
JOSCAR/JDRAGON: TOOLS FOR MANEUVER STRATEGY COMPUTATION DEVELOPED

IN JAVA AND USING PATRIUS

Ivan Sumelzo Martinez
(1)

 Pierre Labourdette
(2)

(1) CNES, 18, Av. Edouard Belin, 31401 Toulouse Cedex 9, France, Email: ivan.sumelzomartinez@cnes.fr

(2) CNES, 18, Av. Edouard Belin, 31401 Toulouse Cedex 9, France, Email: pierre.labourdette@cnes.fr

ABSTRACT

JOSCAR/JDRAGON are new tools of maneuver strategy

computation, developed internally in CNES (Centre

National d’Etudes Spatiales, French Space Agency) at the

Orbital Maneuvers Office (DCT/SB/MO). Both tools have

been rewritten in JAVA even if they are always based on the

same basic principles of the initial OSCAR/DRAGON

Fortran versions, which were intensively used for the

Automated Transfer Vehicle (ATV) and still today, for the

operational design of the LEOP, phasing and rendezvous

scenarios for GALILEO missions.

This paper describes the methods implemented as well as

the software functionalities, pointing out the differences

between JAVA versus FORTRAN version, the first one

taking advantage of the new functionalities of CNES

PATRIUS library as well as almost 20 years usage

feedback.

Index Terms— Maneuver strategy computation,

rendezvous, optimization, PATRIUS, JAVA

1. INTRODUCTION

Since many years ago, CNES has been involved in missions

requiring phasing maneuvers computation. In that frame,

OSCAR/DRAGON tools [1] were developed for the ATV

project in 1997, in order to perform mission analysis studies

and conduct End-to-End simulations. This was possible after

a straight collaboration with Russian specialists of KIAM

(Keldysh Institute of Applied Mathematics) and MCC-M

(Mission Control Center at Moscow), who had wide

experience in rendezvous missions thanks to Saliut-Mir-ISS

program.

 Expert tools developed at the Orbital Maneuvers office

(some of them used in operational contexts as GALILEO,

ROSETTA, ATV), are essentially coded in Fortran.

However, thanks to the decision some years ago to use Java

technology, existing flight dynamics tools and libraries are

being rewritten within the framework of the SIRIUS project

[2]. While the development of the basic software layout

(PATRIUS) and the operational tools (FDS) already started

some time ago, the redevelopment of the analysis tools was

recently set up. In that frame, it was decided to take

DRAGON/OSCAR tools as “pilots”, given the numerous

computations as well as the considerable data management

conducted. As expected, DRAGON/OSCAR porting to Java

has been useful to point out the implications that using Java-

based software can have in the very particular frame of

orbital study tools.

 Concerning the tools functionalities, JDRAGON is

capable of computing a near-optimal mission plan, using

initial conditions for target and chaser spacecraft, an amount

of maneuvers to be optimized respecting some constraints of

application as well as certain rendezvous conditions. It is

based on a robust and fast method, which requires calling a

numerical propagator iteratively. For this purpose, JPSIMU

has been also developed based on its PSIMU predecessor,

which is the heart of numerous CNES flight dynamics tools

(as in ATV-CC or GALILEO FDS ones).

 At a higher level, JOSCAR, which uses JDRAGON as a

kernel, allows to perform End-to-End Monte-Carlo

simulations, necessary for mission analysis purposes,

allowing testing the robustness of the computed strategies.

Figure 1: Tools dependency

 Above the new design of these tools, thanks to the Java

object approach, their validation is also a big challenge.

Thematic validations have been conducted with no easy

comparisons with the Fortran version, given the differences

in their corresponding flight dynamics libraries. Special

efforts have been put into code performance, bearing in

mind an expected penalty in computation cost of a factor

two approximately, with respect to Fortran language. Hence,

it has been also important to look for optimal tools settings,

aiming at having both fast computations and satisfactory

accurate results. Concerning the quality of the code, Eclipse

[3] environment analysis tools have been used in order to be

compliant with CNES coding standard rules.

 At last, in order to deal with the considerable input/output

data generated, a Graphical User Interface has been

developed using GENIUS (a higher level CNES JAVA

toolkit based on Swing) which allows using these tools in a

more friendly way on many different Operating systems

from Windows to Linux.

2. DEVELOPMENT ENVIRONMENT

The development environment has been based on the

SIRIUS project workbench. Some of the important

components are:

- Java Development Kit: containing the Java

execution environment as well as the basic

development resources.

- Eclipse: the Integrated Development Environment.

It regroups useful plug-ins for software

development such as M2eclipse, Checkstyle,

FindBugs or PMD, among others.

- Maven: useful to build and manage Java projects.

 This set up has been efficient, helpful and user-friendly,

which has increased the productivity of the development.

2.1 PATRIUS

Figure 2: PATRIUS library features overview

The reference low level library used for mathematical and

flight dynamics functions has been PATRIUS (PATrimoine

de base siRIUS), which is based on Orekit [4] and

CommonsMath [5], as well as other supplementary libraries.

Its development started in 2011 and today, it is considered

as a powerful library with many features, fully tested and

validated, ready to be used in next generation FDS

development as well as in mission analysis tools and

internal studies.

2.2 GENIUS

For standardization purposes, each developed tool has been

devised to provide 3 modes of utilization:

- 1. Subroutine
1
 mode: containing the pure tool

computations, possible to be called from other

classes.

- 2. Batch mode: capable of reading an input data

file (“.xml”) and calling the subroutine mode.

- 3. GUI mode: a Graphical User Interface (GUI)

which permits to create specific scenarios and

launch the computation (via the batch mode).

