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ABSTRACT 

 

JOSCAR/JDRAGON are new tools of maneuver strategy 

computation, developed internally in CNES (Centre 

National d’Etudes Spatiales, French Space Agency) at the 

Orbital Maneuvers Office (DCT/SB/MO). Both tools have 

been rewritten in JAVA even if they are always based on the 

same basic principles of the initial OSCAR/DRAGON 

Fortran versions, which were intensively used for the 

Automated Transfer Vehicle (ATV) and still today, for the 

operational design of the LEOP, phasing and rendezvous 

scenarios for GALILEO missions.  

This paper describes the methods implemented as well as 

the software functionalities, pointing out the differences 

between JAVA versus FORTRAN version, the first one 

taking advantage of the new functionalities of CNES 

PATRIUS library as well as almost 20 years usage 

feedback. 

 

Index Terms— Maneuver strategy computation, 

rendezvous, optimization, PATRIUS, JAVA 

 

1. INTRODUCTION 

 

Since many years ago, CNES has been involved in missions 

requiring phasing maneuvers computation. In that frame, 

OSCAR/DRAGON tools [1] were developed for the ATV 

project in 1997, in order to perform mission analysis studies 

and conduct End-to-End simulations. This was possible after 

a straight collaboration with Russian specialists of KIAM 

(Keldysh Institute of Applied Mathematics) and MCC-M 

(Mission Control Center at Moscow), who had wide 

experience in rendezvous missions thanks to Saliut-Mir-ISS 

program. 

 

    Expert tools developed at the Orbital Maneuvers office 

(some of them used in operational contexts as GALILEO, 

ROSETTA, ATV), are essentially coded in Fortran. 

However, thanks to the decision some years ago to use Java 

technology, existing flight dynamics tools and libraries are 

being rewritten within the framework of the SIRIUS project 

[2]. While the development of the basic software layout 

(PATRIUS) and the operational tools (FDS) already started 

some time ago, the redevelopment of the analysis tools was 

recently set up. In that frame, it was decided to take 

DRAGON/OSCAR tools as “pilots”, given the numerous 

computations as well as the considerable data management 

conducted. As expected, DRAGON/OSCAR porting to Java 

has been useful to point out the implications that using Java-

based software can have in the very particular frame of 

orbital study tools.  

  

    Concerning the tools functionalities, JDRAGON is 

capable of computing a near-optimal mission plan, using 

initial conditions for target and chaser spacecraft, an amount 

of maneuvers to be optimized respecting some constraints of 

application as well as certain rendezvous conditions. It is 

based on a robust and fast method, which requires calling a 

numerical propagator iteratively. For this purpose, JPSIMU 

has been also developed based on its PSIMU predecessor, 

which is the heart of numerous CNES flight dynamics tools 

(as in ATV-CC or GALILEO FDS ones).  

 

    At a higher level, JOSCAR, which uses JDRAGON as a 

kernel, allows to perform End-to-End Monte-Carlo 

simulations, necessary for mission analysis purposes, 

allowing testing the robustness of the computed strategies. 

 

 

Figure 1: Tools dependency 

    Above the new design of these tools, thanks to the Java 

object approach, their validation is also a big challenge. 

Thematic validations have been conducted with no easy 

comparisons with the Fortran version, given the differences 

in their corresponding flight dynamics libraries. Special 

efforts have been put into code performance, bearing in 

mind an expected penalty in computation cost of a factor 

two approximately, with respect to Fortran language. Hence, 

it has been also important to look for optimal tools settings, 

aiming at having both fast computations and satisfactory 



accurate results. Concerning the quality of the code, Eclipse 

[3] environment analysis tools have been used in order to be 

compliant with CNES coding standard rules.  

    At last, in order to deal with the considerable input/output 

data generated, a Graphical User Interface has been 

developed using GENIUS (a higher level CNES JAVA 

toolkit based on Swing) which allows using these tools in a 

more friendly way on many different Operating systems 

from Windows to Linux.  

 

2. DEVELOPMENT ENVIRONMENT 

 

The development environment has been based on the 

SIRIUS project workbench. Some of the important 

components are:  

 

- Java Development Kit: containing the Java 

execution environment as well as the basic 

development resources.  

- Eclipse:  the Integrated Development Environment. 

It regroups useful plug-ins for software 

development such as M2eclipse, Checkstyle, 

FindBugs or PMD, among others.  

- Maven: useful to build and manage Java projects. 

 

    This set up has been efficient, helpful and user-friendly, 

which has increased the productivity of the development. 

  

2.1  PATRIUS 

 

 

Figure 2: PATRIUS library features overview 

 

The reference low level library used for mathematical and 

flight dynamics functions has been PATRIUS (PATrimoine 

de base siRIUS), which is based on Orekit [4] and 

CommonsMath [5], as well as other supplementary libraries. 

Its development started in 2011 and today, it is considered 

as a powerful library with many features, fully tested and 

validated, ready to be used in next generation FDS 

development as well as in mission analysis tools and 

internal studies. 

 

 

 

2.2 GENIUS 

 

For standardization purposes, each developed tool has been 

devised to provide 3 modes of utilization: 

 

- 1. Subroutine
1
 mode: containing the pure tool 

computations, possible to be called from other 

classes. 

- 2. Batch mode: capable of   reading an input data 

file (“.xml”) and calling the subroutine mode.  

- 3. GUI mode: a Graphical User Interface (GUI) 

which permits to create specific scenarios and 

launch the computation (via the batch mode).  

