

ASTEROID PROXIMITY GNC ASSESSMENT THROUGH HIGH-FIDELITY ASTEROID DEFLECTION EVALUATION SOFTWARE (HADES)

Massimo Vetrisano and Juan L. Cano {massimo.vetrisano, juan-luis.cano}@deimos-space.com

The 6th International Conference on Astrodynamics Tools and Techniques (ICATT)

Elecnor Deimos is a trademark which encompasses Elecnor Group companies that deal with Technology and Information Systems: Deimos Space S.L.U., Deimos Castilla La Mancha S.L.U., Deimos Engenharia S.A., Deimos Space UK Ltd., Deimos Space S.R.L. (Romania)

Motivations

- □ Increasing number of missions to minor bodies (science, deflection)
- □ Relatively unknown environment (lack of knowledge prior arrival)
- Detailed preliminary analysis (operational orbit)
- □ System performance (e.g. thruster accuracy, sensors)

High-fidelity Asteroid Deflection Evaluation Software* capabilities

- Analysis of spacecraft motions at irregular objects
- Performance of different types of guidance schemes
- Relative navigation methods
- Performance of slow-push asteroid threat mitigation methods as Gravity Tractor (GT), Ion-beam Shepherd (IBS) and Laser Ablation (LA)

*Hades (/ˈheɪdiːz/; Ancient Greek: Ἄδης or Ἀδης, Háidēs) ancient Greek chthonic god of the underworld

Propagation Module: Spacecraft Dynamics

 \mathbf{r}_{sc}

K

x 10⁻³

cceleration [m/s

y [km]

-1.5 1

A continuous Lyapunov controller

- Discrete controllers based on the concept of control box
- Discrete control based on reflection method
 - invert the direction of the velocity when the spacecraft gets closer,
 - apply a manoeuvre along the radial direction such as to obtain the velocity reflected with respect to the tangential direction
- Discrete control based on dead band control
- □ Discrete LQR with integrative contribution
- Discrete control designed using stability criteria (Y. Liu et al, 2003)

Manoeuvre error in magnitude and direction $u = R(\theta, \varphi)u_{nom}(1 + r_{ex})$

Problem definition

- Dynamics problem $x_{k+1} = f(x_k, u_k, w_k)$
- Measurements $y_k = h(x_k, v_k)$
- Estimate state variables \tilde{x}_k

Derformance model $z = [rv] + x_{meas}$

□ H-infinity bounds the maximum expected error with unknown statistics

$$\mathbf{z}_{\mathbf{k}} = \mathbf{L}_{\mathbf{k}} \mathbf{x}_{\mathbf{k}}$$

$$J_{h} = -\frac{1}{\rho} \| \mathbf{x}_{0} - \tilde{\mathbf{x}}_{0} \|_{\mathbf{P}_{0}^{-1}}^{2} + \sum_{k=0}^{N-1} \left(\| \mathbf{z}_{k} - \tilde{\mathbf{z}}_{k} \|_{\mathbf{S}_{k}}^{2} - \frac{1}{\rho} \left(\| \mathbf{w}_{k} \|_{\mathbf{Q}_{k}^{-1}}^{2} + \| \mathbf{v}_{k} \|_{\mathbf{R}_{k}^{-1}}^{2} \right) \right) < 1 \qquad J_{h}^{*} = \min_{\tilde{\mathbf{x}}_{k}} \max_{\mathbf{w}_{k} \mathbf{v}_{k} \mathbf{x}_{0}} J_{h}$$

$$\cdot \text{ weighted samples to propagate mean and covariance matrix through sigma-points}$$

$$Sigma \text{ points}$$

$$\chi_{i} \qquad \chi_{i} = \sum_{l=0}^{2n} W_{l}^{(m)} \chi_{k|k-1}^{i}$$

$$\mathbf{v}_{k}^{-1} = f(\boldsymbol{\chi}_{k-1}^{i}, \boldsymbol{u}_{k}) \qquad \mathbf{v}_{k}^{-1} = \sum_{l=0}^{2n} W_{l}^{(c)} (\boldsymbol{\chi}_{k|k-1}^{i} - \tilde{\mathbf{x}}_{k}^{-}) (\boldsymbol{\chi}_{k|k-1}^{i} - \tilde{\mathbf{x}}_{k}^{-})^{T} \qquad \mathbf{v}_{T} \text{ covariance} \text{ sigma points}$$