 The GUI mode implementation has been possible thanks

to GENIUS (GENeration of Interface for Users of Scientific

S/W), a higher level toolkit, fully written in JAVA and based

on Swing. It was recently developed internally in CNES and

it was conceived as an easy-to-use toolkit, oriented towards

users not necessarily familiarized with low level language.

Figure 3: Example of GENIUS GUI appearance

 Thereby, GENIUS permits to create GUIs in the context

of general scientific applications. The main advantages are:

- Units management

- Performing conditional display

- Simplified approach, in particular about events

management (setting actions before/after a certain

event is reached).

- Read/write for files directly integrated.

Configuration file containing GUI data (“.xml”) is

generated automatically.

- Process management compatible in all OS (thanks

to JAVA)

1
 Linked to Fortran principles

3. JPSIMU: THE NUMERICAL PROPAGATOR

Similar to DRAGON/OSCAR tools which call PSIMU

numerical propagator iteratively, JDRAGON/JOSCAR

required their equivalent PSIMU JAVA version. Even

though PATRIUS provided sufficient high level classes for

propagation purposes, it was decided to develop a specific

tool, JPSIMU, independent of JDRAGON/JOSCAR, which

might be useful for other tools in the coming future.

 Inspired by its FORTRAN predecessor version, JPSIMU

is a numerical orbit extrapolator around the Earth, whose

main functionalities are:

- Taking into account different forces:

o Earth potential

o Third body perturbations

o Aerodynamics forces

o Solar Radiation Pressure

o Ocean/ Terrestrial Tides

- Customizing the vehicle features

- Defining a maneuver sequence

- Defining an attitude sequence

- Using different numerical integrators

- Identifying orbital events

 However, due to the change of flight dynamics libraries

(PATRIUS for JPSIMU, BIBMS for its predecessor); some

differences arise when comparing both versions.

 For instance, while PSIMU reference first order integrator

is Cowell, JPSIMU implements a Dormand-Prince of 8
th

order with variable step-size (available in PATRIUS). It is

characterized by a good performance for a large variety of

orbits, especially for highly eccentric ones. Furthermore, it

treats in a more accurate way the forces discontinuities

(maneuvers, eclipses) and contains an interpolation function

which allows dense output data and good precision at event

detections, without interfering in the propagation results.

3.1 Propagation modes

Aside from the three modes of utilization (section 2.2);

JPSIMU can propagate orbits in two different manners,

depending on the propagation purposes. First, the slave

mode, which is the fastest, propagates the initial orbit until a

certain final date, returning a single final spacecraft state

(position, velocity and date). It could be the interest, for

example, when performing several calls from JDRAGON.

The second possibility, using which is called the master

mode, registers the spacecraft states sequentially every

given time step. This is the case, for example, when using

JPSIMU GUI mode, which allows generating an ephemeris

file with up to 80 output variables, depending on user needs.

3.2 Event detectors

The use of event detectors along the propagation is one of

the most powerful new functionalities with respect the

Fortran version. Each event of interest is translated into a

continuous function g, which is a function of the spacecraft

state. The event detection is equivalent to find the roots of

this function. At each integration step, these functions are

evaluated, monitoring the sign changes. When a sign change

is detected, an iterative process is triggered in order to detect

the event (finding the function’s root) with the required

precision.

 Although PATRIUS library provides a large variety of

event detectors already coded, each user can define its own

ones, respecting the EventDetector interface. In JPSIMU

they are constantly used along the propagation with different

purposes:

- To stop the propagation

- To switch between attitude laws

- To define the beginning/end of maneuvers (either

impulsive or spread maneuvers)

- To identify orbital events of interest as:

ascending/descending nodes, station visibilities,

entering/exiting an eclipse or arguments of latitude,

among others.

Figure 4: JPSIMU GUI plot panel example: Detecting

eclipses events on International Space Station ground

track (longitude, latitude in degrees)

3.3 Frames configuration management

Finally, the last substantial new feature is the possibility to

manage the frames configuration used for the propagation.

In other words, it permits to vary the level of accuracy

considered (vs CPU time) when performing frames

transformations along the propagation.

Table 1: Possible customizable frames corrections in PATRIUS

From To Phenomena Corrections

GCRF
2
 CIRF Earth rotation axis

around Ecliptic pole

Precession,

Nutation

CIRF
3
 TIRF Diurnal motion UT1-UTC

difference

TIRF
4
 ITRF

5
 Earth rotation axis

wrt Earth’s crust

Tides, libration,

S’ effects, EOPs

 PATRIUS frames configuration used by default is

IERS2010 convention, which takes into account all

corrections presented in Table 1. Managing the frames

configuration is important since it has a direct impact on

both precision and propagation’s performance:

Table 2: CPU times comparison for different frames

configurations and max deviations in position and

velocity (wrt IERS2010) for a 30 days LEO propagation

Test Corrections dPmax

(m)

dVmax

(m/s)

CPU

time (s)

1 All (IERS2010) - - 4.24

2 All except EOPs 1.46E1 1.68E-02 4.02

3 Only Prec-Nut 1.46E1 1.68E-02 2.88

4 No corrections 4.69E2 5.42E-01 1.97

 Finally, it is important to point out that this customization

is not possible in PSIMU Fortran version, which takes into

account only precession-nutation corrections (the most

important ones in terms of accuracy). As shown in Table 2,

this configuration (Test 3) provides good trade-off between

accuracy and performance and thereby, it might be the

optimal setting to use in JDRAGON/JOSCAR tools.

