
MULTIPLE REVOLUTION LAMBERT´S TARGETING PROBLEM: AN ANALYTICAL
APPROXIMATION

Claudio Bombardelli, Juan Luis Gonzalo, and Javier Roa

Space Dynamics Group,
School of Aeronautical Engineering,

Technical University of Madrid

ABSTRACT
Solving a Lambert’s Targeting Problem (LTP) consists of ob-
taining the minimum required single-impulse delta-V to mod-
ify the trajectory of a spacecraft in order to transfer it to a se-
lected orbital position in a fixed time of flight. We present an
approximate analytical method for rapidly solving a generic
LTP with limited loss of accuracy. The solution is built on an
optimum single-impulse time-free transfer with a D-matrix
phasing correction. Because it exhibits good accuracy (both
in terms of delta-V and time of flight) near locally optimum
transfer conditions the method is useful for rapidly obtaining
low delta-V solutions for interplanetary trajectory optimiza-
tion. In addition, the method can be employed to provide a
first guess solution for enhancing the convergence speed of
an accurate numerical Lambert solver.

Index Terms— Lambert’s Problem, D Matrix, Quartic
Equation, Targeting

1. INTRODUCTION

Lambert’s problem (LP), i.e. the determination of the fi-
nite set of orbits linking two position vectors in a two-body
gravitational field with a specified transfer time, is of funda-
mental importance in orbital mechanics and has been studied
for more than two centuries. If one accounts for multiple
revolutions and both prograde and retrograde transfers Lam-
bert’s problem provides 2

(
ND
ub +NR

ub + 1
)

solutions where
ND
ub,N

R
ub are, respectively, the maximum number of revo-

lutions that a direct (D) and retrograde (R) orbits can have
before reaching the target location[1]. That means that if
long-duration transfer arcs are sought the problem becomes
more difficult to solve, the longer so the transfer time consid-
ered.

The solutions of a Lambert’s problem are to be obtained
numerically and are essential for various tasks in astrodynam-
ics, including the design of interplanetary trajectories. Most
efforts in the literature have been devoted to the improvement
of the convergence speed of its numerical solution using dif-
ferent choices for the iteration variable and ways to improve

its initial guess. A quite detailed historical review on the dif-
ferent contributions to the method can be found in the intro-
duction of reference[1].

When focusing on the design and optimization of space
trajectories one encounters a subclass of Lambert’s Problem
referred to as Lambert’s Targeting Problem (LTP). It consists
of obtaining the minimum required single-impulse delta-V to
modify the trajectory of a spacecraft in order to transfer it to
a selected orbital position in a fixed time of flight. If the so-
lutions of a Lambert’s Problem have been obtained the LTP
is solved right away by picking the one providing minimum
delta-V magnitude within the maximum number of revolu-
tions physically allowed by the transfer time constraint. The
reason for distinguishing between LP and LTP is mostly re-
lated to the method proposed in the present work, which is
concerned with the solution of an LTP but not the general so-
lution of an LP.

Solving an LTP with the highest possible computational
efficiency is key to the design of optimized interplanetary tra-
jectories, and, in particular, the ones including multiple grav-
ity assists and deep space maneuvers (DSMs). For these types
of problems, the complete sampling (grid search) of the multi-
dimensional solution space implies the solution of a num-
ber of LTPs often exceeding the capability of even the most
advanced computational means available today. One exam-
ple is the design and optimization of multiple gravity assist
trajectories with multiple DSMs like the Messenger trajec-
tory to Mercury, which employed seven trajectory arcs with
five deterministic DSM with delta-V larger than 70 m/s[2].
The sheer number of LTPs to be solved in this case makes
the problem computationally intractable if a brute-force, grid-
sampling approach is to be followed (see Conway’s book[3],
page 202). Another relevant application for a high-efficiency
LTP solver is the design of “inter-satellitary” trajectories at
the giant planets where multi-revolutions transfers are com-
mon and the number of possible flyby sequences make the
design and optimization task “computationally gigantic”[4].
It is clear that even a modest increase of efficiency in an LTP
solution algorithm would be extremely beneficial when fac-



ing these computational challenges. In addition, any intrinsic
pruning capability that the algorithm could offer in order to
discard unintresting transfer arcs a priory is highly welcome.