 

    The GUI mode implementation has been possible thanks 

to GENIUS (GENeration of Interface for Users of Scientific 

S/W), a higher level toolkit, fully written in JAVA and based 

on Swing. It was recently developed internally in CNES and 

it was conceived as an easy-to-use toolkit, oriented towards 

users not necessarily familiarized with low level language.  

 

 

Figure 3: Example of GENIUS GUI appearance 

 

    Thereby, GENIUS permits to create GUIs in the context 

of general scientific applications. The main advantages are:  

 

- Units management  

- Performing conditional display 

- Simplified approach, in particular about events 

management (setting actions before/after a certain 

event is reached). 

- Read/write for files directly integrated.  

Configuration file containing GUI data (“.xml”) is 

generated automatically.  

- Process management compatible in all OS (thanks 

to JAVA) 

                                                 
1
 Linked to Fortran principles 



3. JPSIMU: THE NUMERICAL PROPAGATOR 

 

Similar to DRAGON/OSCAR tools which call PSIMU 

numerical propagator iteratively, JDRAGON/JOSCAR 

required their equivalent PSIMU JAVA version. Even 

though PATRIUS provided sufficient high level classes for 

propagation purposes, it was decided to develop a specific 

tool, JPSIMU, independent of JDRAGON/JOSCAR, which 

might be useful for other tools in the coming future.  

 

    Inspired by its FORTRAN predecessor version, JPSIMU 

is a numerical orbit extrapolator around the Earth, whose 

main functionalities are:  

 

- Taking into account different forces: 

o Earth potential  

o Third body perturbations 

o Aerodynamics forces  

o Solar Radiation Pressure  

o Ocean/ Terrestrial Tides 

- Customizing the vehicle features 

- Defining a maneuver sequence 

- Defining an attitude sequence  

- Using different numerical integrators 

- Identifying orbital events  

 

    However, due to the change of flight dynamics libraries 

(PATRIUS for JPSIMU, BIBMS for its predecessor); some 

differences arise when comparing both versions.  

    For instance, while PSIMU reference first order integrator 

is Cowell, JPSIMU implements a Dormand-Prince of 8
th

 

order with variable step-size (available in PATRIUS). It is 

characterized by a good performance for a large variety of 

orbits, especially for highly eccentric ones.  Furthermore, it 

treats in a more accurate way the forces discontinuities 

(maneuvers, eclipses) and contains an interpolation function 

which allows dense output data and good precision at event 

detections, without interfering in the propagation results.   

  

3.1 Propagation modes 

 

Aside from the three modes of utilization (section 2.2); 

JPSIMU can propagate orbits in two different manners, 

depending on the propagation purposes. First, the slave 

mode, which is the fastest, propagates the initial orbit until a 

certain final date, returning a single final spacecraft state 

(position, velocity and date). It could be the interest, for 

example, when performing several calls from JDRAGON. 

The second possibility, using which is called the master 

mode, registers the spacecraft states sequentially every 

given time step. This is the case, for example, when using 

JPSIMU GUI mode, which allows generating an ephemeris 

file with up to 80 output variables, depending on user needs.  

  

3.2 Event detectors 

 

The use of event detectors along the propagation is one of 

the most powerful new functionalities with respect the 

Fortran version. Each event of interest is translated into a 

continuous function g, which is a function of the spacecraft 

state. The event detection is equivalent to find the roots of 

this function. At each integration step, these functions are 

evaluated, monitoring the sign changes. When a sign change 

is detected, an iterative process is triggered in order to detect 

the event (finding the function’s root) with the required 

precision.  

  

    Although PATRIUS library provides a large variety of 

event detectors already coded, each user can define its own 

ones, respecting the EventDetector interface. In JPSIMU 

they are constantly used along the propagation with different 

purposes: 

 

- To stop the propagation  

- To switch between attitude laws  

- To define the beginning/end of maneuvers (either 

impulsive or spread maneuvers) 

- To identify orbital events of interest as: 

ascending/descending nodes, station visibilities, 

entering/exiting an eclipse or arguments of latitude, 

among others.  

 

 

Figure 4: JPSIMU GUI plot panel example: Detecting 

eclipses events on International Space Station ground 

track (longitude, latitude in degrees) 

 

  



3.3 Frames configuration management 

 

Finally, the last substantial new feature is the possibility to 

manage the frames configuration used for the propagation. 

In other words, it permits to vary the level of accuracy 

considered (vs CPU time) when performing frames 

transformations along the propagation.  

Table 1: Possible customizable frames corrections in PATRIUS 

From  To Phenomena Corrections 

GCRF
2
 CIRF Earth rotation axis 

around Ecliptic pole  

Precession, 

Nutation 

CIRF
3
 TIRF Diurnal motion  UT1-UTC 

difference 

TIRF
4
 ITRF

5
 Earth rotation axis 

wrt Earth’s crust  

Tides, libration, 

S’ effects, EOPs  

 

    PATRIUS frames configuration used by default is 

IERS2010 convention, which takes into account all 

corrections presented in Table 1. Managing the frames 

configuration is important since it has a direct impact on 

both precision and propagation’s performance: 

Table 2: CPU times comparison for different frames 

configurations and max deviations in position and 

velocity (wrt IERS2010) for a 30 days LEO propagation 

# Test Corrections dPmax 

(m) 

dVmax 

(m/s) 

CPU 

time (s) 

1 All (IERS2010)   - - 4.24 

2 All except EOPs  1.46E1 1.68E-02 4.02 

3 Only Prec-Nut 1.46E1 1.68E-02 2.88 

4 No corrections 4.69E2 5.42E-01 1.97 

 

    Finally, it is important to point out that this customization 

is not possible in PSIMU Fortran version, which takes into 

account only precession-nutation corrections (the most 

important ones in terms of accuracy). As shown in Table 2, 

this configuration (Test 3) provides good trade-off between 

accuracy and performance and thereby, it might be the 

optimal setting to use in JDRAGON/JOSCAR tools.  

