of its computational speed 

and reliability: the destructive controlled re-entry of large 

structures, including in particular the International Space 

Station (ISS) and the ISS visiting vehicles at its End of Life 

(EoL); the destructive re-entry of large uncooperative 

satellites orbiting LEO and MEO as conclusive event of the 

Active Debris Removal (ADR) technology (e.deorbit); the 

destructive controlled re-entry of last stages of launchers. 

 

2. STATE OF THE ART REVIEW 

 

The theory and applications of extremes and rare events 

have received an increasing interest. This is primarily due to 

its practical relevance which is well recognized in different 

fields such as insurance, finance, engineering, 

environmental sciences and hydrology [3]. 

Indeed, extensive work has been devoted in the past to 

address both the rare events estimation and the extremely 

low probability computation, which led to the definition of 

several efficient approaches. A comprehensive but brief 

overview of the most relevant (for historical or performance 

reasons) algorithms and methods is provided by Morio et al. 

in [4]. For a more exhaustive and detailed description, 

containing the mathematical formulation and several 

practical applications from the aerospace world, it is 

suggested the book of the same authors in [5] as well as Falk 

at al. in [3] and by Kotz and Nadarajah in [6].  

It is usually difficult to determine which algorithm is the 

most appropriate for a specific problem. Indeed, when a 

very low probability level is sought, often the computational 

burden is the major concern of the analyst but it is also 

extremely important to keep always an adequate level of 

confidence on the final estimated parameter. Thus, in 

choosing the algorithm for a specific problem, these are the 

two main aspects that have to be considered and often a 

compromise between them is required.  

Crude Monte Carlo  Methods [7,8] allow an easy 

implementation and do not require any analytical 

characterization of the transfer function but converge slowly 

and need a very large number of generated samples for the 

computation of small probabilities.  

In order to minimize the variance and the computational 

time of the Monte Carlo  estimator, Importance sampling 

techniques [9,10] can be used, emphasizing the sampling of 

particular values that have more impact in the estimation of 

a given parameter with respect to other values.  

Another approach, efficient to estimate very low probability 

levels (𝑃 <  10−6), is adopted by the Adaptive splitting 

techniques [4,9], which consider supersets of the input 

region corresponding to the required probability in such a 

way that the probability of each of these sets can be 

estimated with a reasonable simulation budget. Then, the 

probability on the final smallest set is computed by the 

product of the conditional probabilities.  

Some methods have been developed in structural reliability 

that work on the inputs domain rather than building up an 

output statistics, similarly to the Inputs’ Statistics method 

presented in this paper. The most simple are the first and 

second order reliability methods (FORM/SORM) [11,12], 

which use an optimization process to locate the most 

probable failure point where they approximate linearly (first 

order) or quadratically (second order) the contour lines of 

the transfer function. Accuracy problems can arise when the 

transfer function has unknown highly non-linear contour 

surfaces or when the most probable point is not unique [13], 

but the computational time is extremely short especially if it 

is compared with sampling-based approaches. 

The Extreme value theory [14] provides appropriate 

distributions to fit extreme events. Generally, there are two 

related ways of working with extremes in simulated/real 

data. The first approach, called Block maxima method [15], 

considers the maximum the variable takes in non-

overlapping periods of equal size, for example months or 

years and fits them using the Generalized Distribution 

Function over the maxima values inside each block. The 

second approach, called the Peak over threshold (PoT) 

method [2,15], considers the distribution of exceedances 

over a given (high) threshold and fits them using the 

Generalized Pareto Distribution. As Ferreira and De Haan 

explain in [16], the PoT method picks up all ‘’relevant" high 

observations. The Block maxima method on the one hand 



misses some of these high observations and might retain 

some lower observations. Hence the PoT seems to make 

better use of the available information and it is often the 

choice in recent applications [15]. The Block maxima 

method is preferable with respect to the PoT method when 

the observations are not exactly independent and identically 

distributed [17] and when only the maxima values are 

known [18]. As drawback, exactly as for the PoT method, it 

is difficult to estimate the error on the estimation of the 

probability. In this work, the PoT method is selected to 

compare the results provided by the Inputs’ Statistics 

method for a realistic case of atmospheric re-entry of a 

space vehicle, the Automated Transfer Vehicle. The PoT 

method has been specifically implemented based on the 

work of Renaud and Martin in [2] and then recalled by 

Hourtelle et al. in  [19]. 

 

3. INPUTS’ STATISTICS METHOD 

 

3.1. Definition of the problem  

 

Let group all the uncertain parameters and initial conditions 

affecting the atmospheric re-entry dynamics of a space 

vehicles in the vector 𝐗. If all the parameters in 𝐗 were 

known, a numerical dynamic propagator could estimate the 

impact location of the fragment over the Earth’s surface. 

