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ABSTRACT 

 
The High-fidelity Asteroid Deflection Evaluation Software 
(HADES) deals with the high-fidelity modelling of 
spacecraft operations at irregular shape asteroids.  

The software can handle any operational orbit, with 

particular care paid to inertial and body fixed hovering. 
Different control techniques based on both continuous and 
discrete methods have been considered and implemented. 
The manoeuvre execution itself can be affected by errors in 
magnitude and direction. 

The spacecraft orbit determination is performed through 

a performance model or by on-board measurements, a 
navigation camera and a LIDAR, which are processed by an 
Unscented H-infinity Filter (UHF). HADES can employ 
different levels of accuracy between the assumed 
environment knowledge and the real world.  

HADES comes with a Monte Carlo (MC) module which 

allows drawing more noticeable statistical parameters. Also 
HADES contains preliminary asteroid deflection capabilities 
where low push methods, i.e. laser ablation, ion-beam 
shepherd and gravity tractor have been included.  
 

Index Terms— Asteroid Proximity, GNC, Inertial 

Hovering, Body Fixed Hovering, Non-uniform Gravity 
field, Optimal Control, Unscented H-infinity Filtering, 
Asteroid Deflection, Laser Ablation, Ion Beam Shepherd, 
Gravity Tractor. 
 

1. INTRODUCTION 

 
In the last 20 years, there has been considerable progress in 
the exploration of the minor celestial objects by spacecraft. 
Recently the most remarkable mission has been Rosetta, 
which arrived at Comet 67P/Churyumov–Gerasimenko on 6 
August 2014. The lander Philae achieved the first-ever soft 

landing on the surface of the comet on 12 November 2014. 
As shown by the difficulties on the identification of the final 
landing spot of the probe, the environment near minor 
bodies is pretty complex because of the lack of precise data 
where simplification regarding the shape and composition of 
the asteroid can drive to a completely incorrect picture of 
the dynamics.  

The navigation in close proximity of asteroids can be 
complicated due to the fact that the environment is 
uncertain, especially if the asteroid presents an irregular 
shape and rotation state. The motion of the spacecraft 
around the asteroid is, thus, highly nonlinear.  

Generally, the gravitational harmonics of the celestial 

minor bodies are estimated from on-board data collected 
during a close fly-by [1], during approach phases [2] or by 
ground-based radar imaging data [3]. Thus, it is necessary to 
evaluate possible different navigation strategies to increase 
the mission reliability and the possibility to cope with both 
unknown environment and system performance 

uncertainties.  
For this purpose the High-fidelity Asteroid Deflection 

Evaluation Software, HADES, has been under development 
at Deimos Space. HADES is a high-fidelity simulation tool 
working in Matlab

®
 to assess GNC close proximity 

operations. Detailed models about the close proximity 

environment about Near Earth asteroids (NEA) and the 
involved operations are required during preliminary 
assessment of mission requirements especially under the 
presence of uncertainties. The implemented spacecraft 
dynamics considers the most relevant perturbations, i.e. 
third body effect from the Sun, solar radiation pressure 

(SRP) and irregular gravity field of the rotating asteroid. 
The software uses both spherical harmonics and actual 
asteroid’s shape. In the first case the coefficients can be 
given from actual data or they are calculated on a user-
defined ellipsoid; in the second case the gravity field is 
reconstructed from the asteroid tetrahedral mesh. The 

software can handle any operational orbit, with particular 
care paid to inertial and body fixed hovering.  

One important aspect when designing proximity 
operations is to evaluate how the different control 
techniques and on-board instruments affect the performance 
of the system. Different control techniques based on both 

continuous and discrete methods have been considered and 
implemented. The manoeuvre execution itself can be 
affected by errors in magnitude and direction.  

This kind of missions typically requires the spacecraft to 
fly in a tight formation relatively close to the asteroid, so on-
board estimation capabilities are desirable and indeed 
required when the delay time between ground and the 

spacecraft is too high to ensure the safety of operations.  



Methods based on optical navigation camera and laser light 

radar (LIDAR) or laser range finder (LRF) integrated 
measurements have been proved to be a feasible option for a 
single spacecraft to approach or land on an asteroid [4][5]. 
HADES has a detailed model of camera and LIDAR, where 
the actual illumination and visibility conditions are 
modelled using real asteroid shape data.  

Currently, HADES can also perform preliminary asteroid 
deflection mission analysis. Different methods have been 
proposed and studied to deflect potentially hazardous 
asteroid [6][7]. In theory, with enough warning time the 
slow push techniques will enable the deflection while 
carrying also scientific objectives. In fact, in contrary to 

asteroid impactor or nuclear blast techniques, these will not 
require the destruction of the probe during the mission while 
eliminating the need for a second precursor probe (see 
current AIM mission [8]). HADES contains a suite which 
allows calculating preliminary performance of the laser 
ablation, ion-beam shepherd and gravity tractor techniques. 

The integration of the GNC system is under development 
and will be matter of the final HADES version. 

This paper is organised as follows. Section 2 explains the 
different dynamics model and main modelisation. In Section 
3, the control techniques used to maintain the spacecraft on 
its reference trajectory are briefly explained. Section 4 

shows the estimation process through the Unscented H-
Infinity filter and the assumed measurements model. Section 
5 describes the deflection process through the laser ablation, 
ion-beam shepherd and gravity tractor slow push methods. 
Finally Section 6 shows the results. In particular all the 
analyses for the GNC case are applied to the case of the 

asteroid Didymos, which is the object of the AIM mission 
[8], while a short comparison on the implemented deflective 
techniques focuses on a 100 m actual shape asteroid. A short 
debris analysis is also carried out. 
               

