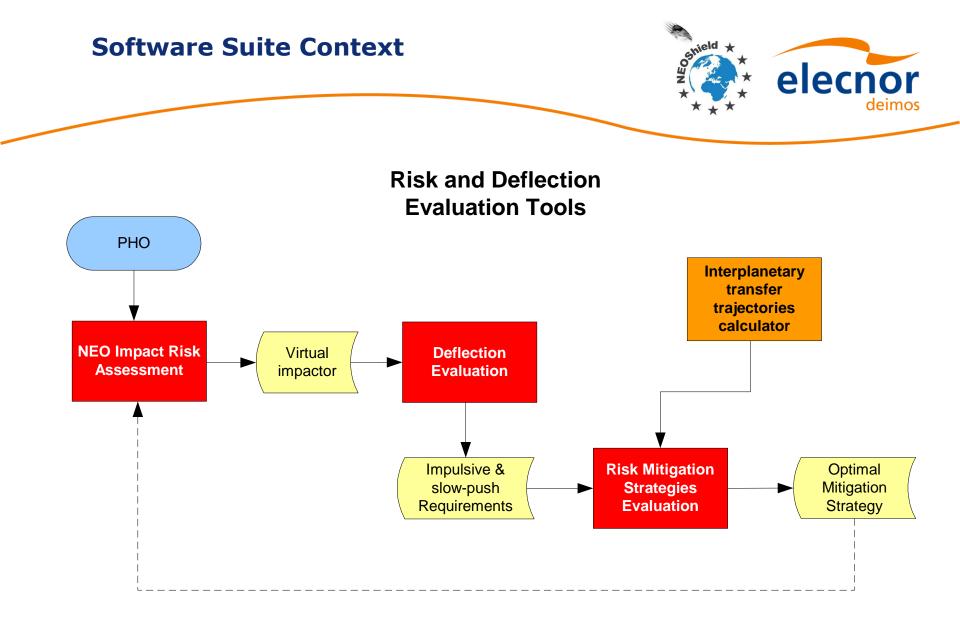


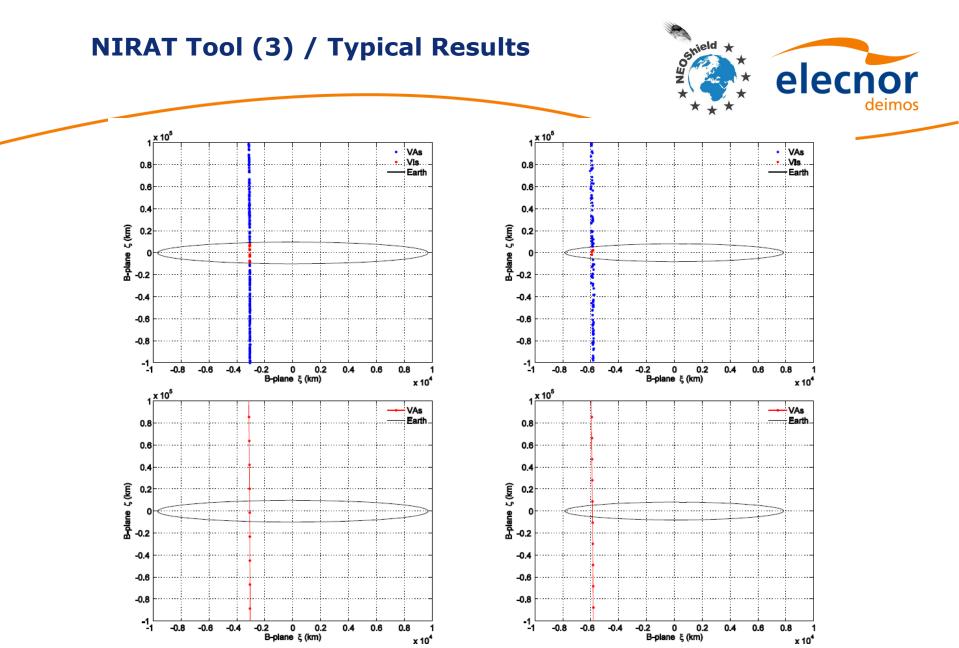
6th International Conference on Astrodynamics Tools and Techniques