$$\cdot \text{ update } \tilde{\mathbf{x}}_{k} = \tilde{\mathbf{x}}_{k}^{-} + \mathbf{K}(\mathbf{y}_{k} - \tilde{\mathbf{y}}_{k}) \qquad (\mathbf{P}_{k})^{-1} = (\mathbf{P}_{k}^{-}) + (\mathbf{P}_{k}^{-})^{-1} \mathbf{P}_{xy,k} \mathbf{R}_{k}^{1-} [(\mathbf{P}_{k}^{-})^{-1} \mathbf{P}_{xy,k}]^{T} - \theta_{k} \mathbf{I}_{d}$$

$$\cdot \text{ performance bound } \theta_{k}^{-1} = \xi \max \left(\operatorname{eig} \left((\mathbf{P}_{k}^{-})^{-1} (\mathbf{P}_{k}^{-})^{-1} \mathbf{P}_{xy,k} \mathbf{R}_{k}^{1-} [(\mathbf{P}_{k}^{-})^{-1} \mathbf{P}_{xy,k}]^{T} \right), \text{ Filter Gain } \mathbf{K} = \mathbf{P}_{xy,k} \mathbf{P}_{y,k}^{-1}$$

6

Navigation Module: Measurements Model

Pinhole camera

model and LIDAR

K

 $\delta \mathbf{r}$

SC

 \mathbf{Z}_{h}

 $\hat{\mathbf{X}}_{h}$

Â

У

V

Camera and LIDAR models

- Simple based on ellipsoidal shape
 - Centroid identification (x_c, y_c) $\phi = \tan^{-1} \frac{\lambda}{2}$
 - Local azimuth and elevation $\psi = \tan^{-1} \frac{y_c}{\sqrt{(x_c)^2}}$
 - LIDAR pointing towards the centroid

$$d = \left\| \delta \mathbf{r}_{sc} - \mathbf{x}_{surface}^{c} \right\|$$

- Detailed based on actual shape models
 - Centre of brightness identified on the camera screen
 - LIDAR illuminates a spot close to the centre of brightness $\hat{\boldsymbol{z}}_{h}$

Modelisation of illumination and visibility

Body Fixed with Asteroid Didymos

□ Fixed hovering at 200m along a-axis

- asteroid size $[c_1 c_2 c_3] = [1.05 0.65 0.45]$ km
- 4th order gravity field

- 100 m position error
- 1 cm/s velocity error
- -2% (3 σ) error in magnitude
- $-1.5 \text{ deg } (3\sigma) \text{ error in direction}$
- -20 m along track (1 σ)
- -10 m cross track (1 σ)
- -2 mm/s along track (1 σ)
- -1 mm/s cross track (1 σ)

Δv budget for 1 day

Method	Actuation interval	$\Delta v [m/s]$
Continuous thrust	5	56.2
Control box (100m)	300	62.5
Dead-band control	300	64.3
(100m)	600	61.7
	900	54.4
Discrete LQR	300	55.8
	600	54.9
	900	53.4
	1200	51.2

LQR for hovering 1) 200 above a, 2) 200 m above b, 3) 3D position 1300 m

Dead-band with 900 s sampling time

STARDUST-DMS-PMD-HAO-CONFICATT6-PRE-10-E

0.4

Time [days]

0.6

0.8

0.2

0.8

0.6

0.2

0.4

Time [days]

1200 s Discrete LQR

8

Hill's Hovering: Controlling the Illumination Angle

Objective: to maintain 5 degrees illumination angle

- Reference trajectory
 - $x_{ref} = [-3.373km, 0km, 0km, 0km/s, 0km/s, 0km/s]$
- Initial trajectory
 - $x_0 = [-3.423 km, 0.05 km, 0.05 km, 0.000031 km/s, -0.000051 km/s, 0.000020 km/s]$
- 4th order gravity field