 

3.4 Validation 

 

Once the tool was fully developed, it was required an 

exhaustive validation, since JPSIMU was expected to 

become the core of JDRAGON/JOSCAR, as well as other 

future tools.  
 

                                                 
2
 Geocentric Celestial Reference Frame (inertial)  

3
 Celestial Intermediate Reference Frame (pseudo-inertial) 

4
 Terrestrial Intermediate Reference Frame (non-inertial) 

5
 International Terrestrial Reference Frame (non-inertial) 

    First comparisons were done with respect to the Fortran 

version. Nevertheless, the results obtained were not totally 

satisfactory for all test cases. Some differences arose due to 

the different flight dynamics libraries used. The main 

sources inducing results discrepancies were the frames 

configuration management, the first order integrator used 

(Cowell vs Dormand-Prince) and the force models 

implementation. 
 
    It is for that reason that an alternative strategy was 

chosen: JPSIMU is based on the NumericalPropagator class 

provided by PATRIUS. This class was strongly validated 

against ZOOM (the precise orbit restitution tool at CNES). 

Thus, since the numerical propagator class had already been 

fully tested for a large variety of scenarios, it was decided to 

set PATRIUS as the reference for the validation. The 

validation process was organized as follows: 

 

1. Thematic validation: only the classes containing 

the pure computations of JPSIMU were validated. 

Firstly, a set of ephemeris files were generated 

using pure PATRIUS. Then, they were taken as 

reference in order to validate the ephemeris 

generated by the JPSIMU subroutine mode. A total 

of 42 tests were performed, divided in seven 

different topics: initial orbit, earth features/ frames 

configuration, vehicle, force models, maneuvers 

scenario, attitude laws and integrator.  

2. Batch/GUI mode validation:  it was oriented 

towards the validation of the GUI and the 

configuration data file (“.xml”) generation. The 42 

thematic test cases were reproduced using the 

Graphical User Interface, expecting to obtain 

exactly the same ephemeris generated during 

thematic validation.  

 

    This validation was performed using the JUNIT 

environment which, among others advantages, permits to 

easily run unitary tests, performing ephemeris files 

comparison in the case of JPSIMU. The battery of tests 

conducted had coverage of more than 80% in the code 

source. Even if the tool evolves, the battery of tests can 

always be launched, taking less than 5 minutes. On top of 

that, special attention was paid on the quality of the code. In 

order to do that, FindBugs and CheckStyle tools were used. 

They help programmers to write Java code (or readapt in 

this case) compliant with certain coding standards. These 

tools were set in order to verify CNES coding standard 

rules, which were provided by the Quality Office.  

 

 

 

 



4. JDRAGON: COMPUTING MANEUVERS 

 

Based on its predecessor version, JDRAGON is a maneuver 

strategy computation tool used for transfers and rendezvous 

problems. It optimizes a fixed number of maneuvers that 

permit to reach a non-cooperative target, within a fixed 

phasing duration and fulfill certain relative rendezvous 

conditions. For this purpose, the same DRAGON algorithm 

has been implemented, since it has largely demonstrated its 

capabilities during ATV and GALILEO missions, being 

fast, robust and compliant with operational constraints. 

Nevertheless, the fact of porting DRAGON to JAVA has 

been also profited to provide new functionalities, such as the 

possibility to optimize more than six unknowns. 

 

4.1 Problem statement  

 

    Equations of motion including rendezvous maneuvers can 

be stated as: 

    Setting: 

- 𝐸𝑐ℎ(𝑡
0) ≔ (𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜈)𝑐ℎ

0  : chaser state vector at 

initial date 

- 𝐸𝑐ℎ(𝑡
𝑓) ≔ (𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜈)𝑐ℎ

𝑓
 : chaser state vector 

at rendezvous 

- 𝐸𝑡𝑎(𝑡
𝑓) ≔ (𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜈)𝑡𝑎

𝑓
 : target state vector at 

rendezvous 

- 𝑉𝑎𝑖𝑚: relative targeted state vector at rendezvous 

with respect to target.   

- 𝑻 operator: real function of transfer, which takes 

into account all forces and simulates the “real 

world” 

    Then, the rendezvous final condition can be expressed as: 

𝐸𝑡𝑎(𝑡
𝑓) + 𝑉𝑎𝑖𝑚  = 𝐸𝑐ℎ(𝑡

𝑓) = 𝑇(∆𝑉𝑗⃗⃗ ⃗⃗  ⃗, 𝜑𝑗 , 𝑁𝑚, 𝐸𝑐ℎ(𝑡
0))𝑗=1,𝑁𝑚

 

 

    Where: 

 𝑁𝑚 is the number of maneuvers to optimize  

 ∆𝑉𝑗⃗⃗ ⃗⃗  ⃗ is the value of the maneuver 𝑗, with ∆𝑉𝑗 =

 √𝑅𝑗
2 + 𝑇𝑗

2 + 𝑁𝑗
2, being 𝑅𝑗, 𝑇𝑗 and 𝑁𝑗 the radial, 

tangential and out-of-plane ∆𝑉𝑗 components 

correspondingly 

 𝜑𝑗  is the location of the maneuver 𝑗, with 𝜑𝑗 =

 2𝜋(𝑁𝑐ℎ
𝑗 − 1) + 𝛼𝑗, being 𝑁𝑐ℎ

𝑗 the orbit number 

and 𝛼𝑗 the argument of latitude where it is 

performed 

    The problem {P1} to calculate rendezvous maneuvers can 

be stated as a general optimization problem: 

