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ABSTRACT

In order to guarantee safe operation of satellites, space
object catalogues must be build-up and maintained. The cat-
alogues should be complete, i.e. contain sufficiently accurate
and frequently updated orbital states for all required objects.

In theory, completeness of the catalogue is achieved by
designing the radar in a way that a major fraction of the
object population is considered detectable, i.e. covered by
the sensor’s field-of-regard and within the sensor sensitivity.
However, complete coverage does not necessarily guarantee a
proper catalogue build-up, yet. If an object is observed once,
it must be re-observed in order to verify its existence and im-
prove the accuracy of the determined state. In a next step,
individual observation tracks are combined with each other to
further improve the accuracy. Consequently, tracks must be
associated to each other, i.e. tested if they originate from the
same object or not.

The success rate of the association is dependent on the
quality of the tracks, the re-observation time and the re-
observation geometry. For surveillance radars, the associa-
tion performance must be considered as a critical design pa-
rameter and can be optimized along with the detection rate
during the design process. We outline the underlying tech-
niques and present a simulation-based framework for assess-
ing the surveillance system design in terms of association per-
formance and achievable accuracy.

Index Terms— track association, radar design, space de-
bris, orbit determination, orbit accuracy

1. INTRODUCTION

In order to assess the cataloguing capabilities of a radar sen-
sor, all individual steps of the cataloguing process must be
tested. The developed toolbox consists of several independent
functions, each one performing one cataloguing task. The
structure of the paper resembles the structure of the toolbox,
i.e. each function required for a step is outlined in one section
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and the order of the sections follows the typical processing
order. The individual steps are:
1. Simulation of the sensor and object population
2. Initial orbit determination with single radar tracks
3. Association of two radar tracks
4. Orbit accuracy using a consider covariance analysis.
Phased-array radars are defined with a detection figure-of-
merit (i.e. ratio of detectable object size at a certain dis-
tance), a field-of-view, a pointing direction, and a noise es-
timate. Then, observations are generated with a realistic ob-
ject population model. The resulting tracks are associated to
each other using covariance-based distance metrics. We ad-
dress several difficulties which arise during the association,
e.g. proper treatment of state uncertainties and robust initial
orbit determination. The association performance is finally
analysed for different orbital heights and re-observation con-
ditions. Additionally, the typical resulting orbital state accu-
racies are presented for the initial orbits as well as for the
improved ones. All steps and functions are mathematically
described and accompanied with an example analysis for a
test radar located in central Europe.

2. OBSERVATIONS / SIMULATION

The reference object population is taken from ESA’s MAS-
TER model. Each object is described by orbital elements, a
diameter d and an area-to-mass ratio. The latter is used to
define a ballistic coefficient B by randomly assigning drag
coefficients. In order to speed up computations in the early
stages of the design phase, the propagation of object states is
implemented using the analytical SGP4 theory.

The simulated phased-array radars repeatedly scan a wide
field-of-view (with small revisit times, e.g. a few seconds).
Whenever an object passes the field and is detectable, the
sensor estimates a series of range values ρ and line-of-sight
vectors u (usually described by deflection angles α and β, or
alternatively azimuth and elevation).

A simplified detection model decides if an object is visi-
ble using the relative radar range equation, i.e. the radar per-
formance is described in terms of a minimum object diame-
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ter dmin visible at a reference distance ρref assuring a certain
signal-to-noise ratio (SNRmin)

d2

ρ4
≥ d2

min

ρ4
ref

∝ SNRmin . (1)

The diameter describes the reflection area in this equation.
This assumption, however, is only valid if the object size is
above a certain threshold depending on the used frequency
band. The radar cross-section decreases more rapidly if the
object size is within the so-called Rayleigh region of the band.
A constant cut-off diameter is therefore introduced as sug-
gested in [1]. The detection test is performed for each object
crossing the field-of-regard. In order to reduce computation
time, the overall population is filtered beforehand using the
perigee altitude as the smallest possible range (cf. with the
approach in [1]).

The observation noise is accounted in the simulation by
adding SNR-dependent random errors to the measured angles
and ranges. The standard deviation of range σρ and angles
σα,β are described with the proportional relation

σ2
ρ ∝

1

SNR
and σ2

α,β ∝
1

SNR
. (2)

The signal-to-noise ratio for each detection is computed by
scaling the minimum signal-to-noise ratio in (1) according
to the current distance and diameter. Consequently, when
providing a maximum standard deviation for the observables,
they are equally scaled for each observation. Instead of scal-
ing the maximum deviation, radar design parameters can be
specified, such as range resolution and beam-width (cf. [2]).