The impact point is identified as the along track signed 

distance (positive if “in front” and negative if “behind”) 

with respect to a reference point, called Aimed Impact Point 

(AIP). (see fig.1) This distance is a scalar value Y that is 

here called ‘’output’’. The deterministic transfer function 𝑓 ∶
 ℝ𝑛 ⇢ ℝ describes the transformation from the input 𝐗 to 

the output Y. In addition, let introduce the multivariate 

probability density function (PDF) associated to the random 

vector of the inputs 𝐗: 𝑝 = pdfX(𝐗). The AIP is computed 

integrating the re-entry dynamics on the mean value 𝝁 of the 

input vector 𝐗. So accordingly: 𝑓(𝝁) = 0.  

 
The original problem, as cited in the international space law 

[1], requires the design of the controlled initial conditions 

(part of the vector of the inputs 𝐗) such that the two 

thresholds 𝑑1 and 𝑑2, with 𝑑1 < 0 and 𝑑2 > 0 are outside 

inhabited area. The probability that a fragment impact point 

falls outside the interval [𝑑1, 𝑑2], across the AIP, shall be 

less or equal to a given probability level (e.g. 10−2, 10−5). 

The two thresholds 𝑑1 and 𝑑2 identify the along track size 

and location of the safety box and are functions of the 

chosen probability level. Since the cross-track boundaries of 

safety boxes are small with respect to the along track ones, 

they are simply designed as a fixed deviation of +/-100 km 

(majoring value) from the ground track [2].  Hence, the 

problem addressed in this paper is the computation of the 

safety box here identified as the interval [𝑑1, 𝑑2] and it can 

be formulated mathematically as the computation of the two 

thresholds 𝑑1 and 𝑑2, with 𝑑1 < 0 and 𝑑2 > 0, such that  

 

1 − P(𝑑1 ≤ Y ≤ 𝑑2) ≤ 𝛼 (1) 

 

where 𝛼 is the required probability level. This is the typical 

formulation used by the state of the art techniques. The main 

issue of this approach is the computational time. Indeed, 

since the output statistical distribution of Y is not known a 

priori, it has to be numerically built using Monte Carlo  

simulations, which cause a sharp increase of the 

computational time with the increase of granularity required 

to estimate the statistical distribution for very low values of 

the probability density function.  

 

The problem can be re-formulated in an equivalent way if 

the attention is focused on the input instead of on the output 

domain. The input uncertainties are statistically modelled 

using physical considerations and engineering judgment. 

Once the PDF is defined, the input domain is fully 

characterized. The probability can be exactly computed in 

the region Ω of the input domain, corresponding to the 

contour lines of the transfer function 𝑓 relative to 𝑑1 and 𝑑2, 

once identified. Accordingly, the problem can be 

alternatively formulated as the computation of the region Ω 

such that: 

Figure 1: Illustration of atmospheric fragmentation of a space vehicle 



1 − ∫ 𝑝(

Ω

𝐱) d𝐱 ≤ 𝛼 (2) 

with Ω = {𝐗 ∈ ℝ𝑛: 𝑑1 ≤ 𝑓(𝐗) ≤ 𝑑2}. This is an 

intrinsically different approach and it is the basis of the 

Inputs’ Statistics method. 

 

Nevertheless, Ω is not unique because two unknowns must 

be selected: 𝑑1 and 𝑑2 and only one inequality is available 

from the condition of the required probability level 𝛼. 

Among the family of all the possible choices of Ω, the 

engineering design of the safety box has as objective to 

identify that particular Ω which minimizes the distance 

between the two values 𝑑1 and 𝑑2. This optimal choice of Ω 

is here called Ω𝑂𝑝𝑡, corresponding to optimal couple of 

thresholds: 𝑑1
𝑂𝑝𝑡

 and 𝑑2
𝑂𝑝𝑡

. Since the distance between 𝑑1 

and 𝑑2 increases with decreasing required probability level, 

Ω𝑂𝑝𝑡  would be computed with the less restrictive as possible 

constraint, i.e. equality instead of inequality: 

1 − ∫ 𝑝(

ΩOpt

𝐱) d𝐱 = 𝛼  (3) 

Thus, 𝑑1
𝑂𝑝𝑡

 and 𝑑2
𝑂𝑝𝑡

give the smallest dimensions of the 

safety box, which satisfies the constraint on the probability 

level. Since 𝑓 is a multidimensional dynamic propagator and 

its contour surfaces are not identified in fast enough 

computational sequence (e.g. there is not an analytical 

explicit formulation), the direct computation of the Ω family 

and especially of ΩOpt is not practically feasible due to 

computational time limitations. 

 

Therefore, the Inputs’ Statistics method aims at defining a 

domain Ω̃ that belongs to the Ω family and 

approximates ΩOpt: 

Ω̃ ≅ ΩOpt (4) 

Consequently, the probability PIS of Inputs’ Statistics is: 

P𝐼𝑆 = 1 − ∫ 𝑝(

Ω̃

𝐱) d𝐱  (5) 

and the corresponding values of the thresholds are �̃�1 and 

�̃�2. 