Find 𝒙 ≔  {𝑁𝑚, ∆𝑉𝑗⃗⃗ ⃗⃗  ⃗, 𝜑𝑗} 𝑗=1,𝑁𝑚
   

To minimize 𝐽(𝒙) ∶= ∑ |∆𝑉𝑗⃗⃗ ⃗⃗  ⃗|
𝑁𝑚
𝑗=1  

 

    And subjected to the following constraints:  

 

 𝐶0, the rendezvous condition: 

𝐸𝑡𝑎(𝑡
𝑓) +  𝑉𝑎𝑖𝑚 = 𝑇(∆𝑉𝑗⃗⃗ ⃗⃗  ⃗, 𝜑𝑗 , 𝑁𝑚, 𝐸𝑐ℎ(𝑡

0))𝑗=1,𝑁𝑚
 

 𝐶1(𝜑𝑗): 

o 𝜑𝑗 ∈ (𝜑𝑗
𝑚𝑖𝑛 , 𝜑𝑗

𝑚𝑎𝑥): allowable location 

to perform maneuver 

o 𝜑𝑗+1 − 𝜑𝑗  ∈ [∆𝜑𝑗
𝑚𝑖𝑛 , ∆𝜑𝑗

𝑚𝑎𝑥]: 

limitations for angular distance between 

two burns 

 𝐶2(∆𝑉𝑗⃗⃗ ⃗⃗  ⃗): 

o ∆𝑉𝑗  ∈ [∆𝑉𝑗
𝑚𝑖𝑛 , ∆𝑉𝑗

𝑚𝑎𝑥]: limitations for 

maneuver modules 

o 𝑅𝑗  ∈ [𝑅𝑗
𝑚𝑖𝑛 , 𝑅𝑗

𝑚𝑎𝑥]: limitations for radial 

maneuver components 

o 𝑇𝑗  ∈ [𝑇𝑗
𝑚𝑖𝑛 , 𝑇𝑗

𝑚𝑎𝑥]: limitations for 

tangential maneuver components 

o 𝑁𝑗  ∈ [𝑁𝑗
𝑚𝑖𝑛, 𝑁𝑗

𝑚𝑎𝑥]: limitations for out-

of-plane maneuver components 

 

4.2 Solution approach 

 

The problem {P1} is non-linear with non-linear and with 

non-convex constraints. Given its complexity, it is 

simplified to a near-optimal problem {P2}, considering the 

following assumptions: 

 

- The number of maneuvers to optimize 𝑁𝑚 is fixed. 

In addition, for each maneuver, the type and 

number of components to optimize 𝑁𝑐𝑗
 ∈ {1,2,3} is 

given.  

- The research domain of maneuvers locations 

𝜑𝑗 ∈ (𝜑𝑗
𝑚𝑖𝑛 , 𝜑𝑗

𝑚𝑎𝑥) is discretized using a 

given ∆𝜑𝑗. A preprocessing is conducted in order 

to create a list of feasible maneuver locations 

combinations {𝜑𝑗}𝑗=1,𝑁𝑚
  complying with 𝐶1(𝜑𝑗), 

called “n-tuples” (see annexes for more details). 

- T operator is simplified by a linearized operator L, 

derived from the Gauss equations. Thus, the final 

chaser state vector is computed as: 

𝐸𝑐ℎ(𝑡
𝑓) ≈ 𝐿 (∆𝑉𝑗⃗⃗ ⃗⃗  ⃗, 𝜑𝑗 , 𝐸𝑐ℎ(𝑡

0))
𝑗=1,𝑁𝑚

= 

= 𝐸𝑐ℎ(𝑡
0) + 𝐴(𝜑𝑗)𝑋(∆𝑉𝑗⃗⃗ ⃗⃗  ⃗) 



- Trim maneuvers (fixed in location and value) can 

be added to take into account operational 

constraints and scenario robustness.  

 

    Then, problem {P2} can be solved by a standard iterative 

process:  

 

 
 

    Problem {P2’} requires solving a linear system 𝐴𝑋 = 𝑏  

iteratively, 𝐴 ∈ ℝ𝑛𝑒 𝑥 𝑚, 𝑋 ∈  ℝ𝑚, 𝑏 ∈  ℝ𝑛𝑒 , for all available 

“n-tuples”, consisting of 𝑛𝑒 equations and 𝑚 unknowns. The 

number of equations will depend on the number of orbital 

parameters to reach demanded by the user:  

Table 3: JDRAGON problem types as a function of the 

orbital parameters
6
 to reach. 

Problem type Parameters # Equations (𝑛𝑒) 

Transfer 2D 𝑎, 𝑒𝑥, 𝑒𝑦  3 

Rendezvous 2D 𝑎, 𝑒𝑥 , 𝑒𝑦 , 𝜏 4 

Transfer 3D 𝑎, 𝑒𝑥 , 𝑒𝑦, 𝑖, Ω 5 

Rendezvous 3D 𝑎, 𝑒𝑥, 𝑒𝑦 , 𝜏, 𝑖, Ω 6 

  

    On the other hand, the number of unknowns 𝑚 will 

depend on the maneuver scenario defined by the user:  

                                                 
6
 Considering near-circular, circular orbital parameters are 

used, being 𝜏: along-track distance 

𝑚 = ∑𝑁𝑐𝑗

𝑁𝑚

𝑗=1

 

 

    Therefore, the linear system to solve will be:  

 

Linear System type # Solutions 

Undetermined (𝑛𝑒 > 𝑚) 0 

Determined (𝑛𝑒 = 𝑚) 1 

Overdetermined (𝑛𝑒 < 𝑚) ∞ 

 

    For the undetermined linear system case, a least squares 

standard approach has been implemented which minimizes 

the sum of squared residuals,‖𝐴𝑋 − 𝑏‖ and whose closed-

form solution is �̂� = (𝐴𝑡𝐴)−1𝐴𝑡𝑏. Then, for the determined 

linear system, a unique solution exists �̂� = (𝐴)−1𝐵. 

