nes

JDRAGON/JOSCAR: TOOLS FOR MANEUVER STRATEGY COMPUTATION DEVELOPED IN JAVA AND USING PATRIUS 6th International Conference on Astrodynamics Tools

and Techniques (ICATT)

Darmstadt, 17/03/2016

Sumelzo Martinez I., Labourdette P.

Orbital Maneuvers Office (DCT/SB/MO)

Centre National d'Etudes Spatiales, French Space Agency

SUMMARY

INTRODUCTION

DEVELOPMENT ENVIRONMENT

- > PATRIUS
- > GENIUS
- JPSIMU: THE NUMERICAL PROPAGATOR
- JDRAGON: COMPUTING MANEUVERS
 - PROBLEM STATEMENT
 - SOLUTION APPROACH
 - > DEMO
- JOSCAR: END-TO-END SIMULATIONS
- CONCLUSIONS

INTRODUCTION

DRAGON/OSCAR Fortran version [1]:

- ATV program (1997-2014)
 - » ATV phasing and rendezvous maneuvers strategy towards ISS (International Space Station)

GALILEO missions (2011-today)

- » Operational design of LEOP (Launch and Early Orbit Phase), phasing and rendezvous scenarios
- » Compliant with quality and operational constraints → directly integrated into the Flight Dynamics Centre
- Decision to use JAVA technology → SIRIUS project [2]: basic software layout (PATRIUS) and operational tools (FDS) already started.
- JDRAGON/JOSCAR: not a simple porting from Fortran to JAVA, but redefinition of certain functionalities!

INTRODUCTION

DEVELOPMENT ENVIRONMENT

DEVELOPMENT ENVIRONMENT

PATRIUS [3]

(PATrimoine de base de siRIUS)

Mathematics: Dispersions, Matrices, Rotations, Interpolations, Geometry, Numerical Integration

Flight dynamics: Time, Orbits, Frames, Celestial Bodies, SpacecraftState

Attitude: Attitude Laws, Kinematics, Transformations, Guidance Commands, Slew

Orbit Determination: Propagation, Physical Models, Measure and Filtering

Spacecraft: Assembly, Sensors, Mass and Forces

Mission: Events Detection, Maneuvers, Postprocessing

GENIUS

(Generation of Interface for Users of Scientific S/W)

- Units management
- Performing conditional display
- Simplified approach, in particular about events, management (setting actions before/after a certain event is reached)
- Read/write for files directly integrated
- Process management compatible in all OS (thanks to JAVA)

Date:	01/01/2000 00h00m00s UTC +/-		C +/-
Frame: GCRF	-		
Type: Equinoctial	-		
Equinoctial Parame	ters *		
a: *		7000.0	km
ex: *		0.0	
ey: *		0.0	
tuc *		0.0	
hy: *		0.0	
Longitude: *	true	0.0	deg
	Falant	202600 4415	bend Steads

JPSIMU: THE NUMERICAL PROPAGATOR

Extrapolate the orbit around the Earth

- Taking into account different forces:
 - Earth potential
 - Third body perturbations
 - Aerodynamic forces
 - Solar Radiation Pressure
 - Ocean/Terrestrial tides
- Defining a maneuver sequence
- Defining an attitude sequence
- Using different numerical integrators
- Identifying orbital events

Frames configuration management

From	То	Phenomena	Corrections
GCRF	CIRF	Earth rotation axis	Precession,
		around Ecliptic pole	Nutation
CIRF	TIRF	Diurnal motion	UT1-UTC
			difference
TIRF	ITRF	Earth rotation axis	Tides, libration,
		wrt Earth's crust	S' effects, EOPs

Event detectors

- To stop propagation
- To switch between attitude laws
- To trigger impulsive maneuvers
- To define the beginning/end of spread maneuvers
- To identify orbital events of interest: ascending/descending nodes, station visibilities, entering/existing eclipse, AOLs, ...