 

The idea behind the Inputs’ Statistic method is the limitation 

of the input domain using the n-dimensional contour 

surfaces of the PDF rather than the computation of the 

contour surfaces of the transfer function 𝑓. Since the 

mathematical formulation of the PDF is known, its contour 

surfaces are easily identified. This choice is particularly 

relevant because it produces the most important features of 

the new method: generality, speed and conservatism.  

 

 

 

So accordingly to the Inputs’ Statistics method:  

Being ℇ̃ the contour surface of the PDF enclosing a 

probability equal to 1 − 𝛼, then �̃� is the region identified by 

contour surfaces of the transfer function 𝑓 corresponding to 

the thresholds �̃�1 and �̃�2 being the minimum and maximum 

cases which may occur inside ℇ̃. �̃�1 and �̃�2 are the safety 

box dimensions. 

 

In the next paragraphs, we will firstly explain, under the 

simplified hypothesis of having only normal distributed 

input variables, how to perform the integral of the PDF over 

the volume enveloped by the PDF contour surfaces and then 

how to compute the safety boxes dimensions. Then, we will 

generalize the method also to non normal distributed 

variables. 

 

3.2. Multivariate normal PDF and Ruben series 

 

Let us suppose that all the variables in the input vector 𝐗 are 

normally distributed random variables. In this simple case, 

the associated PDF is called Multivariate Normal (MVN): 

𝑝(𝐱) = 𝑝𝑀𝑉𝑁(𝐱, 𝛍, 𝚺) =
1

√|𝚺| (2𝜋)𝑛
𝑒−

1
2

(𝒙−𝝁)𝑻𝜮−𝟏(𝒙−𝝁)
 (6) 

where 𝚺  and 𝝁 are the symmetric positive definite variance 

matrix and mean values vector of the input vector 𝐗, 

respectively. The contour surfaces of the MVN are 

𝑛 −dimensional ellipsoids, indicated with ℇ, which can be 

described as: 

ℇ(t) = {𝐗 ∈ ℝ𝑛: (𝐗 − 𝛍)𝑻𝚺−𝟏(𝐗 − 𝛍) ≤ t} (7) 

where 𝑡 is the square radius of the ellipsoid and it 

completely identifies its size. 

 

The Inputs’ Statistics method requires the identification of 

that particular ellipsoid ℇ̃, having size t̃ , which corresponds 

precisely to the required level 𝛼, i.e. satisfying the 

condition: 

1 − ∫ 𝑝𝑀𝑉𝑁(𝐱, 𝛍, 𝚺)

ℇ̃(t̃)

 d𝐱 = 𝛼  (8) 

This operation can be done transforming the integral in eq.8 

in standard form and approximating it using a particular 

case of the general Ruben’s series in [20] and fully recalled 

in Genz [21]. It is possible to prove that the probability in 

eq.8 does not depend on the statistical characteristics of the 

normal distributed input variables, but only on the size of 

the ellipsoid identified by the parameter 𝑡 and on the 

number of dimensions 𝑛. Accordingly, the integral in eq.8 

can be expanded in series as: 

1 − ∑ 𝑐𝑗𝐹 (𝑛 + 2𝑗,
t̃

𝛽
)

∞

𝑗=0

= 𝛼 (9) 



where 𝐹(𝑙, 𝑦) is the central 𝜒2 cumulative distribution 

function with 𝑙 degrees of freedom evaluated at 𝑦 position 

and 𝛽 is a parameter. Sheil and  O’Muircheartaigh suggest 

in [22] to take 𝛽 equal to 29/32 in order to guarantee 

convergence of the series. The coefficients of the series are 

given by: 

𝑐0 = 𝛽𝑛/2 ;  𝑐𝑗 = 𝑗−1 ∑ 𝑔𝑗−𝑖𝑐𝑖

𝑗−1

𝑖=0

 for 𝑗 > 0 ;  𝑔𝑗 =
𝑛

2
(1 − 𝛽)𝑗    (10) 

Thus, eq.9 becomes a non linear algebraic equation to be 

solved numerically (e.g with the Newton method). Since the 

evaluation of Ruben’s series requires a very low 

computational time (fractions of second), the computation of 

the probability over the ellipsoid domain ℇ̃ is extremely fast. 

In tab.1 typical values of t̃ as function of 𝛼 and n are 

reported. 

Table 1: Ellipsoid square radius �̃� as function of probability 

level 𝜶 and number of input variables 𝒏 

�̃� 𝒏 = 𝟏 𝒏 = 𝟐 𝒏 = 𝟓 𝒏 = 𝟏𝟎 𝒏 = 𝟏𝟓 

𝜶 = 𝟏𝟎−𝟐 6,635 9,210 15,086 23,209 30,578 

𝜶 = 𝟏𝟎−𝟓 19,511 23,026 30,856 41,296 50,493 

𝜶 = 𝟏𝟎−𝟕 28,374 32,236 40,863 52,310 62,326 

𝜶 = 𝟏𝟎−𝟏𝟐 50,844 55,263 65,238 78,471 89,981 

 

3.3. Computation of the safety boxes dimensions 

 