2. DYNAMICS MODELS 

 
HADES relies on a number of different dynamics models. 
 
2.1. Hill’s reference frame dynamics 

 
In this section, we introduce the motion dynamics of 

spacecraft and asteroid in the quasi-inertial Hill’s reference 
Frame (see Figure 1(1)). It is assumed that the asteroid body 
frame (later described) is coincident with this frame at the 
beginning of the simulations.  

The spacecraft is subjected to the force due to solar 
gravity, solar radiation pressure and the asteroid’s irregular 

gravity.  
 

 

 
Figure 1. 1) Hill’s reference frame, 2) body fixed 

reference frame. 

 

The nonlinear relative equations of motion are given by 
[9]: 
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with  
   

 is the Sun gravity constant,  
 
 is the gravity 

constant of the asteroid,    and     are the positions of the 
asteroid and spacecraft with respect to the sun.   is the 

relative distance between spacecraft and asteroid.    
represents the instantaneous angular velocity with which the 
asteroid (i.e. the reference frame) rotates around the 
Sun.         is the solar radiation pressure;   
           is a control input for continuous control. In the 

case of impulsive control this term is null and impulsive 

variation of velocity is applied at the time of the manoeuvre. 
U is the higher order potential of the asteroid. 

 
2.2. Asteroid’s inertial frame dynamics 
 

The equations of motion are described in the asteroid 

ecliptic reference frame. It is assumed that the asteroid body 
frame is coincident with this frame at the beginning of the 
simulations. 

In this case the nonlinear relative equations of motion are 
given by [9]:  
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where all the terms have the same meaning of the 
previous section but in the asteroid ecliptic reference frame. 

 
2.3. Body fixed dynamics 

 

In this section, we introduce the motion dynamics of 

spacecraft and asteroid in the non-inertial body frame (see 
Figure 1(1)). The nonlinear relative equations of motion are 
given by [9]:  
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and ω is the angular velocity. For simplicity it was 
assumed that the asteroid rotates around its minor axis of 

inertia, which means the asteroid rotates in its equatorial 
plane. 

 
2.4. Gravity field through spherical harmonics 
 

The asphericity of these bodies gives raise to perturbations 

that affect all orbital elements, especially at low altitude. 
The model that has been considered to describe these effects 
is based on the standard Legendre polynomials of the 
gravity field potential as defined by Cunningham [10]. The 
model works nicely when outside the object circumscribing 
sphere while inside it is completely unreliable. The use of 

Legendre polynomials allows an efficient computation of 
the potentials and resulting perturbation as a function of the 
Cartesian coordinates in the body fixed reference frame.  

The second method of gravity model works for an 
arbitrary shape and was implemented from the equations 
used in [11]. This model assumes a uniform density of the 

asteroid and allows expressing the local acceleration in an 
arbitrary location of space with respect to the asteroid’s 
centre of mass. It is especially suited for proximity 
operations, where the harmonic techniques fail to provide an 
accurate representation of the gravity field. 

As an example Figure 2 shows the error between the 

harmonics gravity field and the shape based model on the 
circumscribing sphere around a tri-axial ellipsoid of semi-
axes [3, 2, 0.5] km.  

 

 
Figure 2. Error between harmonics and shape model 

gravity field on the asteroid circumscribing sphere. 

 

In the case of harmonics an analytical formula for 
calculating the even terms of the matrix C was obtained 

from [12] as a function of c1, c2 and c3, the semi-axes of a 
tri-axial ellipsoid.  

A 4
th

 order gravity field produces a relative error up to 

40% along c1, while a 96
th

 is pretty much coincident with 
the shape model. 

3. CONTROLLERS 

 
The implemented controllers consist of continuous and 
discrete control logics. The orbital plane velocity is such 
that the Coriolis contribution can be neglected. In this way 
the controllers needs to be specialised simply for inertial and 
body fixed cases.  Moreover, during the development of the 

software it was found that some control logics were not 
applicable to the different analysed dynamics and some did 
not produce any gain from an  efficient point of view 
(imprecise and expansive). 

Following control methods have been implemented in 
this first release of the software release: 

1. A continuous Lyapunov controller 
2. Discrete controllers based on the concept of 

control box 
3. Discrete control based on reflection method 
4. Discrete control based on dead band control 
5. Discrete LQR with integrative contribution 

6. Discrete control designed using stability criteria 
The last controller was successfully implemented only for 
the inertial dynamics problem. 
 
3.1. Continuous controller– Lyapunov controller  
 

Solar radiation pressure and central gravity field are major 
perturbative forces, while the inhomogeneous gravity of the 
asteroid and any other non-spherical terms in the gravity 
field expansion result in only small perturbations, then a 
simple control law based on the Lyapunov control function 
can be built up [13]:  

It is assumed that the motion along the reference 
formation orbit is much slower than the control action.  

 

     
  

     
                               

                                                                            (4) 

 
All the quantities with subscript est refer to estimated 

variables. In case of the body frame, the Coriolis effects 
were included. The first term of Eq. (4) deals with the 
perturbations, while the second and third terms apply am 
action proportional to the state error. cp and cd will depend 

on the dynamics itself. In order to avoid tuning this 
parameters manually, one suitable choice is to use a Linear 
Quadratic Regulator (LQR). We use the Matlab

®
’s lqr 

function for this. 
Although this method is continuous for easiness of 

implementation, it was reduced to a sort of patched 

continuous method. A continuous thrust based on constant 
errors was applied between two consecutive intervals of 
time when the measurements are received. 
 