3.4 Validation

Once the tool was fully developed, it was required an

exhaustive validation, since JPSIMU was expected to

become the core of JDRAGON/JOSCAR, as well as other

future tools.

2
 Geocentric Celestial Reference Frame (inertial)

3
 Celestial Intermediate Reference Frame (pseudo-inertial)

4
 Terrestrial Intermediate Reference Frame (non-inertial)

5
 International Terrestrial Reference Frame (non-inertial)

 First comparisons were done with respect to the Fortran

version. Nevertheless, the results obtained were not totally

satisfactory for all test cases. Some differences arose due to

the different flight dynamics libraries used. The main

sources inducing results discrepancies were the frames

configuration management, the first order integrator used

(Cowell vs Dormand-Prince) and the force models

implementation.

 It is for that reason that an alternative strategy was

chosen: JPSIMU is based on the NumericalPropagator class

provided by PATRIUS. This class was strongly validated

against ZOOM (the precise orbit restitution tool at CNES).

Thus, since the numerical propagator class had already been

fully tested for a large variety of scenarios, it was decided to

set PATRIUS as the reference for the validation. The

validation process was organized as follows:

1. Thematic validation: only the classes containing

the pure computations of JPSIMU were validated.

Firstly, a set of ephemeris files were generated

using pure PATRIUS. Then, they were taken as

reference in order to validate the ephemeris

generated by the JPSIMU subroutine mode. A total

of 42 tests were performed, divided in seven

different topics: initial orbit, earth features/ frames

configuration, vehicle, force models, maneuvers

scenario, attitude laws and integrator.

2. Batch/GUI mode validation: it was oriented

towards the validation of the GUI and the

configuration data file (“.xml”) generation. The 42

thematic test cases were reproduced using the

Graphical User Interface, expecting to obtain

exactly the same ephemeris generated during

thematic validation.

 This validation was performed using the JUNIT

environment which, among others advantages, permits to

easily run unitary tests, performing ephemeris files

comparison in the case of JPSIMU. The battery of tests

conducted had coverage of more than 80% in the code

source. Even if the tool evolves, the battery of tests can

always be launched, taking less than 5 minutes. On top of

that, special attention was paid on the quality of the code. In

order to do that, FindBugs and CheckStyle tools were used.

They help programmers to write Java code (or readapt in

this case) compliant with certain coding standards. These

tools were set in order to verify CNES coding standard

rules, which were provided by the Quality Office.

4. JDRAGON: COMPUTING MANEUVERS

Based on its predecessor version, JDRAGON is a maneuver

strategy computation tool used for transfers and rendezvous

problems. It optimizes a fixed number of maneuvers that

permit to reach a non-cooperative target, within a fixed

phasing duration and fulfill certain relative rendezvous

conditions. For this purpose, the same DRAGON algorithm

has been implemented, since it has largely demonstrated its

capabilities during ATV and GALILEO missions, being

fast, robust and compliant with operational constraints.

Nevertheless, the fact of porting DRAGON to JAVA has

been also profited to provide new functionalities, such as the

possibility to optimize more than six unknowns.

4.1 Problem statement

 Equations of motion including rendezvous maneuvers can

be stated as:

 Setting:

- 𝐸𝑐ℎ(𝑡
0) ≔ (𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜈)𝑐ℎ

0 : chaser state vector at

initial date

- 𝐸𝑐ℎ(𝑡
𝑓) ≔ (𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜈)𝑐ℎ

𝑓
 : chaser state vector

at rendezvous

- 𝐸𝑡𝑎(𝑡
𝑓) ≔ (𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜈)𝑡𝑎

𝑓
 : target state vector at

rendezvous

- 𝑉𝑎𝑖𝑚: relative targeted state vector at rendezvous

with respect to target.

- 𝑻 operator: real function of transfer, which takes

into account all forces and simulates the “real

world”

 Then, the rendezvous final condition can be expressed as:

𝐸𝑡𝑎(𝑡
𝑓) + 𝑉𝑎𝑖𝑚 = 𝐸𝑐ℎ(𝑡

𝑓) = 𝑇(∆𝑉𝑗⃗⃗ ⃗⃗ ⃗, 𝜑𝑗 , 𝑁𝑚, 𝐸𝑐ℎ(𝑡
0))𝑗=1,𝑁𝑚

 Where:

 𝑁𝑚 is the number of maneuvers to optimize

 ∆𝑉𝑗⃗⃗ ⃗⃗ ⃗ is the value of the maneuver 𝑗, with ∆𝑉𝑗 =

 √𝑅𝑗
2 + 𝑇𝑗

2 + 𝑁𝑗
2, being 𝑅𝑗, 𝑇𝑗 and 𝑁𝑗 the radial,

tangential and out-of-plane ∆𝑉𝑗 components

correspondingly

 𝜑𝑗 is the location of the maneuver 𝑗, with 𝜑𝑗 =

 2𝜋(𝑁𝑐ℎ
𝑗 − 1) + 𝛼𝑗, being 𝑁𝑐ℎ

𝑗 the orbit number

and 𝛼𝑗 the argument of latitude where it is

performed

 The problem {P1} to calculate rendezvous maneuvers can

be stated as a general optimization problem:

Find 𝒙 ≔ {𝑁𝑚, ∆𝑉𝑗⃗⃗ ⃗⃗ ⃗, 𝜑𝑗} 𝑗=1,𝑁𝑚

To minimize 𝐽(𝒙) ∶= ∑ |∆𝑉𝑗⃗⃗ ⃗⃗ ⃗|
𝑁𝑚
𝑗=1

 And subjected to the following constraints:

 𝐶0, the rendezvous condition:

𝐸𝑡𝑎(𝑡
𝑓) + 𝑉𝑎𝑖𝑚 = 𝑇(∆𝑉𝑗⃗⃗ ⃗⃗ ⃗, 𝜑𝑗 , 𝑁𝑚, 𝐸𝑐ℎ(𝑡

0))𝑗=1,𝑁𝑚

 𝐶1(𝜑𝑗):

o 𝜑𝑗 ∈ (𝜑𝑗
𝑚𝑖𝑛 , 𝜑𝑗

𝑚𝑎𝑥): allowable location

to perform maneuver

o 𝜑𝑗+1 − 𝜑𝑗 ∈ [∆𝜑𝑗
𝑚𝑖𝑛 , ∆𝜑𝑗

𝑚𝑎𝑥]:

limitations for angular distance between

two burns

 𝐶2(∆𝑉𝑗⃗⃗ ⃗⃗ ⃗):

o ∆𝑉𝑗 ∈ [∆𝑉𝑗
𝑚𝑖𝑛 , ∆𝑉𝑗

𝑚𝑎𝑥]: limitations for

maneuver modules

o 𝑅𝑗 ∈ [𝑅𝑗
𝑚𝑖𝑛 , 𝑅𝑗

𝑚𝑎𝑥]: limitations for radial

maneuver components

o 𝑇𝑗 ∈ [𝑇𝑗
𝑚𝑖𝑛 , 𝑇𝑗

𝑚𝑎𝑥]: limitations for

tangential maneuver components

o 𝑁𝑗 ∈ [𝑁𝑗
𝑚𝑖𝑛, 𝑁𝑗

𝑚𝑎𝑥]: limitations for out-

of-plane maneuver components

4.2 Solution approach

The problem {P1} is non-linear with non-linear and with

non-convex constraints. Given its complexity, it is

simplified to a near-optimal problem {P2}, considering the

following assumptions:

- The number of maneuvers to optimize 𝑁𝑚 is fixed.

In addition, for each maneuver, the type and

number of components to optimize 𝑁𝑐𝑗
 ∈ {1,2,3} is

given.

- The research domain of maneuvers locations

𝜑𝑗 ∈ (𝜑𝑗
𝑚𝑖𝑛 , 𝜑𝑗

𝑚𝑎𝑥) is discretized using a

given ∆𝜑𝑗. A preprocessing is conducted in order

to create a list of feasible maneuver locations

combinations {𝜑𝑗}𝑗=1,𝑁𝑚
 complying with 𝐶1(𝜑𝑗),

called “n-tuples” (see annexes for more details).

- T operator is simplified by a linearized operator L,

derived from the Gauss equations. Thus, the final

chaser state vector is computed as:

𝐸𝑐ℎ(𝑡
𝑓) ≈ 𝐿 (∆𝑉𝑗⃗⃗ ⃗⃗ ⃗, 𝜑𝑗 , 𝐸𝑐ℎ(𝑡

0))
𝑗=1,𝑁𝑚

=

= 𝐸𝑐ℎ(𝑡
0) + 𝐴(𝜑𝑗)𝑋(∆𝑉𝑗⃗⃗ ⃗⃗ ⃗)

- Trim maneuvers (fixed in location and value) can

be added to take into account operational

constraints and scenario robustness.

 Then, problem {P2} can be solved by a standard iterative

process:

 Problem {P2’} requires solving a linear system 𝐴𝑋 = 𝑏

iteratively, 𝐴 ∈ ℝ𝑛𝑒 𝑥 𝑚, 𝑋 ∈ ℝ𝑚, 𝑏 ∈ ℝ𝑛𝑒 , for all available

“n-tuples”, consisting of 𝑛𝑒 equations and 𝑚 unknowns. The

number of equations will depend on the number of orbital

parameters to reach demanded by the user:

Table 3: JDRAGON problem types as a function of the

orbital parameters
6
 to reach.

Problem type Parameters # Equations (𝑛𝑒)

Transfer 2D 𝑎, 𝑒𝑥, 𝑒𝑦 3

Rendezvous 2D 𝑎, 𝑒𝑥 , 𝑒𝑦 , 𝜏 4

Transfer 3D 𝑎, 𝑒𝑥 , 𝑒𝑦, 𝑖, Ω 5

Rendezvous 3D 𝑎, 𝑒𝑥, 𝑒𝑦 , 𝜏, 𝑖, Ω 6

 On the other hand, the number of unknowns 𝑚 will

depend on the maneuver scenario defined by the user:

6
 Considering near-circular, circular orbital parameters are

used, being 𝜏: along-track distance

𝑚 = ∑𝑁𝑐𝑗

𝑁𝑚

𝑗=1

 Therefore, the linear system to solve will be:

Linear System type # Solutions

Undetermined (𝑛𝑒 > 𝑚) 0

Determined (𝑛𝑒 = 𝑚) 1

Overdetermined (𝑛𝑒 < 𝑚) ∞

 For the undetermined linear system case, a least squares

standard approach has been implemented which minimizes

the sum of squared residuals,‖𝐴𝑋 − 𝑏‖ and whose closed-

form solution is �̂� = (𝐴𝑡𝐴)−1𝐴𝑡𝑏. Then, for the determined

linear system, a unique solution exists �̂� = (𝐴)−1𝐵.