As soon as ℇ̃, corresponding to a given 𝛼, is identified, the 

Inputs’ Statistics method prescribes to compute the safety 

boxes dimensions, i.e. �̃�1 and �̃�2, as the minimum and the 

maximum values of the transfer function 𝑓 within the 

ellipsoid ℇ̃. Using a programming algorithm, �̃�1 and �̃�2 can 

be numerically estimated: 

�̃�1 = min  𝑓( 𝐗) 

subjected to (𝐗 − 𝛍)𝑻𝚺−𝟏(𝐗 − 𝛍) ≤ t̃ 
𝐗 ∈ ℝ𝑛 

(11) 

and  

�̃�2 = max  𝑓( 𝐗) 

subjected to (𝐗 − 𝛍)𝑻𝚺−𝟏(𝐗 − 𝛍) ≤ t̃ 
𝐗 ∈ ℝ𝑛 

(12) 

This is a constrained non linear optimization problem that is 

extensively covered by literature [23] and commercial 

software. The analysis showed that the particular version of 

the Barrier method [24] belonging to the “interior point” 

class embedded in the Matlab Optimization Toolbox and the 

SNOPT software [25] are efficient tools to solve this 

problem, which is the final step prescribed by the Inputs’ 

Statistics method.  

 

3.4 Compliance with the safety constraint and 

characteristics of conservatism  

 

Once the optimization problem in eq.11 and eq.12 is solved, 

�̃�1 and �̃�2 are the dimensions of the safety box and the final 

outcome of the analysis. The identification of Ω̃ is now 

straightforward because by definition it is the region in the 

input space included between the contour surfaces of 

𝑓 corresponding to �̃�1 and �̃�2. Comparing Ω̃ with ℇ̃ we can 

verify that the results given by the Inputs’ Statistics method 

always satisfy the safety constraint in eq.2. Since, by 

construction Ω̃ includes ℇ̃, i.e. ℇ̃ is a subset of Ω̃: 

ℇ̃ ⊆ Ω̃ (13) 

and since the probability is monotone with respect to two 

sets which are one the subset of the other, then we can state 

that: 

∫ 𝑝(

ℇ̃

𝐱) d𝐱 ≤ ∫ 𝑝(

Ω̃

𝐱) d𝐱  (14) 

And, by design of ℇ̃ in eq.8, substituting, we prove that Ω̃ 

satisfies the constraint on the probability level: 

1 − α ≤ ∫ 𝑝(

Ω̃

𝐱) d𝐱 (15) 

that is, rearranging the expression, the Inputs’ Statistics 

method satisfies the safety requirement: 

P𝐼𝑆 = 1 − ∫ 𝑝(

Ω̃

𝐱) d𝐱 ≤ 𝛼 (16) 

In addition, reminding the definition of ΩOpt in eq.3, it 

follows that: 

1 − ∫ 𝑝(

Ω̃

𝐱) d𝐱 ≤ 1 − ∫ 𝑝(

ΩOpt

𝐱) d𝐱 (17) 

and thus we can conclude that:  

�̃�1 ≤ 𝑑1
𝑂𝑝𝑡

     and       �̃�2 ≥ 𝑑2
𝑂𝑝𝑡

 (18) 

which means that the result in terms of safety boxes 

dimensions given by the Inputs’ Statistics method is always 

conservative with respect to the optimal solution. In other 

words, the Inputs’ Statistics method designs safety boxes 

which are larger than or equal to the minimum size. 

 

3.4. Introduction of non-normal distributed variables 

 

The Inputs’ Statistics method can be generalized to the case 

of non normal distributed input variables as long as a 

transformation 𝜏 ∶  ℝ𝑛 ⇢ ℝ𝑛 exists that maps the input 

vector 𝒁, which may have non normal distributed 

components, into a full normal distributed vector 𝐗: 

𝑿 = 𝜏(𝒁) (19) 

If an appropriate transformation 𝜏 exists, the PDF of 𝑿 is 

still a MVN and the Ruben’s series can be applied to 

integrate the probability over the ellipsoidal contour 

surfaces of the PDF. Some transformations 𝜏 have been 

proposed depending on the available information on the 

PDF of 𝒁  [5]. 



In the simple case of having uncorrelated (i.e. diagonal 

covariance matrix) variables, the transformation in eq. 19 

can be applied singularly to each variable. In particular, 

considering uniform distributed variables, 𝜏 is the inverse of 

the cumulative distribution function (CDF) of the standard 

normal distribution. This is a particular case of the more 

general Probability Integral Transform [26]. Indeed, since 

the CDF of a normal distribution is strictly increasing, being 

𝑍𝑖 the i-th uniformly distributed random variable on [𝑎𝑖 , 𝑏𝑖] 

of 𝒁 and defining: 

𝑋𝑖 = cdfX
−1 (

𝑍𝑖 − 𝑎𝑖

𝑏𝑖 − 𝑎𝑖

) (20) 

Where cdfX
−1 denotes the inverse of the CDF of the normal 

distribution: 

cdfX(𝑥) =
1

√2𝜋
∫ e−

1
2

𝜉2

𝑥

−∞

 dξ (21) 

Then, 𝑋𝑖 is a normally distributed random variable with zero 

mean and unitary standard deviation. Therefore, at each 

iteration of the programming algorithm to compute the 

safety boxes (eq.11 and 12), the transformation in eq.20 is 

firstly applied to all the uniform variables 𝑍𝑖 to get the 

corresponding normal variables 𝑋𝑖 and then the 𝑋𝑖 variables 

are constrained to be inside the ellipsoid associated to the 

probability level 𝛼.  