ICATT6, Darmstadt, 14-17 March 2016

NEO Threat Mitigation Software Suite

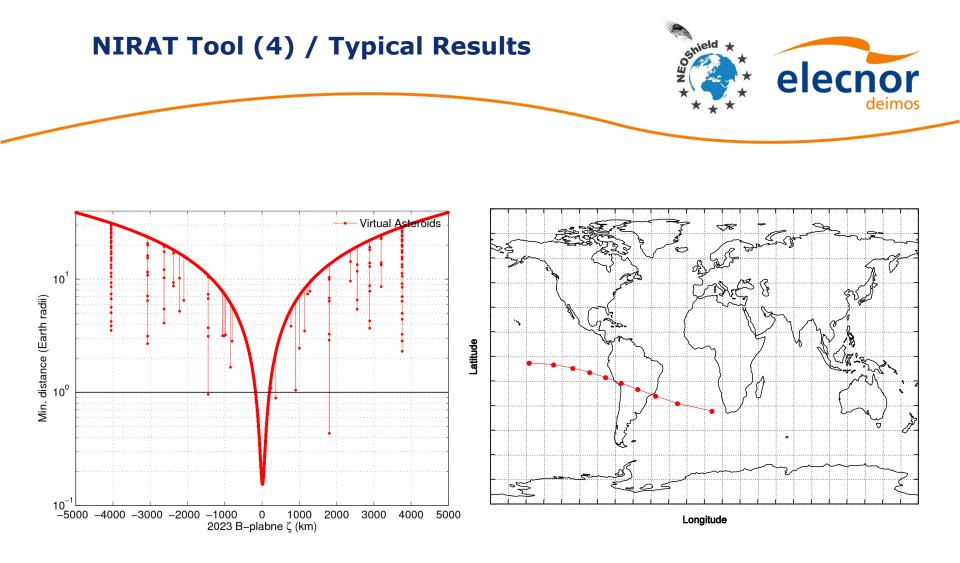

Juan L. Cano, Javier Martín, Gabriele Bellei Presenter: Mariano Sánchez

- DEIMOS Space has participated in NEO Mitigation activities since 2002 with the proposal to ESA to carry out the Don Quijote Phase 0 study in collaboration with University of Pisa and Astrium
- Studies followed on in 2006-2007 with the **Don Quijote** Phase A studies also for ESA
- Large degree of involvement in SSA-NEO since its inception
- In particular leadership in the **SSA-SN-VII** study for ESA
- Elecnor Deimos is one of the partners of the EC-FP7 NEOShield study and H2020 NEOShield-2
- Main roles of Deimos in NEOShield:
 - Leader of WP6 on GNC for the Kinetic Impactor concept
 - Partner in WP8 on a Phase A for a Kinetic Impactor mission
 - Partner in WP9 for the development of a suite of S/W tools for NEO threat mitigation


- Minor body propagator that finds close approaches to Earth of selected NEO
 - Considers the uncertainty in the initial state, generating a cloud of virtual asteroids with several methods
 - It provides virtual impactor information for later analysis with NEODET
- Provides a fast but precise assessment of the probability of impact of a particular NEO, from the source data provided by SENTRY/NEODyS

Initial state vector Uncertainty matrix Propagation data Operation mode...

Close encounters Impactor list B-plane plots...