 Finally, for the overdetermined linear system case two

options have been implemented, letting the user to choose

among them:

 Pseudo-inverse Minimization of a

Sum of Norms

Minimization

criterion ∑|∆𝑉𝑗⃗⃗ ⃗⃗ ⃗|
2

𝑁𝑚

𝑗=1

 ∑|∆𝑉𝑗⃗⃗ ⃗⃗ ⃗|

𝑁𝑚

𝑗=1

Resolution Analytical

�̂� = 𝐴𝑡(𝐴𝐴𝑡)−1𝑏

Iterative

Performance Fast Slow (∼x25 wrt

pseudo-inverse)

 Both methods present its advantages and disadvantages.

From a fuel minimization point of view, the minimization of

a sum of delta-Vs will be always more optimal. The

minimization of a sum of Euclidean norms is a non-

differentiable and non-linear optimization problem.

Nevertheless, given its properties, it can be transformed into

a differentiable linear problem with quadratic constraints

and thus, it can be solved by a Sequential Quadratic

Programming method (SQP). However, from the

computational cost point of view, the pseudo-inverse is

largely faster, since its solution is retrieved analytically. The

tests performed with both methods show that, while the

pseudo-inversion permits to manage yet a typical DRAGON

case with 1 million of “n-tuples”, the minimization of a sum

of norms should be used for, at much, fifty thousand

combinations, in order to obtain solutions in similar times.

This new approach opens new optimization possibilities but

forces the user to better precise the maneuver locations.

4.3 Example I: ATV3 – Johannes Kepler

The Automated Transfer

Vehicle was an unmanned

space transport vehicle

whose mission was to

contribute to the logistic

servicing of the ISS. It was

a European Space Agency

(ESA) funded program:

the spacecraft was

designed and built by

Airbus Defense and Space

and operated from Toulouse, by CNES, at the ATV Control

Center (ATV-CC). A total of five missions were conducted

achieving a 100% success: first ATV- 1 Jules Verne mission

was sent in March 2008, while last ATV-5 Georges

Lemaitre launched end of July 2014 [6], [7].

 From now on, we will focus now on the phasing phase of

the ATV-3 Johannes Kepler, which covers the orbital flight

from the insertion point IP (260km x 260 km, 51.6 °) until

the interface point at the vicinity of the ISS (𝑆−1/2 , 39km

behind and 5km below ISS). The maneuver strategy to study

has been:

- A Transfer to the Phasing orbit cycle (TP): 2

maneuvers to optimize (tangential, out-of-plane

components)

- 2 corrective Mid-Course (MC) cycles of 2

maneuvers each (ΔV = 4x1.5 = 6m/s)

- 3 Transfer to ISS Vicinity (TIV) cycles of 2

maneuvers each: TV1 to optimize (tangential

components), TV2 fixed (ΔV = 2x6 = 12 m/s) and

TV3 fixed (ΔV = 2x3= 6 m/s)

- 1 Transfer to the Interface orbit (TIF) cycle

consisting of 1 maneuver (ΔV = 1.2m/s)

Figure 6: ATV-3 simplified phasing strategy

 This problem is a rendezvous in 3D (Table 3), with 6

unknowns, 4 for the TP cycle and 2 for the TIV1 cycle. The

aim has been to compare the different methods, bearing in

mind the results found by the reference DRAGON Fortran

version.

 The computed solution (Table 3) differs 0.2% in terms of

DV with respect to Fortran version, which is acceptable

bearing in mind the different numerical propagators used.

Table 4: Results obtained with JDRAGON

Maneuver strategy to optimize TN-TN-T-T

#JPSIMU calls 8

Total DV (m/s) 55.27
CPU time (s), including ephemeris generation 1min 54s

Figure 7: GUI JDRAGON - output frame appearance

Figure 8: TIV3 and TIF phase containing the last 3

maneuvers in target QSW local frame (JDRAGON)

 On top of that, alternative strategies have been studied

trying to optimize the two out-plane components of the TIV

cycle.

Table 5: Alternative strategies results (TN-TN-TN-TN)

Method Pseudo-Inverse Min sum norms

“n-tuples” 194481 28561

#JPSIMU calls 7 7

Total DV (m/s) 55.04 55.03

CPU time 2min 3min 11s

 As expected, solutions are very little improved since

Ariane-5 was in charge of injecting the ATV at the right

plane (taking into account Ω drift until RDV date) so

additional out-of-plane maneuvers do not play an important

role.

Figure 5: ATV approaching

ISS for docking (Credit:

ESA/NASA)

4.4 Example II: Mango-Picard phasing

The IRIDES experiment (Iterative Reduction of Inspection

Distance with Embedded System) consisted in approaching

the PRISMA Mango spacecraft to the Picard non-

cooperative spacecraft ([8], [9]), in order to demonstrate

rendezvous and inspection technology. Originally, Mango

took part in the Swedish PRISMA mission, aiming at

demonstrating strategies and technologies for formation

flying and rendezvous. On the other hand, Picard was a

French satellite that became non-operational in April 2014,

after taking more than one million images of the Sun,

among other objectives. After Mango finished its nominal

and extended mission phases, and since a considerable

amount of fuel was remaining, it was decided to set the

IRIDES experiment as its new objective.

Table 6: Orbital parameters derived from public TLE at

28/01/2013 (00h 20min)

Osculating parameters Mango Picard

Sma (km) 7138.4 7110.5

Ecc 0.004 0.001

Inc (deg) 98.28 98.24

Pa (deg) -191.34 80.87

Raan (deg) 202.64 214.93

 From now on, we will focus on the study of the phase

prior to inspection, the phasing phase. Observing the orbital

parameters, it is possible to notice that the phasing problem

difficulty relies mainly on the large difference in the right

ascension of the ascending node ∆Ω = Ω𝑝𝑖𝑐𝑎𝑟𝑑 − Ω𝑚𝑎𝑛𝑔𝑜 ≈

 12.2deg. Moreover, due to J2 effects, this difference

increases as the time goes by since Ω̇𝑝𝑖𝑐𝑎𝑟𝑑 > Ω̇𝑚𝑎𝑛𝑔𝑜.