 

Another alternative strategy when dealing with uniform 

distributions is to consider their full range as input domain 

to search for the min/max of the transfer function. In this 

case, the uniform distributed variables are simply let varying 

freely in the programming algorithm within their assigned 

interval. The normal distributed variables, instead, are 

constrained by an ellipsoid computed considering only the 

number of normal distributed variables. The two approaches 

are very close each other when an extremely low probability 

level is sought. They are just two of the infinite choices of 

the Ω̃ domain because both are always compliant to the 

safety constraint. 

 

3.5. Example of Inputs’ Statistics method application  

An example of application of the Inputs’ Statistics method 

applied to a simple analytical bi-dimensional function is 

here presented for clarification purpose. The selected 

analytical function is: 

𝑓(𝑥1, 𝑥2) = (𝑒𝑥1 − 1)(𝑒𝑥2/2 − 1)  (22) 

 

where 𝑥1 and 𝑥2 are uncorrelated normally distributed 

random variables with zero mean value and 𝜎1 = 0.29, 𝜎2 =
0.17. It satisfies the property 𝑓(𝝁) = 0 and its 

characteristics of non-linearity is similar to the typical 

functional shape of the atmospheric re-entry transfer 

function. Considering the SRA probability level, i.e. 

𝛼 = 10−5, the corresponding ellipsoid ℇ̃ is given by: 

ℇ̃ ≜
𝑥1

2

0.0841
+

𝑥2
2

0.0289
≤ 23.026 (23) 

Its boundaries have been plotted in fig.2 in dashed red line 

as well as the contour lines of the transfer function 𝑓.  

 

From the plot, it is shown that the maximum increasing rate 

is in the upper right quadrant and the maximum decreasing 

rate is in the bottom right one. Indeed, applying the 

programming algorithm, we get �̃�1 = −0.44397 and  �̃�2 =
0.57067 and the corresponding input points belong to those 

quadrants. Drawing the contour lines of 𝑓 corresponding to 

�̃�1 and  �̃�2 (in continuous red line in fig.2), we get the 

region Ω̃. For the generic case of atmospheric transfer 

function, it is extremely difficult to identify Ω̃ because 𝑓 is a 

multidimensional numerical propagator. In this simple case, 

instead, we visualize it and we also integrate the PDF over 

it. In this way, it is possible to verify that  ℇ̃ ⊂ Ω̃ , satisfying 

the safety requirement: P𝐼𝑆 = 1.17𝑒−6 ≤ 𝛼 = 10−5. 
Furthermore, thanks to the simple analytical expression of 

𝑓, it is also possible to change iteratively the 𝑓 contours in 

order to select those ones that satisfy the constraint with 

equality and, simultaneously, minimize the distance between 

𝑑1 and 𝑑2, i.e. estimate ΩOpt. It is shown in continuous 

black line in fig.2, corresponding to the optimal values of: 

𝑑1

𝑂𝑝𝑡
= −0.35252 and 𝑑2

𝑂𝑝𝑡
= 0.42953. 𝑑1

𝑂𝑝𝑡
and 

𝑑2

𝑂𝑝𝑡 satisfy eq.18, clarifying how the Inputs’ Statistics 

Figure 2: Application of the Inputs’ Statistics method to the 

transfer function 𝑓 in eq.22.: the area inside the continuous 

black line is ΩOpt, the area inside the dashed red line is ℇ̃ and 

the area inside the continuous red lines is the region Ω̃. 



approximates the optimal results from a conservative 

direction. 

 

4. CHARACTERISTICS OF THE METHOD 

 

4.1 Direct computation of the probability 
 

The driving idea which led to the development of the Inputs’ 

Statistics method is that the probability that a fragment 

impacts the ground at certain distance from the Aimed 

Impact Point is caused by the probability of having certain 

initial conditions (i.e. input parameters).  Therefore, 

working on the input domain, the probability can be directly 

and exactly computed, without the need of building up an 

output distribution. Most of the State of the Art methods, 

instead, compute the safety boxes based on the estimated 

probability derived from the simulated impact point 

distribution obtained by large sampling. 

 

Furthermore, the Inputs’ Statistics method has an explicit 

physical meaning thanks to a direct relationship between the 

input domain and the output interval. The worst case events 

are explicitly identified and quantified as well as the 

physical causes which lead to their occurrence. 

 

4.2 Computational speed  

 

Applying the Inputs’ Statistics method, the computation 

time of the safety boxes is decreased by more than one order 

of magnitude (typically from hours/days to minutes).  