-2% (3 σ) error in magnitude

 $-1.5 \text{ deg } (3\sigma) \text{ error in direction}$

- -20 m along track (1 σ)
- -10 m cross track (1 σ)
- -2 mm/s along track (1 σ)
- 1 mm/s cross track (1 σ)

Δv budget for 60 days

Method	Actuation interval	Δv
	(min-max-mean) [min]	[m/s]
Continuous thrust	8	16.9
Control box	421/533/485	24.2
Reflection method	325/1792/890	11.2
Dead-band control	8/440/140	25.9
Discrete LQR	360 (fixed)	24.1
Discrete LQR	240 (fixed)	24.0
Discrete LQR	180 (fixed)	23.1
Stable PD	360 (fixed)	18.2
Stable PD	240 (fixed)	18.2
Stable PD	180 (fixed)	18.2

SC-Ast-Sun Angle [deg

Hill's hovering: Navigation Errors

□ Fixed hovering

- Initial and reference trajectory $x_0 = 5 \cdot [-1km, 1km, \sqrt{2km}, 0km/s, 0km/s, 0km/s]$

Measurements assembly characteristics

100 m initial position estimate error

- 1 cm/s initial velocity error

Lidar mounting error (1σ)	0.001 deg
Lidar range error (1σ)	10 m
Lidar range bias (1σ)	1 m
Number of pixels per side	2048
Camera FoV	20 deg
Camera side	10 cm
Attitude error (1σ)	0.0057 deg
Attitude bias (1σ)	0.0006 deg

Δv budget for 3 day

	$\Delta v [cm/s]$
Case 1	9.18
Case 2	9.14
Case 3	9.25
Case 4	9.18

□ 10% difference between different models

*shape from asteroid (433) Eros

10

Station Keeping at 10 km Station for AIM

11

Station Keeping at 10 km Station for AIM

□ Synthetic results displayed: single case

Total control budget is: 1.9154 m/s

Mean Time between actuations: 4547.3684 min

Min Time between actuations: 4392.0903 min

Max Time between actuations: 4858.802 min

□ MC simulation

- 20 m along track (1 σ)
- 10 m cross (1σ)
- -2 mm/s along track (1 σ)
- -1 mm/s along track (1 σ)
- 50 m per component position dispersion (1 σ)
- 1 cm/s per component velocity dispersion (1 σ)
- -2% (3 σ) error in magnitude
- 1.5 deg (3 σ) error in direction

□ MC statistics (30 days)

Total control budget is: 0.93109 m/s (dispersion 1-σ: 0.048834 m/s) Mean Time between actuations: 3.1824 days (dispersion 1-σ: 0.03609 days) Min mean Time between actuations: 3.0032 days (dispersion 1-σ: 0.087042 days) Max mean Time between actuations: 3.3528 days (dispersion 1-σ: 0.068887 days) Min mean dy actuations: 0.042674 m/s (dispersion 1-σ: 0.0023174 m/s)

Max mean dy actuations: 0.067255 m/s (dispersion 1-σ: 0.0010453 m/s)

Deflection Module

Laser Ablation

- 3D Interaction laser-matter (Thiry et al 2015)
- Thrust aligned to local surface normal
- Affected by rotational velocity
- No contamination included
- 2 laser pointing strategies
 - Pointing to obtain desired thrust direction
 - Fixed laser pointing

Ion Beam shepherd

- Ion plume Gaussian expansion (Goebel et al 2008)
- Ion plume constant axial velocity
- 2 thrusters required
- No contamination included

Gravity Tractor

Avoid asteroid impingment by expansion plume

Orbital and rotational dynamics computational intensive:

- Mean directions of thrust and efficiency based on the actual geometry of the asteroid over a control period of 7 days
- Variational approach implemented (Gauss equations)
- No actual spacecraft control integrated

- □ (433) Eros scaled down to 100 m
- □ mass 9.263·10⁸ kg
- □ 20 years operations
- □ 20 kW maximum power for laser beam (μ =50%) or thrusters (μ = 60%)
- □ Systems placed at 200 m along track

Laser ablation deflection: 1) controlling laser pointing, 2) maintaining laser pointing fixed.