Figure 9: Rendezvous parameters (phasing duration,

orbital parameters to reach, convergence thresholds and

aimed vector are given)

 For the study performed, we have imposed a duration of

460 days and a drift number of 30 (relative number of

completed orbits performed by the chaser with respect the

target).

Figure 10: Maneuver strategy studied

 The optimal strategy is to vary the semi-major axis of

Mango, in order to have a favorable relative Ω drift. Thus,

the maneuver strategy has been composed of two cycles.

Each cycle formed by two maneuvers separated by 180deg,

the first cycle for starting the drifting phase and the second

one for stopping it. Moreover, all maneuver locations are

researched within an interval of 360deg. Besides the

classical strategy presented in Figure 10, we have performed

parallel studies optimizing two additional out-of plane

components (TN-TN-TN-TN), obtaining the following

results:

Table 7: Method comparisons results

Method Linear

inversion

Pseudo-

Inverse

Minimization

of Norms

Strategy T-TN-T-TN TN-TN-TN-TN TN-TN-TN-TN

DV (m/s) 51.67 51.54 50.86

CPU time 5min 39s 7min 50s 10min 36s

“N-tuples” 95319 95319 23919

#JPSIMU calls 4 6 4

 This study has been conducted without considering the

real propulsive properties of Mango, which would have

forced to break down the 4 maneuvers into many equivalent

small maneuvers. However, this example has been useful to

show how, for rendezvous problems with important in-plane

and out-plane maneuvers coupling, the new methods

implemented improved the classical approach (0.3% and

1.6% reduction in terms of delta-V using pseudo-inverse

and minimization of norms correspondingly).

Figure 11: Time (days) VS ∆Ω (deg)

0
3
6
9

12
15

0 69 139 208 278 347 417

5. JOSCAR: END-TO-END SIMULATIONS

The aim of JOSCAR is to account for variables dispersions

that could be experienced all along the flight. Based on a

Monte-Carlo analysis, it permits to simulate the maneuvers

update process performed on-ground all along the mission

by computing end-to-end simulations with the Control

Center in the loop. Consequently, it is a time consuming

process, since multiple calls to JPSIMU and JDRAGON are

required. It is important to understand how JOSCAR

switches continuously between:

- The “real world”: it is composed of the real

parameters (force models, engines performance,

chaser/target orbits and vehicle features). For each

run of the Monte-Carlo simulation, they are

generated by a dispersion of the nominal

parameters.

- The “predicted world”: the lack of knowledge of

the real world. When performing maneuver

computations the input data considered is

sometimes uncertain: chaser/target restituted

orbits, engines calibrations, atmosphere forecasts

or vehicle features, among other parameters.

Figure 12: Example of JOSCAR simulation composed of

three events: chaser orbit restitution, target orbit

restitution and a maneuver strategy computation (calling

JDRAGON)

 Based on its Fortran predecessor, JOSCAR has been split

into two modules: Genoscar and Exoscar.

5.1 Genoscar

This first module offers the possibility to define the End-to-

End scenario to be simulated as well as the variables to

disperse along the Monte-Carlo analysis. The scenario is

defined by a sequential number of events, each of them

positioned either by means of absolute parameters (date or

number of orbit and argument of latitude) or by relative

parameters with respect to other events. The possible events

to define are:

- Chaser orbit restitution: dispersions can be

Gaussian or uniform and defined by different

orbital parameters (keplerian, circular, QSW
7
 or

TNW
8
). In addition, Gaussian dispersion can be

defined either by the covariance matrix or by the

correlation matrix and standard deviation vector.

- Target localization: similar to chaser orbit

restitution with the difference that the dispersion

can be also defined at rendezvous date.

- Thrusters calibration: usually placed after a

maneuver has been performed, permits to estimate

the engine thrust.

- Maneuver computation: a maneuver scenario is

defined. When the event is reached, a JDRAGON

computation is performed.

- Change rendezvous point: this event allows

changing the active targeted rendezvous point. This

feature was used, for instance, during ATV

mission, where the sequence from insertion to

parking point at ISS was followed by the sequence

to reach the rendezvous interface.

- Sequence of maneuvers: a sequence of fixed

maneuvers is triggered.

- Atmospheric forecast: permits to have an

estimation of the atmospheric conditions (usually

function of the solar activity).

 In addition, other GUI panels permits to define the

engines features (thrust, dispersions), different aimed target

points, the atmospheric models settings (multiplicative

factors, ballistic coefficients dispersion) as well as to

customize the Monte-Carlo settings. Once the scenario is

defined, Genoscar is launched and a file containing all

random variables is generated, which will be used then by

the following module, Exoscar.

5.2 Exoscar

This second module allows defining a set of data required

for the simulation propagation as the chaser/target vehicle

features, the force models or the attitude sequences.

Contrary to the Fortran version, it has been decided to make

the difference between the propagation models (forces,

vehicle features, integrator) used in maneuver computations

(at JDRAGON level) and the models used for “real word”

7
 QSW local frame : radial, tangential and out-of-plane

directions
8
 TNW local frame: tangential, out-of-plane and radial

directions

propagation. This feature could be interesting for instance,

when simulating on-board maneuver computations, which

usually make use of simplified models. This module is yet

under development but, as the predecessor version, will

permit to define a set of actions concerning the required

output files.