 



3.2. Discrete controllers  

 

3.2.1. Control box  
 
The controller implemented is discrete on per component 
basis through a control box of size  .  A delta manoeuvre is 

performed when the error along a component is higher than 
the side of the box.  

The manoeuvre is calculated assuming a constant 
acceleration from the central gravity field, such that a 
linearized motion can be described.  

 
3.2.2. Reflection & inversion methods  

 

The method consists in reflecting the relative velocity 
applying a delta-v in the inertial direction (see page 248 of 
[9]), when the spacecraft get closer to the asteroid, along 

that inertial direction. It is not meant to be a tight control, 
and maintain the spacecraft within delimited boundary. It is 
only to avoid the spacecraft from getting closer to the 
asteroid and eventually colliding with it. The lower limit is 
calculated as for the control box. The following option was 
considered: 

1. inverting the direction of the velocity when the 
spacecraft gets closer; 

2. applying a delta-v manoeuvre along the radial 
direction such as to obtain the velocity reflected 
with respect to the tangential direction. 

With no errors the resultant velocity will maintain the 

same magnitude of the initial velocity. In both cases a 
dissipative coefficients of 0.95 on the magnitude of the 
correction manoeuvre was used. Dissipating energy is 
preferable to increasing it, which has the effect of 
destabilising the controlled trajectory. 
 

3.2.3. Dead band 
 

Depending on allowable region in which the spacecraft is 
confined, dead band control could be actually seen as part of 
the control box family. It is preferred here to treat it 
separately, because instead of controlling all the directions, 

only two directions were bounded, those are the ones 
perpendicular to the Sun-asteroid direction. This choice was 
driven by the work of [14]. In practice, it is required that the 
dead-band correction manoeuvre be normal to the dead-
band boundary.  

Care must be given to the fact that the method in [14] 

was devised for time invariant systems, and the boundness 
of the spacecraft motion will not be assured when the higher 
order harmonics are taken into account. For this reason we  
introduced a dissipating part of the kinetic energy during the 
correction manoeuvre. A corrective factor of 0.95 was then 
applied to take into account the time-variability and the 

errors from the both the control and the orbit determination. 

An additional contribution was indeed foreseen to 

address the motion of the reference point in the case of the 
boxy fixed dynamics. This was calculated ‘offline’ 
independently from the measurement process. The aim was 
to find an optimal manoeuvre (i.e. minimising the delta-v) 
which would bound the motion of the reference point 
between two subsequent instants of time. The contribution is 

calculated assuming a constant acceleration:  
 

                                                 (5) 

 
Where the motion was calculated neglecting the effects 

from the SRP and Sun gravity field. In this way the 
manoeuvre is a constant, being independent from the 
relative position of the Sun with respect to the spacecraft.  

 
3.2.4. LQR with integrative contribution  

 
Similarly to the problem of continuous thrust, we want to 
calculate the optimal gain matrix K such that the state-
feedback law          (where k is the discrete step).  

Although the controller will work using only 
proportional correction manoeuvre, we decided to add the 
integrative contribution due to the action of the gravity field 

during the interval between corrections. The integrative 
contribution improves the accuracy because otherwise the 
spacecraft will tend to move towards an artificial 
equilibrium point where              

                          
  

  
  

           

           
  

 

We assume that the overall effect from the other forces is 
negligible and the LQR is able to cope with those 
perturbations. The integrative contribution is calculated 
assuming a constant acceleration: 

 

                                       (6) 

 
where     is the mean value of acceleration as measured 

at centre, superior and inferior edge of the control box. The 
integrative contribution was added only when contribution 
of the perturbations does not work to reduce the position 
error. This is done simply to include the fact that the gravity 

acts favourably by attracting the spacecraft towards the 
reference position when the spacecraft is above the nominal 
altitude.  

 
3.2.5. Stable discrete controller  

 

The design of the following stable controller is based on the 
work of [15]. The main findings of this work are given in 
order to understand the subsequent steps. 



Two functions correspond to the dynamics and to an 

observer of the system:  
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The method requires that the function f and h are null for 

   , so a linearized version of the equation around the 
nominal initial state      was used for the inertial/hill 

dynamics. Neglecting the contribution of the Coriolis forces, 
one can use the discrete equations of motion of Eq.(2): 
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In order to obtain a stable controller following this 

method we need first to define a function of the state 

variables, positive definite, in the form of  
 

                                                      (9) 
 

Where a is a suitable positive coefficient, x is the state 

vector. According to the paper the main conditions for the 
stability require  

1. There has to exist a constant    such that 
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where D

+
 is the right-hand generalized derivative,     is 

the time interval between two subsequent control inputs. 
      is a suitable scalar function.  
 

2. There has to exist a constant    such that 
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                                                             (12) 
 
for suitable neighbourhood of   (             ), 

            if      and             if      
 

                                           (13) 
 

For simplicity in the followings we assume:        
        (s represents a generic independent scalar 
variable), then the state vector will 
be                   

 . If the state variables were all the 

same physical dimension, one could use the norm of the 
vector directly in the functional V, so one needs to introduce 

a suitable constant. A time constant T to multiply the 

velocity is used here:  
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In this way considering also the linearized dynamics 
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  was introduced in place of  
  

   
. Manipulating the 

inequalities, one obtains the equations of in the form of: 
 

                                   (16) 
 

where A contains the coefficients of the associated 

polynomials. One needs to consider the coefficients of the 

matrix to find the solution of the problem. Considering only 
pairs (x-vx), (y-vy), (z-vz) one obtains equations in the form: 

  
           

           
               (17) 

 
It follows that  
 

              
         

         
          (18) 

 
At this stage, we introduce the controller, which can only 

modify the components of the velocity, and not all the 
components of the state variable, on the contrary of [RD 8]. 