2.1. Example setup

An example radar setup is used throughout this paper to vi-
sualize and validate the functionality of the different steps in
the simulation. For simplicity, a single phased-array radar is
simulated, however, the toolbox can be extended to support
a sensor network design. The above described performance
parameters for the sensor are shown in Table 1.

Table 1. Example radar setup

Parameter ρref dmin σρ,max σα,β,max

Value 1000 km 10 cm 5 m 0.2◦

The radar is south-pointing with 60◦ elevation and a 100◦ ×
30◦ field-of-view (defined in deflection angles). The revisit
time is assumed to be 10 seconds.

The simulated population for this parameters is shown in
Figure 1. In order to emphasize the signal-to-noise detection
boundary (dashed line), the illustration is cut-off to show only
small objects (≤ 30 cm). Around 19, 000 objects are theoret-
ically visible for the radar and simulated for a period of 14

days. Highly populated regions appear darker in the illustra-
tion. The orbit determination and association steps are pre-
sented and discussed for the here shown perigee height range
between 400 and 1200 km.
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Fig. 1. Simulated objects are shown w.r.t. perigee height and
diameter. The SNR detection threshold is illustrated with the
dashed line. Sensor setup and details are provided in the text.

3. INITIAL ORBIT DETERMINATION

The series of n range (ρk) and angular measurements (αk, βk)
at tk for k = 1, . . . , n is denoted as a track. In order to de-
termine the state vector y = (rT, ṙT)T describing these mea-
surements, they are first converted into the geocentric space-
fixed reference frame

rk = Rk + ρk u(αk, βk) (3)

using the inertial radar position Rk at each epoch. The un-
certainty of rk is described in terms of a multivariate normal
distribution, where the covariance Cr,k is calculated by a lin-
ear transformation of the measurement uncertainty.

Several methods exist to obtain a preliminary orbit from
two or three geocentric positions (e.g. Lambert’s problem
solver or the Herrick-Gibbs approach as provided in [3]). The
GTDS Range and angles method from [4, pp. 9-44 – 9-52]
provides a stable fixed-point iteration scheme using the full
information of the track, i.e. all n available observations.

The developed method has been adapted from the refer-
ence, and is also able to provide the covariance. Starting from
a preliminary state y(0) (using e.g. a circular assumption or
above mentioned approaches for three observations), it is it-
eratively updated by matrix multiplication

y(i+1) = H(y(i)) z , (4)

where the radar observations are z = (rT1 , r
T
2 , . . . , r

T
n)T and

the matrix H is assembled from the series expansion about
the current state estimate y(i). The (i) denotes the ith itera-
tion of the fixed-point update process. In the series expansion,
each measurement is written in terms of rk = fkr

(i)+gkṙ
(i).



Derivations for the f and g coefficients are provided in e.g.
[3]. The set of equations is then solved for r(i) and ṙ(i).
Defining f = (f1, . . . , fn)T and g = (g1, . . . , gn)T, the up-
date matrix is given by

H =
1

δ

(
gTg F − fTgG

fTf G− fTg F

)
(5)

where
δ = fTf · gTg − (fTg)2 (6)

is the denominator and the auxiliary matrix F (and equiva-
lently also G) is defined as

F =

f1 0 0 . . . fn 0 0
0 f1 0 . . . 0 fn 0
0 0 f1 . . . 0 0 fn

 . (7)

The method converges towards the solution y. The covari-
ance of the state is determined by transforming all individual
measurement covariances Cr,k using the linear approxima-
tion

Cy = HCzH
T,where Cz = diag(Cr,1, . . . ,Cr,n) . (8)

Alternatively, least-squares methods can be used to im-
prove the state. However, due to the short length of the tracks
(usually a few percent of the orbit) the preliminary states, e.g.
from Herrick-Gibbs, provide poor orbital estimates and un-
damped differential correction steps can lead to divergence of
the orbit improvement. Hence, trust-region approaches must
be used to ensure convergence. The presented fixed-point
method showed best convergence in comparison with other
implemented trust-region approaches for different tested or-
bital regimes and geometries.

