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Why HADES? 
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High-fidelity Asteroid Deflection Evaluation Software* capabilities 

 Analysis of spacecraft motions at irregular objects 

 Performance of different types of guidance schemes 

 Relative navigation methods  

 Performance of slow-push asteroid threat mitigation methods as 
Gravity Tractor (GT), Ion-beam Shepherd (IBS) and Laser Ablation (LA) 

*Hades (/ˈheɪdiːz/; Ancient Greek: ᾍδης or Άͅδης, Háidēs) ancient Greek chthonic god of the underworld 

Motivations 

 Increasing number of missions to minor bodies (science, deflection) 

 Relatively unknown environment (lack of knowledge prior arrival) 

 Detailed preliminary analysis (operational orbit) 

 System performance (e.g. thruster accuracy, sensors) 

https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wiktionary.org/wiki/%E1%BE%8D%CE%B4%CE%B7%CF%82
https://en.wiktionary.org/wiki/%E1%BE%8D%CE%B4%CE%B7%CF%82
https://en.wikipedia.org/wiki/Ancient_Greek_religion
https://en.wikipedia.org/wiki/Chthonic
https://en.wikipedia.org/wiki/God_of_the_dead
https://en.wikipedia.org/wiki/Greek_underworld
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Software Architecture 
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HADES is a full Matlab software relying on a number of C routines 
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Propagation Module: Spacecraft Dynamics 
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 Hill’ s frame 

 

 Asteroid’s frame 

 

 Body fixed frame 

 

 Perturbation 

• SRP 

• Non uniform gravity field 

Hill’s frame 

Body frame 

Relative error between harmonics and 
shape model 

x 10-3 

Shape model gravity acceleration on 
(433) Eros 
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Control Module 
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 A continuous Lyapunov controller 

 

 Discrete controllers based on the concept of control box 

 

 Discrete control based on reflection method 

• invert the direction of the velocity when the spacecraft gets closer, 
• apply a manoeuvre along the radial direction such as to obtain the 

velocity reflected with respect to the tangential direction 
 

 Discrete control based on dead band control 

 

 Discrete LQR with integrative contribution 

 

 Discrete control designed using stability criteria (Y. Liu et al, 2003) 

 

 

 

Manoeuvre error in magnitude and direction  
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Navigation Module 
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• performance bound                                                              ,  Filter Gain 

 Problem definition 

• Dynamics problem 

• Measurements  

• Estimate state variables 

 Performance model   
 

H-infinity bounds the maximum expected error with unknown statistics 

• weighted samples to propagate mean and covariance matrix through sigma-points 

 

 

 

 

 

• update 

       

 
 

 

Sigma points 

iχ

UT mean UT covariance 

Transformed  

sigma points 
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Navigation Module: Measurements Model 
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  Camera and LIDAR models  

• Simple based on ellipsoidal shape 

o Centroid identification (xc,yc)  

o Local azimuth and elevation 

o LIDAR pointing towards the centroid 

 

• Detailed based on actual shape models 

o Centre of brightness identified on the camera screen 

o LIDAR illuminates a spot close to the centre of brightness 

 

 Modelisation of illumination and visibility 

Pinhole camera 
model and LIDAR 

Example of image as seen on the screen of the camera and 
footprint of the LIDAR 
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Body Fixed with Asteroid Didymos 
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Continuous Thrust 
Control box with 

300 s sampling time 

Dead-band with 900 s 
sampling time 

1200 s Discrete LQR  

Method Actuation interval   Δv  [m/s] 

Continuous thrust  5 56.2 

Control box  (100m) 300 62.5 

Dead-band control 

(100m) 

300 64.3 

600 61.7 

900 54.4 

Discrete LQR  300 55.8 

600 54.9 

900 53.4 

1200 51.2 

LQR for hovering  1) 200 above a, 
 2) 200 m above b, 3) 3D position 1300 m 

∆v budget for 1 day 

– 20 m along track (1σ) 
– 10 m cross track (1σ) 
– 2 mm/s along track (1σ) 
– 1 mm/s cross track (1σ) 

– 100 m position error  
– 1 cm/s velocity error 
– 2% (3σ) error in magnitude 
– 1.5 deg (3σ) error in direction 

 Fixed hovering at 200m along a-axis 

– asteroid size 
– 4th order gravity field 
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Hill’s Hovering: Controlling the Illumination Angle 
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Method Actuation interval  