The approach for this controller is based only on both 
position and velocity error                   
                     . 

In this case the time constant is coincident with the time 
interval and it is user set. The value of         is the same 
as before. The variation of the functional due to the 
manoeuvre is then: 
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 Again considering state components pairs: 

 

  
                                (20) 

                                         

Of which only the negative solution was retained. In this 
case the resolution was performed numerically minimizing 

the term        , subjected to the constraint      

    . Analysing the discrete LQR we noted the fact that 



the proportional coefficient was always circa 1, so we 

imposed b to be equal to 1. This value is sensible, given that 
in the case of zero position error, the condition which 
assures a zero velocity error is to impose a delta-v correction 
of the same magnitude but in the opposite direction. We 
then add the integrative term shown for the discrete LQR. 
 

4. NAVIGATION MODELS 

 
The navigation capabilities of HADES are based on two 
trajectory estimation routines 

1. A performance model based on typical knowledge 
of the spacecraft trajectory. 

2. A real-time on board filter based on the Unscented 
H-infinity Filter (UHF) which uses LIDAR and 
camera measurements.  

 
The    filter was selected because it does not require 

prior assumptions on the nature of the noise, and minimizes 
the worst-case estimation error. The choice of the    filter 
is preferable when the Gaussian hypothesis cannot be fully 

guaranteed, for example when biases in the instruments are 
not detected [16]. In our case, besides biases affecting all the 
instruments, the LIDAR measurements are affected by the 
camera process and errors. Therefore, the noise introduced 
by the LIDAR cannot be modelled as an uncorrelated white 
noise.  

In order to deal with nonlinearities, one can use an 
extension to the     filter, the Extended    Filter (EHF), 
analogous to the extended Kalman filter. In this case, 
however, some hypotheses need to be introduced on the 

smoothness and regularity of the process and measurements. 
An alternative is to introduce the unscented transformation 
in the    filter to avoid the approximation of the Jacobian 

matrices [17] and build an Unscented    Filter. 
 

4.1. Instruments model 

 

We considered a camera and a LIDAR as on-board 
instruments. In particular, for the camera we used the 
pinhole model of [18] to identify the centre of brightness 
   

    
      

    
         converted into azimuth and 

elevation angles: 
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where f is the focal length of the camera.  

In general, the LIDAR provides range from the spacecraft 
to a point on the surface of the target object and works at a 
range from 50 m to 50 km. It is assumed that the LIDAR 

illuminates the point on the surface that corresponds to the 

centroid derived from the elaboration of the images acquired 

by the camera ([19]). This distance is simply given by:  
 

                
                        (22) 

 

where         
  is the position of a point on the asteroid’s 

surface along the centroid direction.  
The actual illumination and visibility condition are 

considered such that the image on the screen of the camera 
will be as shown in an example of Figure 3 (1), where the 
centre of brightness along with the centroid and the 
barycentre has been represented. Figure 3 (2) shows the 

footprint of the LIDAR on the surface as taken around the 
centre of brightness of the previous example 
 

 
Figure 3. Example of image as seen on the screen of 

the camera and footprint of the LIDAR. 

 

5. DEFLECTION MODELS 

 

This section describes the deflection techniques and long 
period propagation features which are used by HADES. 

 

5.1. Laser ablation 

 

The laser-matter interaction model aims at computing the 
momentum imparted to the asteroid as a function of its 
physical and dynamical properties as well as the key 
parameters of the laser system, namely the output power and 
the focusing capabilities. The calculation of the thrust 

generated was taken from [20], where a complex 3D model 
employing time variable. Namely, the figure of merit is 
given by the momentum coupling coefficient, representing 
the amount of thrust one gets per optical watt of power 
invested in the process: 
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where the pressure pe and velocity ve in the gas on the 

edge of the Knudsen layer (between the liquid and gas 
phase) the effective pressure and the flux  :  

An example of momentum coupling computed by the 
model for an S-type asteroid is represented in Figure 4 as a 
function of the laser system parameters and assuming a local 
surface speed of 10 cm/s. 

1) 2) 



 

Figure 4. Momentum coupling as a function of the 

focusing and optical power (credits [19]). 

5.1.1. Pointing strategies  
 
If one neglects the possibility to control the asteroid 
rotation, different pointing strategies could be used. Two  
alternative strategies were explored: 

1. the laser is pointed such that the resulting thrust will be 
as much as possible aligned with the desired deflective 
action (for example along the orbit tangent which 
maximizes the overall displacement). 

 

                       
                      (24) 

 

where n is the local normal – which gives the direction 
of the resulting thrust – and ndesired is the desired 
normal.  An example of this process can be seen in 
Figure 5 (1) where the laser is placed along the y-axis. 

2. the laser is pointed in a fixed direction towards the 
asteroid. The intersection point is identified as the 

barycentre of the triangle of the asteroid mesh closest to 
spacecraft position vector rSC. In practice:  

 
                                                    (25)                              

An example of the implemented procedure is shown in 

Figure 5 (2), where the red areas represent the closest 
points to the laser beam (the laser is placed along y-
axis).  