 

    Finally, for the overdetermined linear system case two 

options have been implemented, letting the user to choose 

among them:  

 

 Pseudo-inverse Minimization of a 

Sum of Norms 

Minimization 

criterion ∑|∆𝑉𝑗⃗⃗ ⃗⃗  ⃗|
2

𝑁𝑚

𝑗=1

 ∑|∆𝑉𝑗⃗⃗ ⃗⃗  ⃗|

𝑁𝑚

𝑗=1

 

Resolution Analytical 

�̂� = 𝐴𝑡(𝐴𝐴𝑡)−1𝑏 

Iterative 

Performance Fast Slow (∼x25 wrt 

pseudo-inverse) 

 

    Both methods present its advantages and disadvantages. 

From a fuel minimization point of view, the minimization of 

a sum of delta-Vs will be always more optimal. The 

minimization of a sum of Euclidean norms is a non-

differentiable and non-linear optimization problem. 

Nevertheless, given its properties, it can be transformed into 

a differentiable linear problem with quadratic constraints 

and thus, it can be solved by a Sequential Quadratic 

Programming method (SQP).  However, from the 

computational cost point of view, the pseudo-inverse is 

largely faster, since its solution is retrieved analytically. The 

tests performed with both methods show that, while the 

pseudo-inversion permits to manage yet a typical DRAGON 

case with 1 million of “n-tuples”, the minimization of a sum 

of norms should be used for, at much, fifty thousand 

combinations, in order to obtain solutions in similar times. 

This new approach opens new optimization possibilities but 

forces the user to better precise the maneuver locations.  



4.3 Example I: ATV3 – Johannes Kepler 

 

The Automated Transfer 

Vehicle was an unmanned 

space transport vehicle 

whose mission was to 

contribute to the logistic 

servicing of the ISS. It was 

a European Space Agency 

(ESA) funded program: 

the spacecraft was 

designed and built by 

Airbus Defense and Space 

and operated from Toulouse, by CNES, at the ATV Control 

Center (ATV-CC).   A total of five missions were conducted 

achieving a 100% success: first ATV- 1 Jules Verne mission 

was sent in March 2008, while last ATV-5 Georges 

Lemaitre launched end of July 2014 [6], [7].  

    From now on, we will focus now on the phasing phase of 

the ATV-3 Johannes Kepler, which covers the orbital flight 

from the insertion point IP (260km x 260 km, 51.6 °) until 

the interface point at the vicinity of the ISS (𝑆−1/2 , 39km 

behind and 5km below ISS). The maneuver strategy to study 

has been:  

- A Transfer to the Phasing orbit cycle (TP): 2 

maneuvers to optimize (tangential, out-of-plane 

components) 

- 2 corrective Mid-Course (MC) cycles of 2 

maneuvers each (ΔV = 4x1.5 = 6m/s) 

- 3 Transfer to ISS Vicinity (TIV) cycles of 2 

maneuvers each: TV1 to optimize (tangential 

components), TV2 fixed (ΔV = 2x6 = 12 m/s) and 

TV3 fixed (ΔV = 2x3= 6 m/s) 

- 1 Transfer to the Interface orbit (TIF) cycle 

consisting of 1 maneuver (ΔV = 1.2m/s) 

 

Figure 6: ATV-3 simplified phasing strategy 

    This problem is a rendezvous in 3D (Table 3), with 6 

unknowns, 4 for the TP cycle and 2 for the TIV1 cycle.  The 

aim has been to compare the different methods, bearing in 

mind the results found by the reference DRAGON Fortran 

version.  

    

    The computed solution (Table 3) differs 0.2% in terms of 

DV with respect to Fortran version, which is acceptable 

bearing in mind the different numerical propagators used.  

Table 4: Results obtained with JDRAGON  

Maneuver strategy to optimize TN-TN-T-T 

#JPSIMU calls 8 

Total DV (m/s) 55.27 
CPU time (s),  including ephemeris generation 1min 54s 

 

 

Figure 7: GUI JDRAGON - output frame appearance 

 

 

Figure 8: TIV3 and TIF phase containing the last 3 

maneuvers in target QSW local frame (JDRAGON) 

    On top of that, alternative strategies have been studied 

trying to optimize the two out-plane components of the TIV 

cycle. 

Table 5: Alternative strategies results (TN-TN-TN-TN) 

Method  Pseudo-Inverse Min sum norms 

“n-tuples” 194481 28561 

#JPSIMU calls 7 7 

Total DV (m/s) 55.04 55.03 

CPU time  2min 3min 11s 

 

    As expected, solutions are very little improved since 

Ariane-5 was in charge of injecting the ATV at the right 

plane (taking into account Ω drift until RDV date) so 

additional out-of-plane maneuvers do not play an important 

role.   