Ion Beam Shepherd deflection

Gravity Tractor deflection.

Results

GT Maximum deflection

spacecraft mass circa 16500 kg
 LA with variable pointing 20% more efficient than the fixed pointing

operationally more complex
 IBS appears less efficient but

 more lightweight and less affected by contamination

Debris Analysis around a 100 m Asteroid

Possible impact on a 100 m asteroid Time to clear the proximity of the asteroid

Hill radius: circa 15 km Asteroid 2013XK22: Shape Geographos

 $[a,e,i,\Omega_a,\omega_a]=[1.045\text{AU},0.2034,0.1221\text{rad},3.187\text{rad},4.6374\text{rad}]$

- 30,000 uniformly distributed samples on the surface $E \leq 0$
- different value of area to mass ratios (A2M)
- fractions k_{ω} of the asteroid's nominal angular velocity

□ The **initial conditions** play important role in the number of surviving particles; if all the SRP is the same, particles with lower initial tangential velocity will have more probability to survive for longer period

□ The **SRP** will affect the survivability – $A2M = 0.001 \text{ kg/m}^2$ produces more surviving samples because particles are more affected by the asteroid's gravity and less by the SRP

□ At the beginning the particles with higher energy (close to 0) will experience **SRP and third body** effects leading to escape/impact

Survival particles from impact

Main features and architecture of HADES

- Dynamics in 3 different frames
- Several control techniques available
- Different measurement models
- Use of asteroid actual shapes
- GNC
- Deflection analysis

□ Possibility of performing broad range of simulations

- Assessment different control laws
- Assessment impact of environment knowledge
- MC simulations
- Debris analysis
- LA, IBS and GT deflections

Improvements

- Integration of deflection systems
 - Propagation Module
 - Control Module
 - Navigation Module
 - Estimation of the deflective action
- Effect of contamination

Thank you

EU FP7 funded Stardust project Marie Curie Initial Training Network Grant Agreement 317185 www.stardust2013.eu twitter.com/stardust2013eu

Elecnor Deimos is a trademark which encompasses Elecnor Group companies that deal with Technology and Information Systems: Deimos Space S.L.U., Deimos Castilla La Mancha S.L.U., Deimos Engenharia S.A., Deimos Space UK Ltd., Deimos Space S.R.L. (Romania).