 

5.2. Ion beam shepherd 

 
The ion beam shepherd method is based on the use of low 
thrust engines directed against the asteroid. At the same time 
a second thruster pushes the spacecraft in the opposite 
direction, thus maintaining the spacecraft position. The flow 
of exhausted ions exerts a small pressure on the surface, 

which in turns produces a force on the asteroid.  
The model of IBS used in this preliminary development 

considers simplified assumptions on the expansion of the 
ion flow outside of the thruster exit plane where the exit 

velocity is much greater than the radial velocities and the 

ion sound speed. 
 

  
Figure 5. Laser control 1) surface points producing an 

effective thrust directed in the desired one, 2) points 

closer to the laser beam direction. Note that the two 

colour-bars refer to different concept.  

 

The assumption of the model is that the ion beam profile 
starts out and remains a Gaussian profile. The behaviour can 
be described as in [21], in terms of thruster characteristics of 

thrust T, specific impulse Isp, ion beam temperature Te and 
propellant atomic mass Ma.   
The force acting of the surface of the asteroid can be 
calculated as the discrete sum of forces produced by the ion 
dynamic pressure on each visible element of the mesh at the 
location (r,z) of normal ν: 
 

                                             (26) 
                 

An example of force distribution is shown in Figure 6, 
where the thruster is placed at 200 m from the asteroid and 
pointed towards it along the y-axis. 
 

 
Figure 6. IBS force distribution on the asteroid 

surface. 

 

5.3. Gravity tractor 

 

Conceptually the gravity tractor is the simplest deflection 
method. The resulting thrust is simply exerted by the gravity 
acceleration multiplied by the spacecraft mass    : 

 

        
 
 

                              (27)                            

 
where the resulting force is directed along the asteroid 

spacecraft direction. Note that in an ideal inertial hovering 



configuration a couple of thrusters needs to be off-pointed 

from the asteroid such that the flow will not impinge on the 
asteroid. In this way the total magnitude of the thrust will 
be: 
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where          

   
 represents the half field of view 

occupied by the asteroid and       is the expansion cone of 
the thrusters. In this way given the power available for 
deflection, one can calculate the total thrust and the mass of 

the spacecraft. 
 

5.4. Long period propagation 

 

While the target delta-velocity is independent of the 
direction of thrust, the effect on the displacement from its 

nominal position at a given point along the orbit (called 
check-point in the following) depends on the direction of the 
thrust.  

Let a, e, i,  ,    and    be respectively semi-major 

axis, eccentricity, inclination, right ascension of the 
ascending node, argument of the pericentre and mean 
anomaly of the nominal orbit of the asteroid. The effect of 
the deflection is calculated at predefined check-points. Let 
       be the instant of time corresponding to a generic 

check point.  
If        is the true anomaly of the asteroid, and       

  
           the corresponding argument of latitude, one 
can write the variation of the position of the asteroid after 
deviation, with respect to its unperturbed position, by using 

the proximal motion equations as in [22] and [23]: 
  

                                             (29) 
 

where                         with      ,        
and       the displacements in the radial, transversal and 

out of-plane directions in the Hill’s reference frame centred 
at the unperturbed position of the asteroid at the check point 
(see [23]).                                  is the 

variation of the orbital parameters at the check-point and the 
matrix        transforms the variation of the orbital 
parameters in trajectory displacements. In this way one can 

compute the effect of the deflection action at the check-
point          .  

In order to perform fast simulations we used averaged 
quantities within Eq. (29) exploiting the fact that on several 

rotations the mean direction and the fraction of useful thrust 
as well as the imparted angular velocity variation will 
depend on the shape of the asteroid, angular velocity and 
relative position of the deflection system.   

6. EXAMPLES 

 

6.1. Asteroid Didymos 

 
For the sake of brevity, we will just show some results 
applied to the body fixed and inertial hovering cases in the 
Hill’s frame, given that the pure inertial one differs only 

slightly with respect to the Hill’s case.  
In the following, the analysed methods are tested. 

Besides the calculation of mere control figures as the 
navigation budget, the comparison is based also on the 
capability to control the spacecraft with a limited number of 
actuations. The asteroid selected was the main body of the 

binary asteroid Didymos, whose Keplerian elements in the 
Sun ecliptic frame are [24]: 
 
                                     

                                                              
 

The motion of the asteroid around the Sun is purely 

Keplerian without any perturbation and simulations start 
from perigee. The asteroid was assumed to be shaped as a 
tri-axial ellipsoid of semi-axes: 

                               

These figures have been drawn from the available 
estimate of the mean radius, i.e.            km ( σ). The 
gravity constant from the asteroid is 3.5 6∙ 0

-8
 km/s

3 
[24]. 

The asteroid rotates at the speed of 2.259 rph around c3 axis, 

with the equatorial plane coincident with the asteroid orbital 
plane. Assuming such a shape allows calculating the C20, 
C22, C40, C42, C44 gravitational harmonics analytically. 
The spacecraft is assumed to have a ballistic coefficient of 
0.0393       and an equivalent reflectivity coefficient 

(given by reflection and diffusion) of 1.3. 
For what concerns the analysis for body fixed and inertial 

hovering of following Sections 6.1.1 to 6.1.3., we 
considered the following actuation errors – 5% error (3σ) on 

magnitude and   degrees on angles (3σ). For the navigation 
we used the performance model where the pseudo state 
vector was known with 20 m along track, 10 m cross track 
in position and 2 mm/s along track and 1 mm/s cross track 
in velocity (all the quantities are 3σ). 
 

6.1.1. Body fixed hovering   
 
For this asteroid the spacecraft  cannot fly on a synchronous 
orbit because this falls well below the asteroid’s surface. 
Given the weak gravity field of the asteroid,  its orbit radius 
would be in fact roughly 300 m. 