 

Let us verify this statement with a rough analysis of the 

orders of magnitude of the computational time, comparing 

with a classical method based on Monte Carlo simulations. 

The computation time can be expressed as function of the 

number of transfer function evaluations. This is dependent 

on the particular algorithm and software used.  

 

In the tests performed with the Matlab Optimization 

Toolbox to solve the problem in eq.11 and eq.12 required by 

the Inputs’ Statistics method, it has been observed that: 

 the number of optimizer iterations is usually on the 

order of 10: 𝑂(10) 

 the number of transfer function evaluations for 

each optimizer iteration is also on the order of 10: 

𝑂(10) 

Hence, the total number of transfer function evaluations 

required by the Inputs’ Statistics method is on the order of 

100: 𝑂(102). The time required to evaluate the Ruben’s 

series for the probability computation has been considered 

negligible, since it is a fraction of second: 𝑂(10−1𝑠). 

Considering the atmospheric dynamics of a re-entry vehicle, 

the needed time for the single evaluation of the transfer 

function 𝑓 is about 1𝑠. Thus the total time to compute �̃�1 

and �̃�2 with the Inputs’ Statistics method, here called 𝑇𝑇𝑜𝑡𝐼𝑆
, 

is on the order of minutes: 𝑇𝑇𝑜𝑡𝐼𝑆
= 𝑂(minutes). 

 

Let us now do a similar rough analysis for a typical state 

of the art method. The heaviest step in the State of the Art 

techniques is the computation of the set of output samples 

for the statistic assessment, i.e. performing the Monte Carlo  

simulation. Indeed, it is reasonable to consider that the 

statistical post-process requires a negligible amount of time 

(usually 𝑂(𝑠)) with respect to building up the distribution. 

In addition, the number of samples required for having a 

significant statistical result and an acceptable confidence 

level is strongly dependent on the probability level 𝛼 (the 

smaller is 𝛼 the larger is the number of samples required). 

According to Haya in [27], for the estimation of a 

probability level 𝛼 = 10−5, it is necessary to perform 

𝑂(106) simulations of the re-entry dynamics transfer 

function. If 𝑇𝑇𝑜𝑡𝑆𝑜𝐴
 is the total computational time for the 

State of the Art methods and considering 1s for each sample 

generation, then 𝑇𝑇𝑜𝑡𝑆𝑜𝐴
= 𝑂(106𝑠) = 𝑂(𝑑𝑎𝑦𝑠). 

 

The significant gain in computational time (minutes against 

days) given by the Inputs’ Statistics method with respect to 

a Monte Carlo  based State of the Art method for the 

probability threshold of 10-5 has an improvement factor of 

about 1000. This gain is even more emphasised for smaller 

probability levels because the number of samples required 

for the Monte Carlo  simulation rapidly increases with 𝛼 

decrease, whereas the computational time of the Inputs’ 

Statistics method is totally independent with respect to 𝛼. 

 

In practise, to reduce this extremely large computational 

time of the Monte Carlo  simulations either the sample time 

is reduced, e.g. parallelizing the for cycle, or less samples 

are used. Less samples means either using particular 

statistical techniques (splitting algorithms, importance 

samples, line sampling etc) to speed up the simulation or 

just accepting a much lower confidence level. 

 

4.3 Difficult estimation of the conservatism of the results 

 

It has been proven that for construction and for whichever 

transfer function, the results provided by the Inputs’ 

Statistics method always satisfies the imposed safety 

constraints. This means that the method does not provide the 

smallest possible safety boxes, but a slightly larger one, 

approaching in this way the optimal one from a conservative 

direction. This consideration cannot be generally stated for 

the State of the Art methods, which converge to the imposed 

probability only in the ideal case of generating an infinite 

number of samples. 

 



Even though the approximation of the inputs’ statistics gives 

conservative results we have to assure that they are not too 

conservative far from the optimal. From the analysis 

reported in this paper, the results given by the Inputs’ 

Statistics method are assessed quasi-optimal only for the 

transfer function associated to safety boxes computation. 

For particular transfer functions like the propagation of the 

initial conditions of an atmospheric re-entry, the method 

gives results quasi-optimal, with a good accuracy compared 

with the State of the Art methods as shown in the next 

section.  

 

5. APPLICATION TO THE ATV-GL SHALLOW RE-

ENTRY 

 

In order to show the effectiveness of the Inputs’ Statistics 

method and its accuracy, a simplified study case of the 

controlled shallow re-entry of the Automated Transfer 

Vehicle – George Lamaitre [19] has been assessed with this 

method. Only four variables affected by uncertainty are here 

considered: the magnitude of the Δ𝑉 of the second de-

orbitation manoeuvre (DEO2) Δ𝑉𝑚𝑎𝑛; the explosion altitude 

ℎ𝐸𝑥𝑝𝑙 , the pitch angle of thrust orientation 𝛿, the vehicle 

overall mass 𝑚0. All the four variables are considered 

uncorrelated normally distributed and the relative 

parameters are collected in tab.2. 