(min-max-mean) [min] 

 Δv 

[m/s] 

Continuous thrust  8  16.9 

Control box 421/533/485 24.2 

Reflection method 325/1792/890  11.2 

Dead-band control 8/440/140 25.9 

Discrete LQR  360 (fixed) 24.1 

Discrete LQR 240 (fixed) 24.0 

Discrete LQR 180 (fixed) 23.1 

Stable PD  360 (fixed) 18.2 

Stable PD 240 (fixed) 18.2 

Stable PD 180 (fixed) 18.2 
Continuous Thrust Control box 

Dead-band 6 hrs discrete LQR 6 hrs stable PD 

∆v budget for 60 days 

 Objective: to maintain 5 degrees illumination angle 
– 20 m along track (1σ) 
– 10 m cross track (1σ) 
– 2 mm/s along track (1σ) 
– 1 mm/s cross track (1σ) 

– 2% (3σ) error in magnitude 
– 1.5 deg (3σ) error in direction 

– Reference trajectory 

– Initial trajectory 
 

– 4th order gravity field   
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Hill’s hovering: Navigation Errors 
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 Fixed hovering 
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Δv [cm/s] 

Case 1 9.18 

Case 2 9.14 

Case 3 9.25 

Case 4 9.18 

∆v budget for 3 day 

Lidar mounting error (1σ) 0.001 deg 

Lidar range error (1σ) 10 m 

Lidar range bias (1σ) 1 m 

Number of pixels per side 2048 

Camera FoV 20 deg 

Camera side 10 cm 

Attitude error (1σ) 0.0057 deg 

Attitude bias (1σ) 0.0006 deg 

Measurements assembly 
characteristics 

*shape from asteroid (433) Eros 

– Initial and reference trajectory – 100 m initial position estimate error  
– 1 cm/s initial velocity error 

Case 1:  
– True world ->ellipsoid shape  
– Filter 4th order gravity field  
– Measurements model simple 

Case 2:  
– True world ->ellipsoid shape  
– Filter 4th order gravity field  
– Measurements model detailed 

Case 3:  
– True world ->1708 facets* 
– Filter ->1708 facets* 
– Measurements model detailed 

Case 4:  
– True world -> 7790 facets* 
– Filter ->1708 facets*, 1% error on Rmean 

– Measurements model detailed 

 10% difference between 
   different models 
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Station Keeping at 10 km Station for AIM 
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 Initial trajectory 
 
 

 Control box 1.5 km side 
 
 

 Performance model 
 – 20 m along track (1σ) 

– 10 m cross (1σ) 
– 2 mm/s along track (1σ) 
– 1 mm/s along track (1σ) 

– 2% (3σ) error in magnitude 
– 1.5 deg (3σ) error in direction 
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 Synthetic results displayed: single case 

 MC simulation   
– 20 m along track (1σ) 
– 10 m cross (1σ) 
– 2 mm/s along track (1σ) 
– 1 mm/s along track (1σ) 
– 50 m per component position dispersion (1σ) 
– 1 cm/s per component velocity dispersion (1σ) 
– 2% (3σ) error in magnitude 
– 1.5 deg (3σ) error in direction 
 
 

 MC statistics (30 days)  

Minimum and maximum 
manoeuvre vs. minimum actuation 

time 

Station Keeping at 10 km Station for AIM 
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Deflection Module 
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 Laser Ablation 
• 3D Interaction laser-matter (Thiry et al 2015) 
• Thrust aligned to local surface normal  
• Affected by rotational velocity 
• No contamination included 
• 2 laser pointing strategies 

– Pointing to obtain desired  
      thrust direction 
– Fixed laser pointing 

 

 Ion Beam shepherd 
• Ion plume Gaussian expansion (Goebel et al 2008) 
• Ion plume constant axial velocity 
• 2 thrusters required 
• No contamination included 

 

 Gravity Tractor 
• Avoid asteroid impingment by expansion plume 

 
 Orbital and rotational dynamics computational intensive:  

• Mean directions of thrust and efficiency based on the actual geometry of the 
asteroid over a control period of 7 days  

• Variational approach implemented (Gauss equations) 
• No actual spacecraft control integrated 

Variable pointing Fixed pointing 

IBS 
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Deflecting a 100 m Asteroid 
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1) 2) 

Laser ablation deflection: 1) controlling laser 
pointing, 2) maintaining laser pointing fixed. 