3.1. Initial orbit accuracy

As written above, the population is propagated for 14 days,
which generates around ∼ 15, 000 tracks. Each track is pro-
cessed using the presented initial orbit determination method.
The resulting state is compared with the simulated truth in or-
der to assess the orbit error. The positional errors are mostly
determined by the radar performance parameters, while the
velocity errors are largely dependent on the track length. The
analysis here focuses on the semi-major axis error, which
comprise positional and velocity errors.

The mean semi-major axis error is shown in Figure 2 for
different orbital heights and for the covered orbital angle ∆ν
(effectively the difference in true anomaly of first and last
measurement of the track). Objects in lower altitudes typi-
cally appear for shorter durations in the field-of-regard, lead-
ing to less observations per pass, while higher objects are cap-
tured multiple times by the scanning pattern. This explains
the large perigee height dependency on the upper part of the
figure. A large effect on the accuracy is also observed for the
orbital coverage. The longer the arc covered, the better the
estimate. The orientation of the radar and the design of the
field-of-regard should account for this dependency.
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Fig. 2. Mean semi-major axis error ∆a of initial orbit de-
termination result depending on covered orbital arc ∆ν and
perigee height.

4. ASSOCIATION

In order to assess the association performance, all consecutive
tracks of each object are tested against each other. The asso-
ciation test is successful if it find outs that both originate from
the same object. The toolbox uses the so-called covariance-
based association scheme (cf. [5]). The process is shortly
described in the following.

The information of two tracks is compressed in two state
vectors y1 and y2 along with their uncertainties represented
by Cy1

and Cy2
. In order to compare the two states, they are

propagated to a common epoch, e.g. the first state is propa-
gated to the observation epoch of the latter track. The mod-
elled state is then given by ỹ2(y1) along with the propagated
covariance Cỹ2

(y1,Cy1
). The propagation of the covariance

matrices is performed either using a linear approximation or
other non-linear transformations (e.g. using sigma-points).

If the two normally distributed quantities are subtracted,
giving ∆y = y2 − ỹ2(y1), the result is also normally dis-
tributed according to

∆y ∼ N (∆y;0,C∆y) where C∆y = Cy2
+ Cỹ2

.
(9)

The exponent of the normal distribution is used as a statistical
distance between the two tracks

L = ∆yTC−1
∆y∆y ∼ χ2(6) . (10)

If the two tracks belong to the same object, the distance L is
below a certain threshold. The threshold can be defined con-
sidering that L is chi-square distributed, i.e. it can be defined
to cover a certain percentage of the chi-square distribution



(e.g. 95%). A threshold can also be calibrated to reduce the
number of false associations. The latter is neglected in this pa-
per, as the number of falsely associated observations is small
for the used population and radar setup (cf. also with the anal-
ysis in [6]). However, with increasing capabilities of radars,
false associations can dramatically increase the computational
burden of the cataloguing software and thus become a critical
design-factor as well.

The states can be represented in any coordinate system for
the comparison, e.g. orbital elements or cartesian (as used for
the initial orbit of the previous section). The different sys-
tems come with certain advantages and disadvantages regard-
ing covariance realism [6]. If a satellite state with a large
semi-major axis uncertainty is propagated, the error ellipsoid
in cartesian space deforms rapidly into a curved shape due to
the linear increase in mean anomaly uncertainty. Other ef-
fects, such as atmospheric drag, increase the deformation of
covariance. Curvilinear coordinates as described by [5] con-
sistently show better performance than cartesian. The coordi-
nates are defined around a reference state (e.g. the state y2)
and are composed of an along-track arc-length error, a cross-
track arc-length and in-radial difference. A detailed deriva-
tion is given in [7]. Orbital elements show a similar perfor-
mance, but the satellite-centred frame allows a better sepa-
ration of position and velocity, which helps visualizing and
interpreting distances.

Figure 3 shows the transformed probability density func-
tion of a satellite in low-earth orbit (semi-major axis a =
8000 km and eccentricity e = 0.1) in cartesian and curvilinear
space. The initial uncertainty is normally distributed with a
dominant uncertainty in the along-track velocity σT = 0.005
m/s (standard deviation). The state is propagated from the
apogee to the perigee for 2.5 orbital periods in order to in-
crease the deformation effect. The figure shows the deforma-
tion in cartesian space (a), while the density remains normal
in curvilinear space (b).
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Fig. 3. Transformed probability density of a propagated satel-
lite state (details in text) in satellite-centred coordinates (T is
the tangential direction and R the in-radial one). The white
lines denote contours of equal density equivalent to the 1−3σ
boundaries used for the univariate normal distribution.