References

- 1. T. Kubota, T. Hashimotoa, S. Sawai, J. Kawaguchib, K. Ninomiyaa, M. Uoc, K. Babac, "An autonomous navigation and guidance system for MUSES-C asteroid landing", Acta Astronautica 52 (2003) 125 131.
- S. Li, P. Cui and H. Cui, "Autonomous navigation and guidance for landing on asteroids", Aerospace science and technology, 10(3): 239-247, 2006
- 3. H.J. Melosh, I.V. Nemchinov and Y.I. Zetzer, "Non-nuclear strategies for deflecting comets and asteroids", In: Gehrels, T. (Ed.), Hazard due to comets and asteroids. University of Arizona Press, pp. 1111–1132, 1994.
- C. Colombo, J.P. Sanchez Cuartielles, M. Vasile et al, "A comparative assessment of different deviation strategies for dangerous NEO", International Astronautical Congress. Valencia, Spain, October, 2006.
- 5. A. Galvez et al, "Asteroid Impact Mission (AIM) & Deflection Assessment: An Opportunity to Understand Impact Dynamics and Modelling", European Planetary Science Congress 2012, in Madrid, Spain, 23-28 September, 2012.
- 6. Montenbruck, O. and Gill, E., Satellite Orbits: Models, Methods and Applications, Springer-Verlag, Heidelberg, 2005.
- 7. T. Winkler, B. Kaplinger and B. Wie, "Optical Navigation and Fuel-Efficient Orbit Control Around an Irregular-Shaped Asteroid", AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, USA, 08/2013.
- 8. W. Boyce, "Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid", Celestial Mechanics and Dynamical Astronomy, Volume 67, Issue 2, pp 107-110, February 1997
- 9. M. Vasile and C.A. Maddock. "Design of a Formation of Solar Pumped Lasers for Asteroid Deflection", Advances in Space Research, 2012, 50(7): 891-905, 2012
- 10. S. B. Broshart and D. J. Scheeres. "Boundness of Spacecraft Hovering under Dead-Band Control in Time-Invariant systems", Journal of Guidance, Control and Dynamics Vol. 30, March-April 2007.
- 11. Y. Liu et al., 2003. "Stability Analysis of Impulsive control systems", Mathematical and Computational Modelling 37 (2003) 1357-1370), 2003.
- 12. Simons, D., Optimal state estimation, Kalman, and Non-linear Approaches, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
- 13. W. Li, and Y. Jia, "H-infinity filtering for a class of nonlinear discrete-time systems based on unscented transform", Signal Processing 90(2010)3301–3307, 2010.
- 14. S.M Oh and E.N. Johnson, "Relative Motion Estimation for Vision-based Formation Flight using Unscented Kalman Filter", AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, 2007.
- 15. K. Dionne, "Improving Autonomous Optical Navigation for Small Body Exploration Using Range Measurements", AIAA 2009-6106. AIAA Guidance, Navigation, and Control Conference, 10 13 August 2009, Chicago, Illinois.
- 16. N. Thiry and M. Vasile, "Deflection of uncooperative targets using laser ablation", in SPIE Optical Engineering + Applications. International Society for Optics and Photonics, 2015.
- 17. Goebel D. M. and Katz Ira. Fundamentals of Electric Propulsion: Ion and Hall Thrusters, JPL SPACE SCIENCE AND TECHNOLOGY SERIES. Chapter 1 and 8., March 2008.
- 18. C. Colombo, M. Vasile and G. Radice, "Semi-Analytical Solution for the Optimal Low-Thrust Deflection of Near-Earth Objects", Journal of Guidance Control and Dynamics 32(32):796-809, May 2009.

Elecnor Deimos is a trademark which encompasses Elecnor Group companies that deal with Technology and Information Systems: Deimos Space S.L.U., Deimos Castilla La Mancha S.L.U., Deimos Engenharia S.A., Deimos Space UK Ltd., Deimos Space S.R.L. (Romania).

Control Module

$$\delta \mathbf{x} = \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ -\frac{\mu_a}{\delta r_0^3} [I - 3\hat{\mathbf{r}}_0 \hat{\mathbf{r}}_0] & \mathbf{0}_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ \beta & \mathbf{0}_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \mathbf{0}_{3x3} & I_{3x3} \\ I_{3x3} \end{bmatrix} \delta \mathbf{x} +$$

Discrete LQR with integrative contribution $J(\mathbf{u}) = \sum_{k=1}^{\infty} x_k^T Q x_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k \qquad K = (B_k^T S B_k + R)^{-1} B_k^T S A_k \qquad A_k^T S^T A_k - S - A_k^T S A_k (B_k^T S B_k)^{-1} B_k^T S A_k + Q = 0$

Discrete control designed using stability criteria (Y. Liu et al, 2003)

$$s + v_k d_k(s) \le 0$$
 $d_k(s) = c_k(s) = s$

 $x^T A x \ge 0$

19

□ HADES runs completely in **matlab**

Routines both in Matlab[®] and **mex-fied in C for speed purpose**

- dynamics equations (mainly for gravity field purposes)
- visibility functions (shapes, shadows)

□ Integration of ODE

- 1. matlab ode Runge-Kutta 45 (for events to be located)
- 2. integrator **ODEMEXv12** package
 - ✓ 10-50 times faster
 - X No events handling
 - X asteroid shape dynamcs to be included

Hints

- Coupled Control-Navigation intensive
 - performance methods for long simulations
 - simulations to draw necessary statistics and move to performance model
- Continuous, discrete LQR and control box tends to be more precise and robust

Gravity Based on Polyhedral Model

Solution overlapping – difference due to number of facets and density (assumed 2500 kg/m³)

elecnor

deimos

Reflection: unable to maintain 5 degrees illumination angle