JPSIMU: THE NUMERICAL PROPAGATOR

Utilization modes

- Subroutine mode (called from JDRAGON): Containing the pure tool computations
- Batch mode: Read a configuration file (".xml") and calls the subroutine mode
- GUI mode: Graphical User Interface permits to create scenarios and launch computations (via the batch mode)
 - Output: +80 variables, ephemeris & detected events files (".txt")

Validation

- Battery of tests validating ephemeris generation (coverage > 80%):
 - Thematic validation: 42 test performed, divided in 7 different tests: initial orbit, earth features/frames configuration, vehicle, force models, maneuver scenario, attitude laws and integrator

- Code's quality tests: compliant with CNES coding standard rules
- FindBugs, Checkstyle

Problem statement

Find $x \coloneqq \{\overrightarrow{\Delta V_j}, \varphi_j\}_{j=1,N_m}$ To minimize $J(x) \coloneqq \sum_{j=1}^{N_m} |\overrightarrow{\Delta V_j}|$

With :

- $\overrightarrow{\Delta V_j}$: Maneuver *j* to optimize
- φ_j : Maneuver location $\rightarrow 2\pi (N_{ch}^j 1) + \alpha_j$ $\begin{vmatrix} \varphi_j := 2\pi (N_{ch}^j - 1) + \alpha_j \\ N_{ch}^j : \text{ orbit number} \\ \alpha_j : \text{ argument of latitude} \end{vmatrix}$
- *N_m*: # Maneuvers to optimize
- T: « Real world » propagation
- *V_{aim}*: Aimed vector

JDRAGON: COMPUTING MANEUVERS

JDRAGON: COMPUTING MANEUVERS (DEMO)

cnes

JOSCAR: END-END SIMULATIONS

Objective: Perform Monte-Carlo simulations → Testing maneuver strategy robustness

Time consuming : Many calls to JPSIMU, JDRAGON are required !

JOSCAR: END-END SIMULATIONS

Genoscar \rightarrow Defining the variables File (".xml) **Exoscar** \rightarrow Defining data to disperse and the End-to-End containing required for the simulation scenario to be simulated: random propagation: Chaser orbit restitution Chaser/Target vehicle variables **Target localization** Force Models Thrusters calibration Attitude Sequence Maneuver computation **Output files of interest** Rendezvous point change Sequence of maneuvers Earth Potential Attraction Model Droziner(unnormalized)
 Cunningham(unnormalized)
 Balmino(normalized) Atmospheric forecast Potential File Name GRIM4_S4 💌 Maximum degree and order Zonal Tesseral 0 ✓ Third Body Moon Sun Venus Mars Jupiter Atmospheric Force Atmospheric Model Exponential
MSISE2000 US76
DTM2000 Spacecraft:

Chaser

Target Solar Activity Real
Constant
By file Dispersion type: *
No dispersion
Gaussian
Uniform Multiplicative force facto 1.0 Coordinates type O TNW
QSW O Keplerian O Circular Solar Radiation Pressure Definition: *
By covariance matrix
By correlation matrix 1.4959787E11 m Reference distance 4.56050000000001E-N/m^2 Reference pressure 0* 1.0 m 0.0 0.1 0.1 0.1 Multiplicative factor 10 0.0 0.0 1.0 m 1.0 m 0.0 0.0 Rediffused Solar Radiation Pressure VQ* 0.1 m/s 0.0 0.0 Albedo 0.0 VS* 0.1 m/s **Force Models** Infrared VMP 0.1 m/s Multiplicative factor for albedo 1.0 Multiplicative factor for infrared 0.001 m 0.001 <u>m</u> Ocean Tides MAR 0.001 m Terrestrial Tides VO 0.0 m/s Orbit dispersions VS 0.0 m/s Ephemerides type IPL O Meeus O Meeus Stela vw 0.0 m/s Earth Shape Sphere I Ellipsoid Constraint in semi-major axis:
Q Yes
No

CONCLUSIONS

Initial difficulties:

- Validation: JPSIMU has been strongly validated against PATRIUS. JDRAGON validated against DRAGON for different phasing problems (ATV, GALILEO, Mango-Picard,...) obtaining same delta-V budgets (±1mm/s).
- Performance: Expected penalty x2 (wrt Fortran) has been retrieved. For typical RDV scenarios (ATV, GALILEO), computations last from 1 to 2 min → Acceptable.