Figure 5: ATV approaching 

ISS for docking (Credit: 

ESA/NASA) 



4.4 Example II: Mango-Picard phasing  

 

The IRIDES experiment (Iterative Reduction of Inspection 

Distance with Embedded System) consisted in approaching 

the PRISMA Mango spacecraft to the Picard non-

cooperative spacecraft ([8], [9]), in order to demonstrate 

rendezvous and inspection technology. Originally, Mango 

took part in the Swedish PRISMA mission, aiming at 

demonstrating strategies and technologies for formation 

flying and rendezvous. On the other hand, Picard was a 

French satellite that became non-operational in April 2014, 

after taking more than one million images of the Sun, 

among other objectives. After Mango finished its nominal 

and extended mission phases, and since a considerable 

amount of fuel was remaining, it was decided to set the 

IRIDES experiment as its new objective. 

Table 6: Orbital parameters derived from public TLE at 

28/01/2013 (00h 20min) 

Osculating parameters Mango Picard 

Sma (km) 7138.4 7110.5 

Ecc 0.004 0.001 

Inc (deg) 98.28 98.24 

Pa (deg) -191.34 80.87 

Raan (deg) 202.64 214.93 

 

    From now on, we will focus on the study of the phase 

prior to inspection, the phasing phase. Observing the orbital 

parameters, it is possible to notice that the phasing problem 

difficulty relies mainly on the large difference in the right 

ascension of the ascending node  ∆Ω =  Ω𝑝𝑖𝑐𝑎𝑟𝑑 − Ω𝑚𝑎𝑛𝑔𝑜  ≈

 12.2deg. Moreover, due to J2 effects, this difference 

increases as the time goes by since Ω̇𝑝𝑖𝑐𝑎𝑟𝑑 > Ω̇𝑚𝑎𝑛𝑔𝑜.   

 

 

Figure 9: Rendezvous parameters (phasing duration, 

orbital parameters to reach, convergence thresholds and 

aimed vector are given) 

    For the study performed, we have imposed a duration of 

460 days and a drift number of 30 (relative number of 

completed orbits performed by the chaser with respect the 

target).   

 

Figure 10: Maneuver strategy studied 

    The optimal strategy is to vary the semi-major axis of 

Mango, in order to have a favorable relative Ω drift. Thus, 

the maneuver strategy has been composed of two cycles. 

Each cycle formed by two maneuvers separated by 180deg, 

the first cycle for starting the drifting phase and the second 

one for stopping it. Moreover, all maneuver locations are 

researched within an interval of 360deg. Besides the 

classical strategy presented in Figure 10, we have performed 

parallel studies optimizing two additional out-of plane 

components (TN-TN-TN-TN), obtaining the following 

results: 

Table 7: Method comparisons results  

Method Linear 

inversion 

Pseudo-

Inverse 

Minimization 

of Norms 

Strategy T-TN-T-TN TN-TN-TN-TN TN-TN-TN-TN 

DV (m/s) 51.67 51.54 50.86 

CPU time  5min 39s 7min 50s 10min 36s 

“N-tuples” 95319 95319 23919 

#JPSIMU calls 4 6 4 

 

    This study has been conducted without considering the 

real propulsive properties of Mango, which would have 

forced to break down the 4 maneuvers into many equivalent 

small maneuvers. However, this example has been useful to 

show how, for rendezvous problems with important in-plane 

and out-plane maneuvers coupling, the new methods 

implemented improved the classical approach (0.3% and 

1.6% reduction in terms of delta-V using pseudo-inverse 

and minimization of norms correspondingly).  

 

 

Figure 11: Time (days) VS ∆Ω (deg) 
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5. JOSCAR: END-TO-END SIMULATIONS 

 

The aim of JOSCAR is to account for variables dispersions 

that could be experienced all along the flight. Based on a 

Monte-Carlo analysis, it permits to simulate the maneuvers 

update process performed on-ground all along the mission 

by computing end-to-end simulations with the Control 

Center in the loop. Consequently, it is a time consuming 

process, since multiple calls to JPSIMU and JDRAGON are 

required.  It is important to understand how JOSCAR 

switches continuously between: 

 

- The “real world”: it is composed of the real 

parameters (force models, engines performance, 

chaser/target orbits and vehicle features). For each 

run of the Monte-Carlo simulation, they are 

generated by a dispersion of the nominal 

parameters.  

- The “predicted world”: the lack of knowledge of 

the real world. When performing maneuver 

computations the input data considered is 

sometimes uncertain:  chaser/target restituted 

orbits, engines calibrations, atmosphere forecasts 

or vehicle features, among other parameters. 

 

 

Figure 12: Example of JOSCAR simulation composed of 

three events: chaser orbit restitution, target orbit 

restitution and a maneuver strategy computation (calling 

JDRAGON) 

    Based on its Fortran predecessor, JOSCAR has been split 

into two modules: Genoscar and Exoscar.  

 

5.1 Genoscar 

 

This first module offers the possibility to define the End-to-

End scenario to be simulated as well as the variables to 

disperse along the Monte-Carlo analysis. The scenario is 

defined by a sequential number of events, each of them 

positioned either by means of absolute parameters (date or 

number of orbit and argument of latitude) or by relative 

parameters with respect to other events. The possible events 

to define are:  

 

- Chaser orbit restitution: dispersions can be 

Gaussian or uniform and defined by different 

orbital parameters (keplerian, circular, QSW
7
 or 

TNW
8
). In addition, Gaussian dispersion can be 

defined either by the covariance matrix or by the 

correlation matrix and standard deviation vector.  

- Target localization: similar to chaser orbit 

restitution with the difference that the dispersion 

can be also defined at rendezvous date. 