Instead of using an appropriate coordinate system, other

uncertainty representations such as Gaussian-mixtures can be
used to overcome the deformation issue. A transformation us-
ing an adaptive Gaussian-mixture scheme, similar to [8], has
been implemented to evaluate the validity of the simpler co-
variance based association in curvilinear space. Figure 3(a)
is generated using a 500 component automatically splitted
Gaussian-mixture distribution. For this type of a radar setup
assessment, the simpler and computationally less expensive
implementation using the beneficial coordinates is selected.
Nevertheless, for real implementations and especially when
tracks are separated by larger time-spans, other measures can
become feasible.

4.1. Association performance

The simulated measurement set is analysed using the above
mentioned covariance-based approach. The association test
should, in principle, be symmetric assuming proper represen-
tation and proper transformation of uncertainties. In prac-
tice, the approximate transformation of state uncertainty in-
troduces errors which differ from one propagated state to an-
other (e.g. depending on initial uncertainty and geometry).
Hence, each pair is tested twice, i.e. once in each direc-
tion. The smaller value of both comparisons is tested against
a threshold covering 95 % of the theoretical distribution.

The resulting success rate is shown in Figure 4. The rate
shows the performance for objects which have been observed
at least twice within the 14 days. The performance is similar
for all orbital regions, but depends largely on other quanti-
ties, namely re-observation time and track length. The upper
figure shows the relation to the re-observation time, i.e. the
time difference between the first and second tested track. The
performance degrades over time, but promises around 90 %
of successful associations for re-observations within the first
day. The figure must be carefully interpreted as the individual
bins contain different numbers of pairs, e.g. most objects are
re-observed after 0.25−0.75 days, while a few percent is seen
again only after 2 days. If the field-of-regard is wide enough
to guarantee re-observations within one day, the association
is mostly successful for the example radar setup.

The lower plot in Figure 4 shows the dependency of the
association success on the track length. The larger orbital
angle of both tracks, i.e. max(∆ν1,∆ν2), is used to com-
pute the bin rate. The success rate degrades for smaller an-
gles. If the information contained in a track is insufficient
for finding an accurate enough preliminary orbit, other ways
to associate the tracks must be found. The problem can be
circumvented by determining the orbit using two tracks at a
time. The combination of two short tracks using a Lambert’s
problem solver for perturbed orbital motion is a topic of on-
going research (e.g. [9]). More advanced algorithms will be
developed, tested, and assessed with the current simulation
framework.
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Fig. 4. Association performance for simulated observations
depending on re-observation time and track length.

5. ORBIT DETERMINATION

All measurements of an object are combined to find the best
possible orbital solution. In the simulated example, around
10 − 50 tracks are collected for the objects depending on the
repeatability of the ground-track. Instead of selecting a fixed
fit span (e.g. 14 days) for all objects, each one gets one as-
signed according to the object parameters and orbit type.

More measurements typically improve the estimate of an
orbit, however, unmodelled or insufficiently modelled dy-
namics cause the fit to degrade after some time. Thus, the
optimal fit span is constrained by the model insufficiencies,
mostly caused by the approximately known densities in the
atmosphere. The effect of the atmosphere on an orbit can be
described in terms of the energy dissipation rate ĖD as de-
scribed in [10]. In order to speed up computations, analytical
formulas to approximate it, derived by [11], are used.

So far, the optimal fit span is determined by using a simple
linear relation to the logarithm of ĖD and additionally upper
and lower bounds. The function is calibrated with typical val-
ues from experience (i.e. fit spans covering a few days up to 2
weeks). However, other more elaborate functions can be im-
plemented, which take individual orbital classes into account.

5.1. Consider covariance analysis

The achievable orbit accuracy of the tested radar setup is
assessed using a consider covariance analysis. The method
is described in various textbooks about orbit determination
(such as [12] and [13]).

When determining the orbit of a satellite, some parame-

ters x are estimated (solved-for parameters such as the orbital
elements and the ballistic coefficient) and some model param-
eters are fixed because they are unknown (e.g. atmospheric
density variations, bias terms, or satellite attitude). The lat-
ter simplifications, however, introduce errors which have to
be accounted. Hence, the values are introduced as consider
parameters c into the covariance calculation with their un-
certainty represented by the covariance Cc. The covariance
accounting only for measurement noise, represented by the
weighting matrix W , is calculated with

Cx = (HT
xWHx)−1 (11)

and the covariance accounting for the uncertain consider pa-
rameters c is then given by

Cc
x = Cx + (CxH

T
xW )(HcCcHc)(CxH

T
xW )T , (12)

where the partials of the function h, modelling the observa-
tions from the state, are given by

Hx =
∂h

∂x
and Hz =

∂h

∂z
(13)

and are evaluated at the known solution of the inversion prob-
lem.