 

Table 2: Statistical parameters of the normal distributed 

variables 

 Δ𝑉𝑚𝑎𝑛 h𝐸𝑥𝑝𝑙  𝛿 𝑚0 

Mean 

value  𝜇 

47 𝑚/𝑠 77 𝑘𝑚 0 𝑑𝑒𝑔 15000 𝑘𝑔 

Standard 

deviation 𝜎 

0.47 𝑚/𝑠 2 𝑘𝑚 0.57𝑑𝑒𝑔 106 𝑘𝑔 

 

Other parameters, which are required by the dynamic 

propagator to integrate the atmospheric re-entry trajectory of 

the Aimed Impact Point, are collected in tab.3. 

 

Table 3: Data required by the dynamic propagator used for 

the computation of the Aimed Impact Point 

Drag coefficient 2.2  

Normal surface 16 𝑚2   

Specific Impulse 312 𝑠  

Thrust 𝑇 1007 𝑁   

Atmospheric density CIRA86-NRLMSISE-00 

model with 𝐹10.7 =

149.9 and 𝐴𝑃 = 18.5 

 

After the explosion, the fragment must be characterized by 

ballistic coefficient, magnitude and direction of explosion. 

We distinguish between a long fragment and a short 

fragment. The long fragment has characteristics that leads it 

to fall in front of the reference point (positive output) giving 

the value of �̃�1; the short fragment has characteristics that 

leads it to fall behind the reference point (negative output) 

giving the value of �̃�2. 

 

The State of the Art method chosen to compare the results 

given by the Inputs’ Statistics method is the Monte Carlo  

simulation + Peaks over threshold here applied for the sake 

of comparison with the simplified set of variable 

parameters. The probability level considered in this 

computation is 𝛼 = 10−5 corresponding to the Safety Re-

entry Area (SRA). The results have been collected in tables 

4 and 5. 

 

Table 4: Results in terms of computational time, number of 

iterations of the programming algorithm and SRA 

dimension given by the Inputs’ Statistics method. 

Results given by Inputs’ Statistics method 

Number of iterations of the 

programming algorithm: 
33  

Computational time: 850 seconds 

SRA dimension 4310 km 

 

Table 5: Results in terms of computational time, number of 

samples of the statistical distribution and SRA dimension 

given by the State of Art method: Monte Carlo simulation + 

Peaks over threshold method 

Results given by Monte Carlo Simulation + Peaks 

over threshold method 

Number of samples: 40000 (half for short frag. 

and half for the long frag.) 

Computational time: About  22 ℎ𝑜𝑢𝑟𝑠 

SRA dimension 3900 km 

 

The Inputs’ Statistic method converges to a solution with a 

speed about 100 times faster. The difference in dimension is 

noticeable but quite small (~10%). The State of Art method 

gets closer to the optimal solution while the Inputs’ Statistic 

method provides a quick and conservative solution to the 

problem of the SRA. 

 



 

Figure 3: Safety boxes computation using a Monte Carlo  

based State of the Art method and the Inputs' Statistics 

method. Comparison of the results. 

6. CONCLUSION AND AKNOWLEDGMENTS 

A new approach for the estimation of rare events applied to 

the computation of the SRA has been presented. It has been 

demonstrated that this approach is always conservative and 

for the specific application of the SRA it approximates the 

optimal solution. It has been shown that the time to compute 

a solution is few orders of magnitude smaller than the time 

required by the state of art methods: this may allow 

sensitivity analysis and trade-off of multiple computations 

of SRA for different initial conditions as it was required in 

the design of the ATV-GL shallow reentry experiment. The 

method is also quite not sensitive to the dimension of the 

input parameters that are subject to statistic distribution of 

their uncertainties. Limitation of the method has been 

explained, as the solution is not optimal although it may get 

quite close to the optimal solution under certain conditions. 

A comparison of this method with a state of the art method 

has been performed in section 5 with the computation of the 

SRA of ATV-GL shallow reentry confirming the expected 

good performance. 

Potential application of this method to other engineering 

problems requiring the estimation of rare events caused by 

multivariable inputs with known statistic distribution of 

uncertainties will be subject of future works. 

The authors acknowledge the support of ESA and CNES 

Flight Dynamics experts to the study performed during the 

preparation of ATV-GL shallow reentry mission.  

 

7. REFERENCES 

 

[1] ESA Space Debris Mitigation WG, ESA Space Debris 

Mitigation Compliance Verification Guidelines, 19-

February-2015, ESSB-HB-U-002, Issue 1 Revision 0. 

[2] Frédéric Renaud, Thierry Martin, Safety Boxes Sizing 

for Controlled Re-Entry Application to Automated 

Transfer Vehicle (ATV), Proceedings of the 3rd IAASS 

Conference: building a safer space together, 21-23 

October 2008, Rome, Italy. 

[3] Michael Falk, Jürg Hüsler, Rolf-Dieter Reiss, Laws of 

Small Numbers: Extremes and Rare Events, Third 

edition, Birkhäuser, 2010. 