Recent advances towards a highly efficient LTP solver
have been made by these authors[5], who proposed an ap-
proximate analytical solution of the LTP based on Battin’s
optimum single-impulse transfer solution and a linear phas-
ing correction through the use of a novel Keplerian error state
transition matrix[6],[7]. The solution provides a useful tool
for preliminary trajectory design when high accuracy is not
a must as long as the main features of the solution are pre-
served.

We review the steps leading to the derivation of the analyt-
ical LTP solver providing additional formulas and examples
not previously described.

2. ANALYTICAL LTP SOLVER

Let us consider the Lambert’s Targeting Problem (LTP) of a
spacecraft departing from a point r1 with initial velocity v0

and arriving at a point r2 in a fixed time of flight ∆tL while
moving in a Keplerian gravitational field of gravitational pa-
rameter µ. The required delta-V targeting impulse ∆vL can
be broken down into an optimum time-free impulsive delta-V
(∆vB) and a phsing correction term (∆vC):

∆vL = ∆vB + ∆vC . (1)

Time-free delta-V
The optimum time-free impulsive delta-V (∆vB) can be ob-
tained analytically following the method proposed by Battin,
which reduces to the solution of the quartic equation[8]:

x4 − Px3 +Qx− 1 = 0 (2)

where x > 0 is the square of the ratio between the skew-
radial and skew-chordal components of the optimum depar-
ture velocity

x2 =
vρ1
vc1

, (3)

while:

P =

√
2r1r2
µc
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∆θ

2
(v0π · ur1) ,

Q =

√
2r1r2
µc

cos
∆θ

2
(v0π · uc) ,

with r1, r2,∆θ, c indicating, respectively, the magnitudes
of the departure and arrival location, the angular width of the
transfer arc and its chordal length, while v0π,ur1,uc are, re-
spectively, the transfer plane component of the spacecraft ini-
tial velocity v0, the radial unit vector at departure and the
chordal unit vector from r1 to r2.

Eq. (2) is a quartic algebraic equation that can be solved
analytically using different methods (e.g. by Lagrange resol-
vent) or numerically (e.g. with Newton’s or Halley’s method).
Once solved, the optimal chordal and radial components of v1

are determined using Eq. (3) and the following relation:

1

vc1
=

√
2r1r2
µc

x cos
∆θ

2
, (4)

Having determined the optimum v1 the total single-
impulse transfer velocity vector is obtained as:

∆vB = v1 − v0, (5)

while the angular momentum and eccentricity vector of the
transfer orbit are obtained as:

h = huh = r1 × v1

e = eue =
v1 × h

µ
− ur1.

The true and eccentric anomalies at r1 and r2 can now be
determined from the relations:

cos θ1,2 = ur1,2 · ue; sin θ1,2 = (ue × ur1,2) · uh,

cosE1,2 =
e− cos θ1,2

1 + e cos θ1,2
; sinE1,2 =

√
1− e2 sin θ1,2
1 + e cos θ1,2

.

The semi-major axis and mean motion are readily com-
puted as:

a =
r1

1− e cosE1
, n =

√
µ

a3

Finally the transfer time satisfies Kepler’s equation:

∆tB =
E2 − E1 − e (sinE2 − sinE1)

n
.

For hyperbolic orbits (e > 1), all preceding relations are
still valid after considering the relation between hyperbolic
and elliptic eccentric anomaly:

H = iE. (6)

D matrix targeting
Well-designed transfer arcs are characterized by high phasing
efficiencies or, equivalently, small magnitude velocity cor-
rections ∆vC . When this is the case one can obtain a suf-
ficiently accurate estimation of ∆vC starting from the opti-
mum single-impulse transfer trajectory. The sought maneu-
ver correction will be the one adjusting the trajectory phasing



without changing the orbit radius at the arrival true anomaly
θ2.