So we considered three initial nominal conditions of the 
spacecraft. For conciseness we report just an example where 



the nominal spacecraft position is at 200 m above the 

surface along c1 direction with null relative velocity 

                 
                                            

Results are reported for one day of operations at the 
asteroid. An initial random error in the range of 100 m in 
position and 1 cm/s in velocity per components was used. 
We show the results in terms of position error, excluding 
reflection methods which are highly inaccurate to pursue a 

body fixed mission at low altitude. 
Figure 7 shows the trend of the error in the controlled 

position. For the discrete controllers, the error is shown for 
maximum interval of time where the control is able to 
maintain the spacecraft above the surface. For the control 
box and dead band controller half side of the box was set to 

100 m. It is clear that these two methods result to be less 
accurate because of linearization assumption which cannot 
include the Coriolis effects properly. In fact at the assumed 
angular velocity the contribution of the gravity force 
becomes less noticeable with respect to the Coriolis 
acceleration which varies considerably within 200 m. On the 

contrary the discrete LQR is quite accurate for 1200 s 
control time, although an initial overshooting due to high 
initial errors. The better accuracy is due to the fact that gains 
are calculated considering how the variation of velocity 
affects the other components.  

Table 1 shows a synthetic comparison for the control 

budget in this configuration. It is apparent that the discrete 
LQR is the best choice both in terms of accuracy and Δv 
budget within the discrete controllers. 
 

 

Figure 7. Control error for 1) continuous thrust 2) 

control box with 300 s sampling time 3) dead-band with 

900 s sampling time and 4) 1200 s discrete LQR.  

For this reason we focus now on the discrete LQR. 

Figure 8 shows an example of ∆v budget for different body 
fixed hovering conditions and different actuation intervals. 
Three cases were considered: 

1. Case 1 corresponds to the hovering condition along c1 

of previous analyses. 

2. Case 2  sees the spacecraft at 200 m above the surface 

along c2 direction with null relative velocity 

                 

                                         

3. Case 3 maintains the spacecraft in a particular position 

with null relative velocity 

                 

                                           

Table 1. Body fixed hovering for spacecraft placed along 

c1 axis: synthetic comparison 

Method Actuation interval      [m/s] 

Continuous thrust  5 56.2 

Control box  300 62.5 

Dead-band 
control 

300 64.3 

600 61.7 

900 54.4 

Discrete LQR  300 55.8 

600 54.9 

900 53.4 

1200 51.2 

 
As one can see the control Δv decreases as the actuation 

time intervals increase. Care needs to be placed, since the 
1200 s is the limit which guarantees no crash conditions for 
Case 1. 

 

Figure 8. Example of Δv budget for three different body-

fixed hovering conditions using discrete LQR. 

6.1.2. Inertial hovering   

 
The initial nominal condition of the spacecraft was 
randomly generated around the nominal operational 
trajectory in the local Hill’s frame (radial, tangential and out 
of plane components) and then converted to asteroid inertial 
frame: 
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Besides the calculation of mere control figures as the 

navigation ∆v budget, the comparison is also based on the 
capability to maintain the illumination angle (given by Sun-

asteroid-SC angle) below 5 degrees. For simplicity in Figure 
9 we report the trend for the illumination angle for all the 
analysed cases. Besides the initial transient, some methods 
results more effective in maintaining the spacecraft within 
the 5 degrees boundaries. In particular the continuous one is 
the most precise, while the 6 hrs LQR is the most precise 

among the discrete controllers.  
 

 

 

 

Figure 9. Illumination angle for 1) continuous thrust, 2) 

control box, 3) reflection method, 4) dead-band control, 

5) 6 hours discrete LQR and 6) 6 hours stable PD.  

Table 2 reports the navigation ∆v budget for the different 

controllers. Considering the above results, one may always 
refer to the compliance to the control requirements to select 
the correct controller. In particular the reflection method 
fails to respect the requirements, but in pre-orbit acquisition 
phases this method can be used because it does not require 
very precise navigation system [9]. 

One can see that the minimum actuation time is the 

lowest for the dead-band method. This is essentially due to 
the fact that the control along it is performed only when 
required on per component basis. This means that control 
firings could be necessary along one direction at a certain 
instant k but it might be required to fire again along another 
direction at the subsequent k+1 instant. . 

 

Table 2. Inertial hovering control methods: synthetic 

comparison 

Method Actuation interval  
(min-max-mean) [min] 

    
[m/s] 

Continuous thrust  8  16.9 

Control box 421/533/485 24.2 

Reflection method 325/1792/890  11.2 

Dead-band control 8/440/140 25.9 

Discrete LQR  360 (fixed) 24.1 

Discrete LQR 240 (fixed) 24.0 

Discrete LQR 180 (fixed) 23.1 

Stable PD  360 (fixed) 18.2 

Stable PD 240 (fixed) 18.2 

Stable PD 180 (fixed) 18.2 

 
This is an undesired effect, which is advisable to avoid, 

at the cost of higher propellant consumption. The reflection 
method presents the highest maximum actuation interval. 
This comes from the fact that the spacecraft is inserted into 
high eccentricity orbit because of the accumulation of 

actuation and orbit determination errors.   
The stable PD with 1-2-3 hours control interval does not 

present similar drawbacks. Moreover the overall 
consumption is also comparable to the fixed and variable 
magnitude controllers, which keep the spacecraft within 5 
deg illumination angle.  