[4] Jérôme Morio,  Mathieu Balesdent, Damien 

Jacquemart, Christelle Vergé. A survey of rare event 

simulation methods for static input-output models. 

Simulation Modelling Practice and Theory, Elsevier, 

2014, 49, pp.287-304 

[5] Jérôme Morio,  Mathieu Balesdent, Estimation of Rare 

Event Probabilities in Complex Aerospace and Other 

Systems, A Practical Approach, Woodhead Publishing, 

Elsevier. 

[6] Samuel Kotz, Saralees Nadarajah, Extreme Value 

Distributions. Theory and Applications, Imperial 

College Press, London, 2000.  

[7] Harald Niederreiter, Denis TalayMonte Carlo and 

Quasi-Monte Carlo Methods, Springer, 2004. 

[8] Christian P. Robert, George Casella, Monte Carlo 

Statistical Methods, Springer, New York, 2005. 

[9] Gerardo Rubino, Bruno Tuffin, Rare Event Simulation 

using Monte Carlo Methods, 3rd chapter: Splitting 

techniques, by Pierre L'Ecuyer, Francois Le Gland, 

Pascal Lezaud and Bruno Tuffin, 2009 John Wiley & 

Sons, Ltd. 

[10] Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev, 

Handbook of Monte Carlo Methods, 2011 John Wiley 

& Sons, INC., Publications. 

[11] F. Casciati, J. B. Roberts, Reliability problems: general 

principles and applications in mechanics of solids and 

structures, 3rd chapter: Methods for structural 

reliability computations, by P. Bjerager, International 

centre for mechanical sciences, Courses and Lectures-

No.317, Springer-Verlag Wien GMBH. 

[12] Seung-Kyum Choi, Ramana V. Grandhi, Robert A. 

Canfield, Reliability-based Structural Design, Springer-

Verlag London Limited 2007. 

[13] Bruno Sudret, Meta-models for structural reliability 

and uncertainty quantification, Fifth Asian-Pacific 

Symposium on Structural Reliability and its 

Applications, Singapore, 2012. 

[14] Jan Beirlant, Yuri Goegebeur, Jozef Teugels, Johan 

Segers, Daniel De Waal, Chris Ferro Statistics of 

Extremes: Theory and Applications , 2004 John Wiley 

& Sons, Ltd.Manfred Gilli, Evis Kellezi, An 

Application of Extreme Value Theory for Measuring 

Financial Risk, Computational Economics 27(1), 2006, 

1–23. 

[15] Ana Ferreira, Laurens de Haan, On the block maxima 

method in extreme value theory: PWM estimators, The 

Annals of Statistics 2015, Vol. 43, No. 1, 276. 

[16] Richard W. Katz, Marc B. Parlange, Philippe Naveau, 

Statistics of extremes in hydrology, 2001, Advances in 

Water Resources 25 1287-1304. 



[17] Viatcheslav V. Kharin, Francis W. Zwiers, Xuebin 

Zhang, Gabriele C. Hegerl, Changes in temperature 

and precipitation extremes in the IPCC ensemble of 

global coupled model simulations, 2007, Journal of 

Climate 20 1419-1444. 

[18] Catherine Hourtolle, Sylvain Delattre, Jean-François 

Goester and Emilio De Pasquale, Studies about a 

shallow re-entry for ATV-5, 25th International 

Symposium on Space  Flight Dynamics, October 19 – 

23, 2015, Munich, Germany 

[19] Harold Ruben Probability contents in regions under 

spherical normal distributions, IV: The distribution of 

homogeneous and non-homogeneous quadratic 

functions of normal variables. 1962, The Annals of 

Mathematical Statistics, 33:552–570. 

[20] Alan Genz, Frank Bretz Computation of Multivariate 

Normal and 𝑡 Probabilities, Springer Berlin 

Heidelberg; 1st edition, July 2009. 

[21] Sheil WF, O’Muircheartaigh, The distribution of non-

negative quadratic forms in normal variables. 1977, 

Journal of the Royal Statistical Society, Series C 26:92–

98 Cited on p. 14, 66. 

[22] J. Nocedal and S. Wright, Numerical Optimization. 

Springer Series in Operations Research and Financial 

Engineering, Springer New York, 2006. 

[23] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, 

An interior algorithm for nonlinear optimization that 

combines line search and trust region steps, 

Mathematical Programming, Vol. 107, No. 3, 2006, pp. 

391–408 

[24] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An 

SQP algorithm for large-scale constrained 

optimization, SIAM J. Optim., 12 (2002), pp. 979–

1006. 

[25] George Casella, Roger L. Berger, Statistical Inference, 

2nd Edition 2001 Duxbury Advanced series 

[26] Rodrigo Haya Ramos, Deimos Space S.L.U. (Spain), 

Computation of IXV Safety Footprint boundaries, CCT 

ORB, Seminar on rare events, extreme values, extreme 

impacts applied to flight dynamics, Monday, April 27th 

2015, ISAE-SUPAERO, Toulouse (FR).  