The phasing correction to be applied is best estimated as:

δt = ∆tL −∆tB −N TB , (7)

whereN is the total number of full revolutions of the clos-
est optimum single-impulse transfer:

N =

[
∆tL −∆tB

TB

]
,

with [] denoting the nearest integer function.
The velocity correction ∆vC associated with δt can be

obtained from the linear relation linking the radial position
shift (δr) and time delay (δt) of a Keplerian orbit at true
anomaly θ to the applied delta-V maneuver along the radial
(δvr,1) and transversal direction (δvθ,1) at true anomaly θ1
[6],[7]: [

δr (θ)
δt (θ)

]
≈ D (θ, θ1)

[
δvr,1
δvθ,1

]
. (8)

The D matrix is essentially a Keplerian error state tran-
sition matrix where time (t) is a state variable together with
the radial distance (r) and the radial and transversal velocity
(vr, vθ) while the independent variable is the angular position
θ on the reference orbit (conveniently measured from the ref-
erence orbit eccentricity vector).

The D matrix terms were first obtained in reference[6] and
are here rewritten in a more compact way in terms of angular
momentum, radial distance and classical orbital elements of
the reference orbit:

D1,1 =
r2

h
sin (θ − θ1) ,

D1,2 =
r2r1
h
× 2− 2 cos (θ − θ1)− e sin θ1 sin (θ − θ1)

a (1− e2)
.
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a4
(
1-e2

)
2r1h2

[− (4∆CE − e∆C2E) (cosE1 − e)

+
(
6e∆E − 4

(
1 + e2

)
∆SE + e∆S2E

)
sinE1

]
,
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a4
√

1− e2
4r1h2

[
12
(
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)
∆E − 3e2∆S2E

+6e3∆SE +
(
2
(
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)
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×

(4∆CE − e∆C2E ) + (4 cosE1 − e cos 2E1)×(
e∆S2E − 2∆SE

(
2 − e2

))]
,

where:

∆E = E − E1

∆SE = sinE − sinE1

∆CE = cosE − cosE1

∆S2E = sin 2E − sin 2E1

∆C2E = cos 2E − cos 2E1.

The necessary targeting delta-V conditions are obtained
by inversion of Eq.(8) after setting zero radial error et en-
counters and the required targeting time delay in Eq.(7). In
this manner: [

δvr,1
δvθ,1

]
= D∗

[
0
δt

]
.

where we have introduced the “guidance matrix” D∗ = D−1.
Finally, the sought velocity correction yields:

∆vC ≈ δvr,1ur1 + δvθ,1uθ. (9)

Eq(9), together with (5), provide the approximate solution
of the LTP (Eq.(1)).

Performance of the method

The performance of the method, in terms of accuracy
and speed, has been tested by producing pork-chop plots of
direct transfer trajectories to Mars and to the asteroid 65803
Didymos[9]. In all cases, contour plots were produced for
both the departure energy (C3) and arrival excess velocity at
the target celestial body (∆V ). The plots were obtained by
a 1000×1000 discretization of the departure epoch × time
of flight coordinates leading to a one million Lambert solver
calls. The analytical formulas derived in this article were
coded in fortran using a GNU gfortran compiler (version
5.3.1) in simple precision with an Intel Core processor i7-
4790@3.6GHz. The use of simple precision fits well within
the scope of a preliminary optimization tool and its future
GPU implementation.

In order to assess the accuracy of the method and its com-
putational speed three very fast Lambert solver algorithms
were considered: the classical Gooding’s method[10], the
recently published Izzo’s method[11] and the Arora-Russell
method[1]. The double-precision fortran versions of the
two former methods were kindly made available by Jacob



Table 1. Simplified ephemerides for the considered celestial bodies
Earth Mars 65803 Didymos

reference epoch (MJD) 58849 58849 57200

semi-major axis (AU) 1.00 1.52 1.64

eccentricity 0.0167 0.0934 0.384

inclination (deg) 0.00280 1.85 3.41

argument of pericenter (deg) 287 285 319

longitude of ascending node (deg) 176 49.5 73.2

mean anomaly (deg) 357 247 190

Williams through the Fortran Astrodynamics Toolkit git-
hub repository[12]. A double-precision fortran code for the
Arora-Russell method was kindly provided to the authors by
Nitin Arora and Ryan Russell.