- Thrusters calibration: usually placed after a 

maneuver has been performed, permits to estimate 

the engine thrust. 

- Maneuver computation: a maneuver scenario is 

defined. When the event is reached, a JDRAGON 

computation is performed.  

- Change rendezvous point: this event allows 

changing the active targeted rendezvous point. This 

feature was used, for instance, during ATV 

mission, where the sequence from insertion to 

parking point at ISS was followed by the sequence 

to reach the rendezvous interface.   

- Sequence of maneuvers: a sequence of fixed 

maneuvers is triggered.  

- Atmospheric forecast: permits to have an 

estimation of the atmospheric conditions (usually 

function of the solar activity). 

 

    In addition, other GUI panels permits to define the 

engines features (thrust, dispersions), different aimed target 

points, the atmospheric models settings (multiplicative 

factors, ballistic coefficients dispersion) as well as to 

customize the Monte-Carlo settings. Once the scenario is 

defined, Genoscar is launched and a file containing all 

random variables is generated, which will be used then by 

the following module, Exoscar. 

 

5.2 Exoscar 

 

This second module allows defining a set of data required 

for the simulation propagation as the chaser/target vehicle 

features, the force models or the attitude sequences. 

Contrary to the Fortran version, it has been decided to make 

the difference between the propagation models (forces, 

vehicle features, integrator) used in maneuver computations 

(at JDRAGON level) and the models used for “real word” 

                                                 
7
 QSW local frame : radial, tangential and out-of-plane 

directions 
8
 TNW local frame: tangential, out-of-plane and radial 

directions 



propagation. This feature could be interesting for instance, 

when simulating on-board maneuver computations, which 

usually make use of simplified models. This module is yet 

under development but, as the predecessor version, will 

permit to define a set of actions concerning the required 

output files.  

 

6. CONCLUSIONS 

 

This paper has presented JDRAGON/JOSCAR tools, 

written in JAVA. Based in their predecessor Fortran 

versions DRAGON/OSCAR, they are used for maneuver 

strategy computation and mission analysis purposes. 

Additionally, it has been necessary to develop JPSIMU, a 

numerical propagator that is required for 

JDRAGON/JOSCAR algorithm computations. Their 

development has been possible thanks to the SIRIUS project 

workbench and particularly PATRIUS, a powerful library 

that provides many flight dynamics low level functions. The 

development of JDRAGON/JOSCAR tools using JAVA 

language has shown significant advantages: 

 

 Faster development: JAVA language is easier to 

write, compile and debug than other programming 

languages. Moreover, JAVA uses automatic 

memory allocation and garbage collection which 

improves the programmer productivity.  

 Object-oriented: Development is reduced to create 

objects, manipulate them and make them work 

together. This has resulted in modular programs 

and reusable codes. For instance, many JPSIMU 

widgets (classes used for GUI) have been reused in 

JDRAGON/JOSCAR GUIs. 

 Platform-independent: It is sure to obtain the same 

results when running tools either on Windows or 

Linux.  

 Robustness: Early checking for possible errors. 

Unlike Fortran language, where many errors would 

first show up during execution time, JAVA 

compilers are able to detect many problems in 

advance.  

 Graphical User Interfaces: By using GENIUS, the 

development of the GUI has been easier, thanks to 

its simplified approach.  

 New features: After 20 years usage feedback, some 

functionalities from the predecessor tools have 

been erased, while new improvements have been 

implemented. 

 

    On the other hand, special attention has been put into the 

possible disadvantages that using JAVA language could 

have with respect to Fortran: 

 

 Validation: JPSIMU has been largely validated 

against PATRIUS in order to dispose of a reliable 

numerical propagator. When comparing with 

PSIMU Fortran version some differences arose due 

to the different flight dynamics libraries used 

(mainly because of force models implementation, 

frames management and integrators used). 

However, these differences are not significant 

when running JDRAGON/JOSCAR tools, since 

they are capable of computing same delta-V 

budgets for varied types of missions such as ATV 

and GALILEO (with a precision better than 1mm/s 

when studying same n-tuples scenarios and same 

force models). 

 Performance: Computation time relies mainly on 

numerical propagation performed at JSPIMU level. 

It is highly dependent on frames management 

settings or integrator tolerances. When comparing 

with Fortran version and for a same level of 

precision, it is possible to notice that JAVA is 

approximately twice slower. At JDRAGON level, 

no degradation is observed, JDRAGON/DRAGON 

computational times ratios are similar to those of 

JPSIMU/PSIMU. Typical problems as ATV or 

GALILEO problems last between one and two 

minutes, which continue to be acceptable.  

 

    Finally, beyond JDRAGON/JOSCAR tools, it is 

important to point out that there are other ongoing mission 

analysis tools redevelopments in JAVA such as CRASH 

(guided reentry), DOORS (controlled deorbit) and 

ELECTRA (risk reentry) [10]. 
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8. ANNEX: N-TUPLES DETERMINATION 

 

Bearing in mind the discretization of the research maneuver 

locations domain, the aim now is to determine the whole 

sequence of feasible maneuver locations combinations, 

which from now on will be called the “n-tuples”: 

((𝜑𝑗,𝑘)𝑗=1,𝑁𝑚
)
𝑘=1,𝑁𝑡

 respecting  𝐶1(𝜑𝑗,𝑘) ∀ 𝑘 = 1, 𝑁𝑡  

    Where 𝑁𝑚 now is the total number of maneuvers (fixed 

or to optimize) and 𝑁𝑡 is the total number of  𝜑𝑗 

combinations complying with 𝐶1(𝜑𝑗).  