- The tool generates a cloud of virtual asteroids (VAs) by sampling the initial state uncertainty distribution.
 - NIRAT assumes a 6-normal uncertainty in the asteroid state
 - Each VA is propagated and any close approaches are recorded in the output file for post-processing.
 - A single propagation mode exists for test purposes.
- Methods for VAs generation:
 - Monte Carlo
 - Line of variations
 - Elliptical sampling
- The main output is a list of close encounters for each VA
 - B-plane plots
 - Keyhole analysis
 - Impact corridors on Earth

Monte Carlo (top) and Line of Variations (bottom) comparison on 2040 b-plane for asteroid 2011 AG5

Monte Carlo (top) and Line of Variations (bottom) comparison on 2048 b-plane for asteroid 2007 VK 184

Approximate impact corridor of the 2011 AG5 VIs for the 2040 encounter (LoV)

NOTE: Provided figures correspond to calculations performed before 2011 AG5 ephemerides were improved to a no-risk level

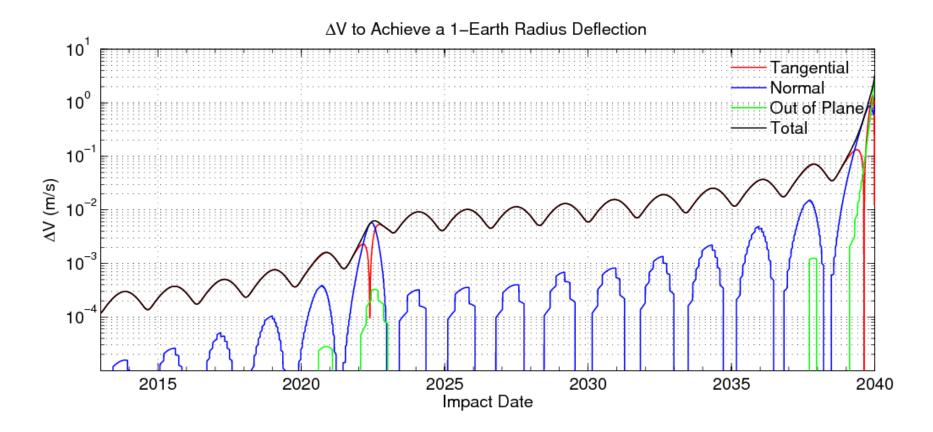
- Propagator that takes a virtual impactor and attempts to deflect its course over a range of dates by optimisation
 - Also serves to evaluate the effect of a proposed deflection
 - As the second tool in the suite, input data for NEODET will usually come from NIRAT, with the same propagation settings
 - Impulsive methods and slow push methods are both considered
- Includes a specialized analytic propagator (Bombardelli-Baù) for slow-push problems that avoids numerical propagation

NFO

Valid only for cases with no intermediate flybys

Initial VI state Date range Operation mode Propagation data

Deflection requirements



- Two types of interaction are supported:
 - Impulsive: introduction of an instantaneous Δv at t=tb
 - Continuous: force model (e.g. constant thrust) applied from t=tb for a given length of time Tp
- Direct problem (any interaction type)
 - I/O: interaction level (Δv or Tp) \rightarrow induced $|\Delta b|$
 - Use case: testing a particular deflection case
- Impulsive hybrid problem
 - I/O: attainable $|\Delta v| \rightarrow$ maximum achievable $|\Delta b|$, Δv direction
 - Use case: finding the best date for a nuclear bomb with a given yield
- Impulsive inverse problem
 - I/O: desired $|\Delta b| \rightarrow optimal \Delta v$ with minimum $|\Delta v|$
 - Use case: finding the best date and orientation for a kinetic impactor
- Continuous inverse problem
 - I/O: desired $|\Delta b|$ and the force model \rightarrow required application time
 - Use case: dimensioning the length of a slow-push deflection mission

• Typical results

 Δv required to deflect 2011 AG5 versus t_b for an impulsive inverse case

1

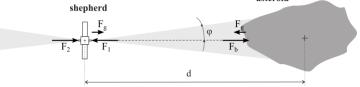
- A modular repository of mitigation mission simulators
 - Based on NEODET results, tests a set of deflection methods for each date of arrival to the NEO
 - Each method simulates a deflection mission launched from Earth; requires information on the Earth-NEO transfers
 - Reports a series of figures of merit for the user to compare
- No orbital propagation performed. Results in terms of:
 - Obtained Δv or maximum thrust time (direct problems)
 - Mission Earth escape mass for the given launcher capabilities (inverse problems)

RIMISET

Deflection data Transfers to NEO Chosen methods Global FoM Method-specific information...