Error sources such as a range bias are reduced by proper
calibration of the system. They can often only be estimated
when combining measurements from other sensors. The dom-
inant error source for satellites in low-earth orbits is the atmo-
spheric drag aD. Due to the complexity of the system, accu-
rate models are difficult to generate. When tracking unknown
objects, the object properties and attitude is unknown and pos-
sibly constantly changing. Typically, one average or multi-
ple piecewise-defined ballistic coefficients B are estimated
which absorb some effects (alternatively so-called pseudo-
accelerations are used). Some random variations, however,
cannot be captured by this average value. That is why, analo-
gously to the approach presented in [14], the drag acceleration
term is augmented with a correction factor

ac
D = aD(B,y, t)(1 + w(t)) . (14)

The factorw models the variation and thus changes with time.
For simplicity, the function is assumed to be constant for
equally spaced time intervals τw, where wi is the value for
each interval. The covariance Cc is then assembled from

E[wi] = 0 and E[wiwj ] = σ2
w exp{− |i− j| τw} . (15)

The noise is modelled as a correlated random walk (stochas-
tic process) in accordance with [14]. Instead of using one
interval τw (e.g. once per day), the accumulation of different
effects can be included by adding up multiple factors, each
with another interval (e.g. once per day, once per orbital rev-
olution, and once per hour variation).

An illustration of such a random walk is shown in Figure
5. Each dot illustrates one interval (or step) of the walk. The
estimated ballistic coefficient B (dashed) is used to illustrate
the w = 0 line.
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Fig. 5. Illustration of the Gaussian random walk. The dots
denote deviation for each step from the estimatedB, and solid
lines denote the 3σw boundary. The dashed line illustrates the
mean B over the whole orbit determination interval.

5.2. Catalog accuracy

This section shows the preliminary results of the achievable
catalogue accuracy. Only the drag uncertainty is included in
this analysis (with σw = 5 % and an one day interval) as other
effects are hidden behind the large effect of it. The used val-
ues must be compared and calibrated with values and experi-
ences from real orbit determination results before continuing
the analysis.

Figure 6 shows the results for different orbital heights
(represented with perigee height). The accuracy is illustrated
with the median standard deviation σ for position (upper
plot) and velocity (lower plot) in the satellite-centered radial,
along-track, and cross-track reference frame. The median is
selected over the mean as multiple outliers with very large
uncertainties distort the latter quantity. The figure thus shows
that 50 % of the simulated objects have better accuracies than
the indicated values. For instance, the highly populated re-
gion with a perigee height around 800 km is mostly deter-
mined with an uncertainty of around 100 m in the along-track
component and around 0.01 m/s uncertainty in the respective
velocity component.

6. SUMMARY AND CONCLUSION

The paper presents a tool developed to assess sensor capa-
bilities in terms of cataloguing performance. The simulation
of sensor and population is performed using simplified as-
sumptions on observation conditions. In the framework of the
analysis, a toolbox of initial orbit determination methods and
association measures has been developed. Additional meth-
ods which allow the association of very short radar tracks are
currently in development. The methods to test the achiev-
able accuracy of a catalogue can be used to compare different
designs. However, in order to provide realistic absolute num-
bers, it must be calibrated using real data. This also includes
a realistic estimation of orbit determination fit spans (using
e.g. several orbital classes depending on the energy dissipa-
tion rate).

The presented results are always shown in terms of the
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Fig. 6. Median standard deviation in radial ( ), along-
track ( ), and cross-track ( ) frame dependent on perigee
height.

successfully observed population and not the overall simu-
lated one. In order to quantify the success for the whole
population, more realistic observation models must be imple-
mented. Other tools, such as PROOF [15], focus on realistic
observation and detection modelling (with detailed analyses)
and can be incorporated into the analysis.

So far, the tools are able to assess a sensor design, e.g. to
evaluate and compare industry offers. The next step is to use it
for the design of a sensor or sensor network, e.g. by analysing
the influence of key sensor parameters such as location, field-
of-regard, pointing, performance parameters, and other prop-
erties.
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