JAVA porting advantages:

- **Faster development**: Easier to write, compile and debug than other programming languages.
- Object-oriented: Modular programs and reusable codes.
- Platform-independent: Always same results (Windows, Linux, ...).
- **Robustness**: Early checking for possible errors. Many problems are detected in advance!
- GUI: Its development has been easier thanks to GENIUS and its simplified approach.
- New features have been proposed: After 20 years usage feedback, obsolete functionalities have been erased, new improvements have been implemented!

Thank you for your attention! Questions?

REFERENCES

- [1] P. Labourdette, A. Gaudel-Vacaresse, D.Carbonne « Oscar/Dragon: Tools for maneuver strategy computation », 5th International Conference on Astrodynamics Tools and Techniques, ESTEC/ESA, The Netherlands, 29 May – 1 June 2012
- [2] I. Llamas, Y. Tanguy, M. Lacotte, J.J. Wasbauer « SIRIUS-DV: Then new Flight Dynamics algorithms for the future CNES missions », 6th International Conference on Astrodynamics Tools and Techniques, Darmstadt, Germany, 14-17 Mars 2016
- [3] D. Carbonne, Y. Tanguy « The SIRIUS Flight Dynamics Library for the next 25 years ». 5th International Conference on Astrodynamics Tools and Techniques, ESTECT/ESA, The Netherlands, 29 May 1 June 2012

Ma

cnes

	Initial Orbit Rendez-vous Parameters Optimization Parameters Vehicle
Initial orbit definition	Spacecraft: * Chaser Target
 Timescales UTC, TAI, TT, GPS, GST Frames GCRF, CIRF, Orbital parameters Keplerian Cartestian Circular Equinoctial Equatorial 	Orbit Nb. 6 Definition Absolute Relative to Target Orbit Pivot Deactivate conversions Date: 16/02/2011 06h48m21s UTC +/- Frame: EME2000 Type: Cartesian Type: Cartesian Type: Cartesian Type: Cartesian Type: Cartesian Parameters X: 2012.609385841956 km y: -4212.665794132296 km
 Apogee/Perigee Reentry parameters *Relative to target also possible 	z: -4717.202242822096 km Vx: 5.041240467718458 km/s Vy: 5.292062690748233 km/s Vz: -2.571292501372748 km/s
Relative to target also possible	μ: Select 398600.4415 km^3/s^2

Rendezvous Parameters	Pandatyous definition
	By: O Date O Phasage duration O Target Orbit Nb. / AOL O Target and Chaser Orbit Nb. / AOL
Deve de sue un de finitie a	Target Orbit Nb. 2347
Rendezvous definition	Chaser Orbit Nb. 169
By date	AOL
By phasing duration	Final conditions
Target Orbit Nb /AOI	✓ a <u>1.0</u> m
	✓ ex 0.01
Target/Chaser Orbit Nb./	✓ ey 0.01
AOL	✓ tau 1.0 m
Paramotors to roach	✓ inc 0.1 deg
Parameters to reach	raan 0.1 deg
Convergence threshold	Aimed vector: Orbital parameters Coelliptic orbit Relative/Target
Aimed vector	Arc difference defined: By distance By angle
Orbital parameters	dEy 0.0
Coelliptic orbit	dTau 0.0 <u>m</u>
	dinc 0.0 deg
Relative/larget (LVLH)	dRaan 0.0 deg
Reference orbit (linearization)	Poferance orbit (used for linearization)
	$0 \% \rightarrow \text{Chaser orbit at Rdy, } 100 \% \rightarrow \text{Target orbit at Rdy}$ 100.0 %