 

 

Figure 13: N-tuples kth combination 

    The simplest method to obtain the n-tuples (but not faster) 

would be to test, for all possible combinations of 𝜑𝑗, if 

 𝐶1(𝜑𝑗) is fulfilled and if this is the case, save the 

combination. Since for the DRAGON general case it is 

possible to have more than one million combinations, it has 

been decided to implement an algorithm more efficient and 

therefore, less computationally expensive. The method 

implemented has been the following:  

 

1)  Verifying input data given by the user: Each maneuver is 

defined by the following parameters: 

 

 The allowable
9
 maneuver location 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

𝑗 ≔

{𝜑𝑗  | 𝜑𝑗 ∈ [𝜑𝑗
𝑚𝑖𝑛 , 𝜑𝑗

𝑚𝑎𝑥]}   

 The research step: ∆𝜑𝑗, with ∆𝜑𝑗 ≥ 0 

 The limitations to respect in angular distance with 

respect the following maneuver  

{∆𝜑𝑗
𝑚𝑎𝑥 , ∆𝜑𝑗

𝑚𝑖𝑛}, with ∆𝜑𝑗
𝑚𝑎𝑥 ≥ ∆𝜑𝑗

𝑚𝑖𝑛 > 0 

2) Erasing not feasible locations:  Due to the fact that not all 

𝜑𝑗 ∈ 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒(𝑗) verify 𝐶1(𝜑𝑗), a pre-processing method 

is conducted in order to compute 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗: 

 

𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 ≔ {𝜑𝑗 ∈   𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

𝑗| ∃ 𝜑𝑗+1 ∈  𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗+1, ∆𝜑𝑗

𝑚𝑎𝑥

≥  𝜑𝑗+1 −  𝜑𝑗   ≥  ∆𝜑𝑗
𝑚𝑖𝑛} 

 

    With 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑁𝑚 = 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

𝑁𝑚. This can be graphically 

deduced as: 

 

Figure 14: Graphical deduction of 𝑳𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆
𝒋 

   And it can be formalized as 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 = 𝐿𝑎𝑢𝑥

𝑗 ∩ 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
𝑗, 

with 𝐿𝑎𝑢𝑥
𝑗: 

 

                                                 
9
 Note that for fixed maneuvers : 𝜑𝑗

𝑚𝑖𝑛 = 𝜑𝑗
𝑚𝑎𝑥  and ∆𝜑𝑗 = 0 

https://eclipse.org/
https://www.orekit.org/


𝐿𝑎𝑢𝑥
𝑗 ≔ {𝜑𝑗  | 𝜑𝑗 ∈ [min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗+1)

− ∆𝜑𝑗
𝑚𝑎𝑥, max(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗+1) − ∆𝜑𝑗
𝑚𝑖𝑛 ]} 

 

3) Discretizing the feasible locations: Taking into 

account ∆𝜑𝑗, a discretized version of 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 is derived: 

 

𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 ≔ {𝜑𝑗 ∈ 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗 | 𝜑𝑗 = min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗) + 𝑖∆𝜑𝑗 ,

𝑖 = 0, … , 𝑖𝑚𝑎𝑥
𝑗 , 𝑖𝑚𝑎𝑥

𝑗 𝜖 ℕ0} 
 

    It is important to bear in mind that, by definition, all 

elements 𝜑𝑗  belonging to 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 verify 𝐶1(𝜑𝑗) for at 

least one 𝜑𝑗+1.  

4) Determining feasible indexes: Now that the list 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗  

is discrete, all feasible 𝜑𝑗 locations are automatically 

defined by a certain index 𝑖 𝜖𝐾𝑗: 

𝐾𝑗 ≔ {𝑖 𝜖 ℕ0 | min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗) + 𝑖∆𝜑𝑗  ∈  𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗} 

 

This set can be translated into a sequence of 𝑖, from 

𝑖 = 0 = min (𝐾𝑗)  to 𝑖 = 𝑖𝑚𝑎𝑥
𝑗 = max (𝐾𝑗): 

 

 

Figure 15: Maneuver j possible locations 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  The aim now is to determine, for each index 𝑖 ∈  𝐾𝑗, 

which subset 𝐾𝑖
𝑗  ⊆ 𝐾𝑗+1  of indexes 𝑖′ 𝜖 𝐾𝑗+1 

verifies 𝐶1(𝜑𝑗(𝑖)). By definition of 𝐾𝑗 this subset always 

exists and it is not empty.  Furthermore, given the properties 

of 𝐶1, this subset is continuous on ℕ0, so it can be defined 

by two indexes:   

 

 

 

Figure 16: Example of feasible indexes representation 

 

5) N-tuples: Finally, the last step is to compute all possible 

indexes combinations ((𝑖𝑛𝑑𝑒𝑥𝑗,𝑘)𝑗=1,𝑁𝑚
)
𝑘=1,𝑁𝑡

. This has 

been done thanks to the implementation of a recursive 

algorithm, not detailed here, which efficiently combines the 

𝐾𝑖
𝑗  subsets. For a given list of indexes {𝑖1, 𝑖2, … 𝑖𝑁𝑚

} the 

corresponding list of maneuvers locations {𝜑1, 𝜑2, … 𝜑𝑁𝑚
} 

is computed as 𝜑𝑗 = min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗) + 𝑖∆𝜑𝑗 , 𝑗 = 1, 𝑁𝑚. 

Note that finally in terms of CPU memory, the n-tuplets 

could be saved as integers (and not doubles) which, for the 

general case of more than one million combinations, would 

be desirable. 
 