6. CONCLUSIONS

This paper has presented JDRAGON/JOSCAR tools,

written in JAVA. Based in their predecessor Fortran

versions DRAGON/OSCAR, they are used for maneuver

strategy computation and mission analysis purposes.

Additionally, it has been necessary to develop JPSIMU, a

numerical propagator that is required for

JDRAGON/JOSCAR algorithm computations. Their

development has been possible thanks to the SIRIUS project

workbench and particularly PATRIUS, a powerful library

that provides many flight dynamics low level functions. The

development of JDRAGON/JOSCAR tools using JAVA

language has shown significant advantages:

 Faster development: JAVA language is easier to

write, compile and debug than other programming

languages. Moreover, JAVA uses automatic

memory allocation and garbage collection which

improves the programmer productivity.

 Object-oriented: Development is reduced to create

objects, manipulate them and make them work

together. This has resulted in modular programs

and reusable codes. For instance, many JPSIMU

widgets (classes used for GUI) have been reused in

JDRAGON/JOSCAR GUIs.

 Platform-independent: It is sure to obtain the same

results when running tools either on Windows or

Linux.

 Robustness: Early checking for possible errors.

Unlike Fortran language, where many errors would

first show up during execution time, JAVA

compilers are able to detect many problems in

advance.

 Graphical User Interfaces: By using GENIUS, the

development of the GUI has been easier, thanks to

its simplified approach.

 New features: After 20 years usage feedback, some

functionalities from the predecessor tools have

been erased, while new improvements have been

implemented.

 On the other hand, special attention has been put into the

possible disadvantages that using JAVA language could

have with respect to Fortran:

 Validation: JPSIMU has been largely validated

against PATRIUS in order to dispose of a reliable

numerical propagator. When comparing with

PSIMU Fortran version some differences arose due

to the different flight dynamics libraries used

(mainly because of force models implementation,

frames management and integrators used).

However, these differences are not significant

when running JDRAGON/JOSCAR tools, since

they are capable of computing same delta-V

budgets for varied types of missions such as ATV

and GALILEO (with a precision better than 1mm/s

when studying same n-tuples scenarios and same

force models).

 Performance: Computation time relies mainly on

numerical propagation performed at JSPIMU level.

It is highly dependent on frames management

settings or integrator tolerances. When comparing

with Fortran version and for a same level of

precision, it is possible to notice that JAVA is

approximately twice slower. At JDRAGON level,

no degradation is observed, JDRAGON/DRAGON

computational times ratios are similar to those of

JPSIMU/PSIMU. Typical problems as ATV or

GALILEO problems last between one and two

minutes, which continue to be acceptable.

 Finally, beyond JDRAGON/JOSCAR tools, it is

important to point out that there are other ongoing mission

analysis tools redevelopments in JAVA such as CRASH

(guided reentry), DOORS (controlled deorbit) and

ELECTRA (risk reentry) [10].

7. ACKNOWLEDGEMENTS

The authors gratefully acknowledge Jean-François Goester

(DCT/SB/MO) for his valuable technical support and paper

review, Richard Epenoy (DCT/SB/MO), for his helpful

assistance in optimization techniques and Vincent Ruch

(DCT/SB/SP), for his time and help concerning PATRIUS

issues.

8. REFERENCES

[1] P.Labourdette, A. Gaudel-Vacaresse, D.Carbonne

“Oscar/Dragon: Tools for maneuver strategy computation”, 5th

International Conference on Astrodynamics Tools and Techniques,

ESTEC/ESA, The Netherlands, 29 may – 1 June 2012.

[2] Denis, C. and Tanguy, Y. “The SIRIUS Flight Dynamics

Library for the next 25 years”. 5th International Conference on

Astrodynamics Tools and Techniques, ESTEC/ESA, The

Netherlands, 29 may – 1 June 2012.

[3] Eclipse website: https://eclipse.org/ (February 2016)

[4] Orekit website: https://www.orekit.org/ (February 2016)

[5] Commons Math website (February 2016):

 https://commons.apache.org/proper/commons-math/

[6] Martinez-Alcalde, S., Labourdette, P., Goester, J.F., Delattre S.,

De Pasquale, E., “Lessons learned from the phasing strategy

design in the ATV program”, 25th International Symposium on

Space Flight Dynamics, 19-23 October, 2015. Munich, Germany.

[7] Martinez, Santiago and al., “High Reactivity Maneuver Design

in ATV Missions”, 24th International Symposium on Space Flight

Dynamics, 2014. Laurel, Maryland, US.

[8] Karlsson, T. and al., “Prisma Irides: performance at the end of

the drift phase & planned rendezvous experiments”, 9th

International ESA Conference on Guidance, Navigation & Control

Systems, 2-6 June 2014. Porto, Portugal.

[9] Karlsson, T. and al., “Irides new rendezvous objectives for the

Prisma mission”, 64th International Astronautical Congress.

Beijing, China.

[10] Pavero, P. and al., “Space dynamic software ELECTRA”, 6th

International Conference on Astrodynamics Tools and Techniques,

Darmstadt, Germany, 14-17 Mars 2016.

8. ANNEX: N-TUPLES DETERMINATION

Bearing in mind the discretization of the research maneuver

locations domain, the aim now is to determine the whole

sequence of feasible maneuver locations combinations,

which from now on will be called the “n-tuples”:

((𝜑𝑗,𝑘)𝑗=1,𝑁𝑚
)
𝑘=1,𝑁𝑡

 respecting 𝐶1(𝜑𝑗,𝑘) ∀ 𝑘 = 1, 𝑁𝑡

 Where 𝑁𝑚 now is the total number of maneuvers (fixed

or to optimize) and 𝑁𝑡 is the total number of 𝜑𝑗

combinations complying with 𝐶1(𝜑𝑗).