Simplified ephemerides, reported in Table 1, were used in
all cases in order to ease the reproducibility of the results.

It is important to underline that in order to obtain suf-
ficiently accurate approximations the analytical LTP solver
needs to be run starting from two different optimum single
impulse problems. For the departure C3 estimation problem
the targeting is clearly done over an optimum single impulse
problem of a trajectory starting from Earth. Conversely, for
the arrival excess velocity estimation problem a reversed tra-
jectory starting from the target body and headed towards the
Earth is employed (meaning that the sign of all velocity vector
components has to be switched).

Mars trajectories
Figures 1 and 2 show the analytically and numerically com-
puted pork-chop plots for an Earth-Mars transfer in the years
2025-2030. Contour plots are given for both departure energy
(fig. 1) and arrival excess velocity at Mars (2). The quality
of the analytical pork-chop plot is remarkable and all main
features appear to be well reproduced. In addition the delta-V
and launch date error for all main local optimum solutions are
negligible.

As for the computing time the method, provides a reduc-
tion of a factor of 4.3, 5.1, 10.0 with respect to the method
of Arora-Russell, Izzo and Gooding, respectively. The maxi-
mum number of revolutions for the previous methods (which
mildly affects Arora-Russell and Izzo’s method but does af-
fect Gooding’s one considerably) was set to 2 in this case.

Didymos trajectories
Figures 3 and 4 show the analytically and numerically com-
puted pork-chop plots for a transfer to the binary asteroid
65803 Didymos in the years 2019-2022. Contour plots are
given for both departure energy (fig. 3) and arrival excess ve-
locity (4). Similarly to the previous case the structure of the
pork-chop plots is well reproduced by the analytical method
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Fig. 1. Numerical (top) and analytical (bottom) pork-chop
plot for the injection energy (C3) of an Earth-Mars transfer.
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Fig. 2. Numerical (top) and analytical (bottom) pork-chop
plot for the arrival excess velocity (∆V ) of an Earth-Mars
transfer.

although the accuracy of the delta-V and launch date near
minimum condition is not as remarkable as in the Mars case,
especially for the C3 plot. This is due to the low phasing effi-
ciency (as low as ∼67%) of some of the best solutions found.
In any case, the error remains within the limit of a few per-
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Fig. 3. Numerical (top) and analytical (bottom) pork-chop
plot for the injection energy (C3) of an Earth-Didymos trans-
fer.
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Fig. 4. Numerical (top) and analytical (bottom) pork-chop
plot for the arrival excess velocity (∆V ) of an Earth-Didymos
transfer.

cent, which may still be acceptable at a preliminary mission
design stage.

The computational speed reduction factor in this case is

4.0, 5.3, 11.1 with respect to the method of Arora-Russell,
Izzo and Gooding, respectively. The difference when com-
pared to the Mars case is due to the problem dependency of
the numerical methods (the computational time of the ana-
lytical method is virtually constant). For problems involving
multi-rev solutions with a high number of revolutions the dif-
ference in performance may be substantial.

3. CONCLUSIONS

A novel approximate analytical solution of the Lambert’s Tar-
geting Problem (LTP) was presented and investigated. Al-
though not yet extensively tested, the solution appears to be
able to reproduce the most interesting parts of a generic pork-
chop plot for interplanetary transfer trajectories. In particular,
it offers remarkably good accuracy (considering its analyti-
cal character) in both estimated delta-V and launch date at
local minimum points. As for computational speed, the pro-
posed solution is at least 4 times faster than the most efficient
Lambert solvers currently available and more than one order
of magnitude faster than Gooding’s method. A limited effort
has been done in order to increase the efficiency of its imple-
mentation, which opens interesting possibilities for the future.
The limited accuracy of the method, which is obviously its
main drawback, should be traded off with the need of compu-
tationally effective solutions when dealing with massive and
highly complex optimization problems. Many of these as-
pects will need to be studied extensively in the future.
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