The discrete LQR and stable PD with the integrative 
contribution show very good performances, and both are 
able to maintain the spacecraft with one actuation every 6 
hours. Although one cannot achieve good results in terms of 
illumination angle, the spacecraft does not leave the 
proximity or impact on the asteroid. Anyway LQR shows 

better convergence properties but at higher propellant 
consumption. 
 
6.1.3. MC example   
 
For simplicity we considered a case analysed during a study 

carried out for ESA’s AIM mission, where the spacecraft 
was placed in a fixed hovering configuration:  

 

                                       
It was needed to maintain it within a 1.5 km side control box 

for 60 days. 

1) 2) 

3) 4) 

6) 5) 



For this purposes the selected controller was based on the 

discrete control box method. Figure 10 shows an example 
for the station keeping of the AIM.  

 

 

Figure 10. Control box: 1) position and 2) velocity errors 

for AIM during 60 days period. 

One can appreciate how manoeuvres on three directions 
are performed at the same time in order to reduce the 
number of actuations (see Figure 1111). 
 

 

Figure 11. Control manoeuvres per components. 

For the MC simulations we considered 100 samples 
propagated for 30 days. The initial conditions were affected 
by an initial dispersion in position of 50 m per component, 
and in velocity of 1 cm/s ( σ). The manoeuvres were 
affected by a  % (3σ) error in magnitude and  .5 deg (3σ) 
error in direction.  

The results of the simulation as displayed by HADES are 
reported in Figure 12 together with main statistical 
parameters. One can see that the minimum actuation time 
will be about 2.7 days, which can help identifying the time 
interval between ground operations to comply with the 
control requirements. This mere figure could not be drawn 

from a single simulation perturbed simulation. Also the 
worst case Δv budget will be in the range of 2 m/s. For 
convenience in Figure 13 we report the distribution of 
experiments, where it is possible to see also the minimum 
correction manoeuvre magnitude as a function of minimum 
actuation time. This can be also used to identify possible 
requirements of the control thrusters. 

 

Figure 12. MC analysis: synthetic results displayed. 

 

Figure 13. MC analysis: maximum manoeuvre 

magnitude vs. minimum actuation time. 

 

6.1.4. Inertial hovering navigation performance  
 
In this section, we want to show how different dynamic and 
measurement models affect the performance of the state 
estimate along with the navigation Δv budget. We selected 
again asteroid Didymos, without considering the effects 

from its moon. Note that lacking of actual shape data, we 
used different mesh maps from asteroid (433) Eros. 

Table 3 reports the characteristics of the sensors 
assembly: 

Table 3. Measurements assembly characteristics 

Lidar mounting error ( σ)  0.001 deg 

Lidar range error ( σ) 10 m 

Lidar range bias ( σ)  1 m 

Number of pixels per side  2048 

Camera FoV  20 deg 

Camera side  10 cm 

Attitude error ( σ)  0.0057 deg 

Attitude bias ( σ)  0.0006 deg 

 
The simulation was carried out for 3 days. The initial 

estimation error was 100 m and 1 cm/s for each position and 
velocity components, respectively.  

We start with an ellipsoidal shape case where the  gravity 
field for the real world is generated through the shape 
model, while the gravity field is truncated to the 4

th
 order in 
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the filter. We used the simple measurements model of 

Section 4. Figure 14 shows that the measurements tends to 
be biased on 3-axis for the position estimate. 

The second case differs from the first one in that we used 
the detailed measurements model.  Figure 15 shows that the 
error per component is accentuated with respect to the ones 
in Figure 14. 

In the third case we considered the same shape model for 
both the real world and the filter, with the detailed 
measurements model. We used 1708 facets mesh from the 
asteroid (433) Eros. As one can reasonably expect, from 
Figure 16 the convergence towards zero region error is quite 
smooth, because of the full knowledge of the environment. 

 

 

Figure 14. Ellipsoid shape, 4
th

 order filter gravity field 

and simple measurements model: estimation error. 

 

 

Figure 15. Ellipsoid shape, 4
th

 order filter gravity field 

and detailed measurements model: estimation error. 

 

 

Figure 16. 1708 facets for real world and filter, and 

detailed measurements model: estimation error. 

An additional case was executed where we used different 
shape models in the real world and in the estimated world. 
In the filter we used 1708 facets mesh while the actual 
dynamics was based on 7790 facets. Moreover the actual 

mean radius was decreased by about 1% that is about 6 m. 

This affected both the dynamics and measurement model. In 
fact from Figure 17, we can see that the error converges to a 
region where a clear asymptotic behaviour cannot be 
spotted, except for the velocity error. 

 

 

Figure 17. 7790 facets for dynamics and 1708 facets for 

filter, and detailed measurements model: estimation 

error. 

The effect on the Δv budget for the different cases is 
reported in Table 4. Note that in 3 days only one manoeuvre 
has been performed. 

Table 4. Measurements assembly characteristics 

 Δv [cm/s] 

Case 1 9.18 

Case 2 9.14 

Case 3 9.25 

Case 4 9.18 
 

In general the difference is about 10% but Case 3 

represents the actual need for the control, being the 
estimation more accurate. 
 
6.2. Deflecting a 100 asteroid 

 

For this exercise, we considered the shape of asteroid (433) 

Eros scaled down to 100 m mean diameter. In this way the 
total asteroid mass was 9. 63∙ 0

8
 kg. We considered 

deflection operation lasting 20 years with a maximum power 
only for deflection (laser system or thrusters) limited to 20 
kW. We considered around 60% efficiency for the thrusters. 
Note that given the lack of a mass model, the laser ablation 

and IBS cases do not consider the possible reduction in 
thrust due to the attractive force given by the spacecraft 
mass itself. For this comparison we neglected the 
contamination model, which has not been included in the 
case of the IBS. 