Figure 13: N-tuples kth combination

 The simplest method to obtain the n-tuples (but not faster)

would be to test, for all possible combinations of 𝜑𝑗, if

 𝐶1(𝜑𝑗) is fulfilled and if this is the case, save the

combination. Since for the DRAGON general case it is

possible to have more than one million combinations, it has

been decided to implement an algorithm more efficient and

therefore, less computationally expensive. The method

implemented has been the following:

1) Verifying input data given by the user: Each maneuver is

defined by the following parameters:

 The allowable
9
 maneuver location 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

𝑗 ≔

{𝜑𝑗 | 𝜑𝑗 ∈ [𝜑𝑗
𝑚𝑖𝑛 , 𝜑𝑗

𝑚𝑎𝑥]}

 The research step: ∆𝜑𝑗, with ∆𝜑𝑗 ≥ 0

 The limitations to respect in angular distance with

respect the following maneuver

{∆𝜑𝑗
𝑚𝑎𝑥 , ∆𝜑𝑗

𝑚𝑖𝑛}, with ∆𝜑𝑗
𝑚𝑎𝑥 ≥ ∆𝜑𝑗

𝑚𝑖𝑛 > 0

2) Erasing not feasible locations: Due to the fact that not all

𝜑𝑗 ∈ 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒(𝑗) verify 𝐶1(𝜑𝑗), a pre-processing method

is conducted in order to compute 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗:

𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 ≔ {𝜑𝑗 ∈ 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

𝑗| ∃ 𝜑𝑗+1 ∈ 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗+1, ∆𝜑𝑗

𝑚𝑎𝑥

≥ 𝜑𝑗+1 − 𝜑𝑗 ≥ ∆𝜑𝑗
𝑚𝑖𝑛}

 With 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑁𝑚 = 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

𝑁𝑚. This can be graphically

deduced as:

Figure 14: Graphical deduction of 𝑳𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆
𝒋

 And it can be formalized as 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 = 𝐿𝑎𝑢𝑥

𝑗 ∩ 𝐿𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
𝑗,

with 𝐿𝑎𝑢𝑥
𝑗:

9
 Note that for fixed maneuvers : 𝜑𝑗

𝑚𝑖𝑛 = 𝜑𝑗
𝑚𝑎𝑥 and ∆𝜑𝑗 = 0

https://eclipse.org/
https://www.orekit.org/

𝐿𝑎𝑢𝑥
𝑗 ≔ {𝜑𝑗 | 𝜑𝑗 ∈ [min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗+1)

− ∆𝜑𝑗
𝑚𝑎𝑥, max(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗+1) − ∆𝜑𝑗
𝑚𝑖𝑛]}

3) Discretizing the feasible locations: Taking into

account ∆𝜑𝑗, a discretized version of 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 is derived:

𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 ≔ {𝜑𝑗 ∈ 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗 | 𝜑𝑗 = min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗) + 𝑖∆𝜑𝑗 ,

𝑖 = 0, … , 𝑖𝑚𝑎𝑥
𝑗 , 𝑖𝑚𝑎𝑥

𝑗 𝜖 ℕ0}

 It is important to bear in mind that, by definition, all

elements 𝜑𝑗 belonging to 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗 verify 𝐶1(𝜑𝑗) for at

least one 𝜑𝑗+1.

4) Determining feasible indexes: Now that the list 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗

is discrete, all feasible 𝜑𝑗 locations are automatically

defined by a certain index 𝑖 𝜖𝐾𝑗:

𝐾𝑗 ≔ {𝑖 𝜖 ℕ0 | min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗) + 𝑖∆𝜑𝑗 ∈ 𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑗}

This set can be translated into a sequence of 𝑖, from

𝑖 = 0 = min (𝐾𝑗) to 𝑖 = 𝑖𝑚𝑎𝑥
𝑗 = max (𝐾𝑗):

Figure 15: Maneuver j possible locations

 The aim now is to determine, for each index 𝑖 ∈ 𝐾𝑗,

which subset 𝐾𝑖
𝑗 ⊆ 𝐾𝑗+1 of indexes 𝑖′ 𝜖 𝐾𝑗+1

verifies 𝐶1(𝜑𝑗(𝑖)). By definition of 𝐾𝑗 this subset always

exists and it is not empty. Furthermore, given the properties

of 𝐶1, this subset is continuous on ℕ0, so it can be defined

by two indexes:

Figure 16: Example of feasible indexes representation

5) N-tuples: Finally, the last step is to compute all possible

indexes combinations ((𝑖𝑛𝑑𝑒𝑥𝑗,𝑘)𝑗=1,𝑁𝑚
)
𝑘=1,𝑁𝑡

. This has

been done thanks to the implementation of a recursive

algorithm, not detailed here, which efficiently combines the

𝐾𝑖
𝑗 subsets. For a given list of indexes {𝑖1, 𝑖2, … 𝑖𝑁𝑚

} the

corresponding list of maneuvers locations {𝜑1, 𝜑2, … 𝜑𝑁𝑚
}

is computed as 𝜑𝑗 = min(𝐿𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑗) + 𝑖∆𝜑𝑗 , 𝑗 = 1, 𝑁𝑚.

Note that finally in terms of CPU memory, the n-tuplets

could be saved as integers (and not doubles) which, for the

general case of more than one million combinations, would

be desirable.