es

13

1 >

Items +/-

0.0 m/s → Max

0.0 m/s → Max

1000.0 m/s

1000.0 m/s

Maneuver1

🗉 Quit

cnes

Output	
	Context Context Results Compute Results Message 1005
- Output files	07/03/2016 02:08:35 - INFO: start computation 07/03/2016 02:08:16 - INFO: nominal end of computation
Synthesis file	Initial Orbit Rendez-vous Parameters Optimization Parameters Vehicle Maneuvers Scenario Propagator Output Console
Relative ephemeris	- Final state vectors (EME2000 frame) REAL TARGET CHASER
Target ephemeris	bete [IA1] 201-02-2410:48125.000 201-02-4810:48125.000 ♦ Orbit 2347 ADL (deg) 64.36644010274477 64.38644466872334 T (h) 1.523690326128978 1.523690235659567
Chaser ephemeris	A. (km.) 6722.4175662750556 6722.417566295192 E.x 1.6935207062563122-4 1.69352529076635772-4 E.y 4.53106643214477662-4 4.53106615929251642-4
Plot XY	Inc. (deg) 8.1.83783967970833 51.837839770837 Raan (deg) 8.53090354238167 8.5309035422228 X (km) 2316.706662044906 2316.706163507732 Y (km) 4149.335021082926 4149.335089539165
Duration	Z (km) 4750.07928609106 4755.079438526736 Vx (km/s) -7.175954622809192 -7.175954835469572 Vy (km/s) 1.014856732218944 1.014856357086394 Vz (km/s) 2.6128743919989628 2.6128739608453997
Chaser orbital parameters	- Mission plan (impulsive maneuvers): # Man Date (TAI) # Orbit AOL (deg) DV (m/s) Q (m/s) S (m/s) W (m/s) Engine Tank Type Man1 2011-02-16707:15:26.570 6 351,52 0,975 0,000 0,769 0,600 0CS-20 Tank1 OPT
(target LVLH, OSW)	Man2 2011-02-16708:00:50.729 7 173,83 9,346 0,000 9,260 -1,106 0CS-20 Tankl OFT Man4 2011-02-20700:553.224 66 83,44 1,500 0,000 1,500 0,000 ACS Tankl FIX Man4 2011-02-20700:553.22.116 66 253,47 1,500 0,000 1,500 0,000 ACS Tankl FIX Man4 2011-02-20700:59:27.116 66 253,47 1,500 0,000 1,500 0,000 ACS Tankl FIX
Intermediate results	Manf 2011-02-33115:03:45.942 14.8 53,45 1,500 0,000 1,500 0,000 ACS TAMIN FIX Manf 2011-02-33115:03:43.755 124 253,48 1,500 0,000 1,500 0,000 ACS TAMIN FIX Manf 2011-02-23713:51:624.073 154 357,62 11,684 0,000 11,684 0,000 CCS-20 Tamin OPT Manf 2011-02-25713:52:06-262 155 139,68 8,069 0,000 6,069 0,000 CCS-20 Tamin OPT
Progress bar	Man9 2011-02-25T20:28:16:553 159 271,17 6,000 0,000 6,000 0,000 0CS-5 Tank1 FIX Man10 2011-02-25T20:13:44:60 160 91,19 6,000 0,000 0CS-5 Tank1 FIX Man11 2011-02-26T04:01:46:614 164 262,25 3,000 0,000 3,000 0,000 ACS Tank1 FIX
Progress Dat Progress Dat Demaining "n tunles"	Mani2 2011-02-2610434724.085 165 82,28 3,000 0,000 3,000 0,000 ACS Tank1 FIX Mani3 2011-02-26103340.080 169 29,92 1,200 0,000 1,200 0,000 ACS Tank1 FIX Total deltaV (m/s) ISpent mass (kg) IFinal mass(kg) IFinal mass (kg) IFinal mass (kg)
Remaining n-tupies	55,274375 363,512768 19338,487232
Mission plans	$d\lambda$ (m) dEx dEy dN (m) dI (deg) $dRam(deg)$
Orbital parameters	
deviations	

20 6th International Conference on Astrodynamics Tools and Techniques (ICATT)