Ion Beam Shepherd deflection Gravity Tractor deflection. 

 (433) Eros scaled down to 100 m 
 

 mass 9.263∙108 kg 
 
 20 years operations 

 
 20 kW maximum power for laser 
    beam (μ=50%) or thrusters (μ= 60%) 
 
 Systems placed at 200 m along track  
 
 

Results 
 
 GT Maximum deflection 

• spacecraft mass circa 16500 kg 
 LA with variable pointing 20% more 
    efficient than the fixed pointing 

• operationally more complex  
 IBS appears less efficient but 

• more lightweight and less 
  affected by contamination 
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 Possible impact on a 100 m asteroid 
 Time to clear the proximity of the asteroid 
 
 
 
 
 

• 30,000 uniformly distributed samples on the surface E≤0  
• different value of area to mass ratios (A2M) 
• fractions kω of the asteroid’s nominal angular velocity 

Debris Analysis around a 100 m Asteroid 
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A2M = 0.001 kg/m2 

A2M = 0.01 kg/m2 

 The initial conditions play important role in the number of 
surviving particles; if all the SRP is the same, particles with 
lower initial tangential velocity will have more probability to 
survive for longer period 

 
 The SRP will affect the survivability – A2M = 0.001 kg/m2 

produces more surviving samples because particles are more 
affected by the asteroid’s gravity and less by the SRP 

 
 At the beginning the particles with higher energy (close to 
0) will experience SRP and third body effects leading to 
escape/impact 

Hill radius: circa 15 km 
 Asteroid 2013XK22: Shape Geographos 

Survival particles from impact 
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Conclusions & Future Works 
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 Main features and architecture of HADES 
• Dynamics in 3 different frames 
• Several control techniques available 
• Different measurement models 
• Use of asteroid actual shapes  
• GNC 
• Deflection analysis 

 

 Possibility of performing broad range of simulations 
• Assessment different control laws 
• Assessment impact of environment knowledge 
• MC simulations 
• Debris analysis 
• LA, IBS and GT deflections 
 

 Improvements 
• Integration of deflection systems 

 Propagation Module 
 Control Module 
 Navigation Module 

– Estimation of the deflective action 

• Effect of contamination 
 

 

LA laser pointing control with 
contamination 
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D+ is the right-hand generalized derivative 
      control time 
          suitable scalar function 
  

19 

 Discrete LQR with integrative contribution 

 

 

 Discrete control designed using stability criteria (Y. Liu et al, 2003) 

 

 

 

– f and h are null for  

1- There has to exist a constant  

Control Module 

2- There has to exist a constant  

        
 

   

for suitable neighbourhood of  

if  

 and   if 



STARDUST-DMS-PMD-HAO-CONFICATT6-PRE-10-E © DEIMOS Space S.L.U. 

Infos 

 HADES runs completely in matlab 

 Routines  both in Matlab ® and mex-fied in C for speed purpose 

 dynamics equations (mainly for gravity field purposes) 
 visibility functions (shapes, shadows) 

 Integration of ODE 

1. matlab ode Runge-Kutta 45 (for events to be located) 
2. integrator ODEMEXv12 package 

 10-50 times faster 
Χ No events handling 
Χ asteroid shape dynamcs to be included 

 

 
 Hints 

• Coupled Control-Navigation intensive 
 performance methods for long simulations  
 simulations to draw necessary statistics 
and move to performance model 

• Continuous, discrete LQR and control box 
tends to be more precise and robust 
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Gravity Based on Polyhedral Model 

x 10-3 

Potential gradient defined using polyhedron described by triangular facets 

Geometrical characterisation of the surface (normals, edges etc) 

rf spacecraft distance from facet’s centre 

re spacecraft distance from edge centre 

Asteroid (433) Eros - acceleration on the surface: comparison with paper Winkler 

Winkler Implemented model 

Solution overlapping – difference due to number of facets and density (assumed 2500 kg/m3) 
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Spherical Harmonics and Reflection 

Ellipsoid of arbitrary size: harmonics coefficients (Boyce 1997)  

mesh 14400 facets Gravity attraction error on the circumscribing sphere at 3 km 

Reflection: unable to maintain 5 degrees illumination angle 