Figure 18 shows the total deflection achieved using the 

different pointing strategies with the laser ablation. With 
respect to operation lasting 20 years, the fixed pointing is 
20% less efficient than the variable thrust one. However, the 
former is conceptually simpler than the latter, not requiring 
to adjust the attitude or a mechanism at the laser. 
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Similar results in terms of shape are achieved using the 

IBS, as shown in Figure 19 (1). We see that the achieved 
deflection is about 50% less efficient than the one in the 
variable laser pointing and 40% with respect to the fixed 
pointing. However, this analysis does not take into account 
several factors such that the actual efficiency of the LA 
system, the mass of the system and other power units which 

favours the IBS over the LA system. Moreover the LA is 
considerably strongly affected by the contamination due to 
the ejecta plume which will strongly reduce the power 
available during several years of operations (see [25] for 
details). 

Finally Figure 19(2) reports the same analysis for the 

gravity tractor. We placed the spacecraft at 200 m and 
considered a 12 degrees divergence angle for the thrusters. 

Apparently the gravity tractor is the one permitting to 
achieve the highest deflection (more than 80 Earth radii) but 
if one calculates the required mass it results that a 16500 kg 
spacecraft placed at 200 m would be required. This is of 

course beyond current technological launch limits. 
 
 

 

Figure 18. LA deflection: 1) controlling laser pointing, 2) 

maintaining laser pointing fixed. 

 

 

Figure 19. 1) IBS deflection and 2) GT deflection. 

 

6.3. Debris analysis  
 

Although primary goals of HADES are set to analyse GNC 
operations and asteroid deflections, it can be also used to 
assess the stability of the orbits close to the irregular bodies. 
In particular, we used it to assess when the area near the 
small 100 m asteroid of the previous section can be 
considered clear by any debris after a hypothetical precursor 

impacting mission. We did not model the impact itself but 

we assumed that all the particles with energy above the 

escape one would soon leave the asteroid proximity.  
We generated about 30,000 uniformly distributed 

particles on the surface of the asteroid with E≤0 in all 
direction for different area to mass ratios. Figure 20 reports 
the trend for two different values of area to mass ratios 
(A M), and fractions of the asteroid’s nominal angular 

velocity (where the parameter kω is the factor dividing the 
angular velocity). 

 

 

Figure 20. Debris analysis for 1) A2M = 0.001 kg/m
2
 and 

(2) A2M = 0.01 kg/m
2 

The criteria used to count the surviving samples were set 
as the samples neither impacting nor leaving the asteroid 
proximity. The leaving condition coincides with the particle 
moving outside the Hill’s radius that for the considered 
asteroid was circa 15 km. The initial conditions play an 
important role in the number of surviving particles; if the 

A2M is the same, particles with lower initial tangential 
velocity will have more probability to survive for longer 
periods (also truth that we used 2-body U, instead of the 
actual energy of single point).  

The SRP will affect the survivability - in fact A2M = 
0.001 kg/m

2
 produces more surviving samples because 

particles are more affected by the asteroid’s gravity and less 
by the SRP. 

 

7. CONCLUSIONS 

 
This paper presented the main features of the High-fidelity 

Asteroid Deflection Evaluation Software developed at 
Deimos Space S.L.U. for close proximity operations and 
deflection purposes. 

The software can deal with inertial and body fixed 
hovering configurations, considering different control 
strategies. Navigation capabilities are also integrated in 

terms of a performance model or in terms of a filtering 
capability. It is possible to perform the analyses using 
different models for the actual dynamics (real world) and 
one for the estimated world. In this way one can assess how 
the knowledge of the environment affects the navigation and 
the control budget. We showed and compared several 

examples of body-fixed hovering and we focused on the 
navigation performance for different levels of environment 

1) 2) 

1) 2) 

1) 2) 



knowledge, assuming shape and harmonics models for the 

gravity field. 
A Monte Carlo module permitted us to calculate relevant 

statistics for an inertial hovering at Didymos. Note that in 
future updates we are planning to consider also the 
gravitational perturbation from a possible moon around the 
asteroid. 

We also demonstrated that HADES can be used to 
perform debris analysis, assessing when close proximity 
operations can start in case of some impacting mission 
hitting the surface of a 100 m asteroid. 

We showed that HADES can perform preliminary 
deflection analyses for LA, IBS and GT, under simplified 

analysis. In fact we compared the different methods without 
considering the actual mass of the LA and IBS system. In 
particular we did not consider the power loss for the laser 
system, but only the output optical power. 

In order to have a correct picture of the deflection action, 
there are already a number of features under development, 

which are basically the integration of the deflection 
techniques into the GNC modules. In this way a detailed 
model of the different techniques will allow identifying 
preliminary navigation requirements and allow fully 
simulating the deflection operations. It will be necessary to 
integrate the deflective acceleration acting on the asteroid, 

and possibly integrate an onboard estimation for it. 
It is also planned to integrate a contamination module 

due to the ejecta plume for the laser and the back-sputtering 
for the IBS. The contamination affects the power available 
during the lifetime. As an example, Figure 21 reports the 
achieved deflection for the laser variable pointing case. The 

contamination due to the plume can produce a reduction of 
60% with respect to the ideal case.  

 

Figure 21. Laser ablation deflection controlling laser 

pointing with contamination due to the plume of ejecta. 
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