- Mitigation methods form the core of RIMISET
 - Impulsive deflection and continuous deflection methods included
 - Modular architecture which simplifies adding new methods
- Input data for the tool contains:
 - NEODET deflection files, the result of an inverse problem
 - Transfer information files (computed with transfer optimisation tools)
 - Any number of operating phase engine definitions
 - Information on the physical characteristics of the NEO
 - One or more mitigation methods, with their specific data
- Mitigation methods included:
 - Kinetic impactor
 - Nuclear explosions (surface and stand-off)
 - Gravity tractor (inertial hovering and orbiting)
 - Ion-beam shepherd

RIMISET Tool (3)

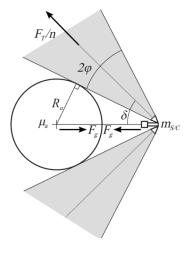


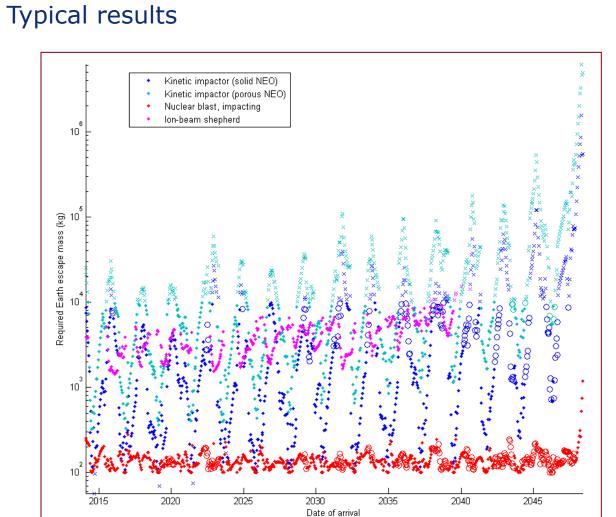
Kinetic impactor

- Impulsive method
- Experimental model by Housen, Holsapple et al.
- The value of Δv depends on the NEO material properties
 - Large uncertainty depending on porosity, material strength, surface gravity, NEO shape, etc.

Ion beam shepherd

- Continuous method
- Model by Bombardelli and Peláez
- Requires two balanced thrusters
 - Maximum propulsive efficiency is only 50%
- S/C may be further off the NEO
 - Far enough that mutual gravity is negligible
 - Range limited by the beam divergence asteroid




Nuclear explosion

- Impulsive method
- Experimental model by Solem, for both surface and stand-off blasts with different constants
- The obtained Δv depends on the NEO surface material
 - Same uncertainty problems; chemical and optical information required.

Gravity tractor

- Continuous method
- Two models implemented
 - Hovering GT: aligned with the NEO
 - Orbiting GT: in a displaced orbit around it
- Large S/C mass needed for a meaningful force
- Requires close proximity: complex control requirements

RIMISET Tool (4)

•

Left: comparison of several deflection strategies for 2007 VK184

oshield Y

elecnor

- A suite of three software tools has been developed in the frame of NEOShield FP7 project for:
 - NEO risk assessment on Earth
 - NEO deflection delta-V requirements
 - NEO deflection mission specification
- The tools are executed in chain to produce a S/C dimensioning compatible with the deflection needs
- Validation cases have been executed over 2011 AG5 case and 2007 VK 184
- The suite was successfully used in last year's Planetary Defense Conference for the tabletop exercise over a fictitious threat
- The suite can be applied recurrently to any risky NEO identified in the future

Thank you for your attention!

NEO Threat Mitigation Software Tools

juan-luis.cano@deimos-space.com

www.elecnor-deimos.com www.deimos-space.com