

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

STARDUST

ATHENA: Astrodynamics Toolbox for High-Fidelity Error and Navigation Analysis

Juan Manuel Romero Martin, Francesco Torre, Massimo Vetrisano, Massimiliano Vasile Department of Mechanical & Aerospace Engineering University of Strathclyde

Main Components

Case Studies

Future Developments

Toolbox Architecture

What is ATHENA?

ATHENA is a toolbox for guidance, navigation and control of single an multiple coordinated platforms.

It forms one of the applications of the Strathclyde Mechanical and Aerospace Research Toolbox (SMART)

Main Components

Main Toolbox Components

- The toolbox collects a set of:
 - High-fidelity **dynamic models** coupled with numerical integrators
 - Measurement models
 - State Estimation and Filtering Techniques
 - Path and Operation Planning Algorithms
 - Control Algorithms

Dynamic Models

Dynamics in Cartesian parameters in an inertial reference frame:

$$\ddot{\mathbf{r}} = -\frac{\mu}{r^3}\mathbf{r} + \mathbf{a}_d$$

- Full Earth, Moon, Mars gravity models in spherical harmonics
- Distributed mass model for asteroids
- Tetrahedron model from radar observations for single and binary asteroids
- N-body gravity effects
- Light pressure
- Atmospheric drag

PUSHING THE BOUNDARIES OF STARDUST SPACE RESEARCH TO SAVE OUR FUTURE STARDUST

stardust2013

witter.com,

www.stardust2013.eu

Dynamic Models

δ

• Dynamics in Hill's reference frame for proximity motion:

$$\ddot{\mathbf{r}}^{h} = -\ddot{\mathbf{r}}^{h}_{a} - 2\dot{\theta}^{h} \times \delta\dot{\mathbf{r}}^{h} - \dot{\theta}^{h} \times \delta\mathbf{r}^{h} - \dot{\theta}^{h} \times \left(\dot{\theta}^{h} \times \delta\mathbf{r}^{h}\right) + \frac{\mu_{Sun}}{r_{Sc}^{3}} \left(\delta\mathbf{r}^{h} + \mathbf{r}^{h}_{a}\right) + \nabla U_{a} + \frac{\mathbf{F}_{Sc} \left(\delta\mathbf{r}^{h}, \mathbf{r}^{h}_{a}\right)}{m_{Sc}}$$

- Same forces as in the inertial reference frame
- Coupled orbital and attitude dynamics of target and chaser
- Full 3D satellite shape

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Measurement Models

The sensor model suite includes:

- Camera model
- Optical flow extraction and feature tracking
- LIDAR model
- Inter-satellite link model
- Solar Doppler effect
- Ground station range and range rate

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

stardust2013e

witter.com/

www.stardust2013.eu

State Estimation and Filtering

The main filtering techniques included in the toolbox are:

- Kalman Filter (KF)
- Extented Kalman Filter (EKF)
- Uncented Kalman Filter (UKF)
- Uncented H_{∞} Filter (UHF)
- Extended H $_{\infty}$ Filter (EHF)
- High-order semi-Analytic Extended Kalman Filter (HAEKF)

Filters have been extended to allow data-fusion sensor information

PUSHING THE BOUNDARIES OF STARDUST SPACE RESEARCH TO SAVE OUR FUTURE STARDUST

Path Planning

Implemented specially to provide Guidance for close proximity operations, autonomous rendezvous and docking (RVD)

Two Key Features:

- > High performance
 - Path Planning based on polynomial shaping
 - Inverse optimization problem
 - Optimize to minimize ΔV
- > Safety
 - Safety is provided by implementing avoidance collision with the target by defining safety region, Keep Out Coating

stardust2013e

witter.com

vww.stardust2013.eu

Operation Planning: AIDMAP

AIDMAP: Single objective incremental decision making algorithm for the solution of complex combinatorial optimization problems such as tasks planning and scheduling.

AIDMAP: decision making map using tree-like topology

- Nodes: Decision made
- Edges: Cost associated to decision

Decision Tree build

- Incrementally with time
- through **Exploration** and **Growth** by virtual agents

Possible heuristics to evaluate Decision Tree:

- Deterministic: Classical Branch-and-Cut Algorithm 375
- Probabilistic: New Bio-inspired Physarum Algorithm

www.stardust2013.eu witter.com/stardust2013eu

Case Studies

Navigating to the Moon

Navigation and OD system for ESMO:

- Full ephemerides 4 body dynamics
- OD and Navigation based on ground station measurements and UKF
- TCM allocation and optimisation to target capture conditions at the Moon

< [km]

 Analysis of High Order semi-Analytic Extended Kalman Filter

PUSHING THE BOUNDARIES OF * S T A R D U S T SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

witter.com/stardust2013eu www.stardust2013.eu

Collaborative Formation GNC

- Collaborative and distributed navigation of a formation in the proximity of an asteroid.
- Distributed sensor fusion
- Evaluation of different filters: EKF, UKF, UHF, EHF

Case	SC-1	SC-2	SC-3	SC-4
1	I	C,L/R, I	C, L/R, I	C, L/R, I
2	I	I	C, L/R, I	C, L/R, I
3	I	C, L/R, I	C, L/R, I	C, L/R*, I
4	I	I	C, L/R*, I	C, L/R*, I
5	*	*	C, L/R*, I	C, L/R*, I
^			*	

C-camera, L/R LIDAR, I-inter-satellite, * worst condition

www.stardust2013.eu twitter.com/stardust2013eu

15

Collaborative Formation GNC

Improve Asteroid ephemerides during rendezvous:

- Case 1: Spacecraft-to-Ground tracking data WITH Sun Doppler Shift Sensor
- Case 2: Spacecraft-to-Ground tracking data WITOUT Sun Doppler Shift Sensor Analysed Configuration and Final Estimated error with and

Analysed Configuration and Final Estimated error with and without Doppler Shift

	SC-1	SC-2	No Doppler		Doppler			
	τ [deg]	τ [deg]	Pos.	Vel.	Pos.	Vel.		
	λ [deg]	λ [deg]	Error	Error	Error	Error		
			[Km]	[mm/s]	[Km]	[mm/s]		
1	90	270	31.38	100.90	26.89	90.87		
	0	3						
2	180	270	5.66	19.36	5.79	19.05		
	0	3						
3	135	270	8.04	19.61	8.09	19.15		
	0	3						
4	135	139	17.50	62.63	17.09	62.88		
	0	0						
5	135	136	25.14	801.00	25.67	82.27		
	0	3						
6	135	135.5	26.25	82.69	26.48	84.05		
	0	3						
7	135	135.5	115.25	374.90	101.97	358.10		
	0	0.5						
LOT								

www.stardust2013.eu witter.com/stardust200 eu

Detumbling Asteroids and Space Debris

- Coupled **12DOF control** of proximity motion and attitude motion of an asteroid using laser ablation.
- Rich Dynamics:
 - Irregular gravity of the asteroid
 - Light pressure
 - Recoil of the laser
 - Plume impingement
- UKF to fuse optical camera and LIDAR information

stardust2013eu

witter.com

www.stardust2013.eu

Detumbling Asteroids and Space Debris

- **Optical flow** and feature extraction to **track the attitude motion** of the asteroid.
- Online estimation of the acceleration induced by the laser

Estimated acceleration from the laser and plume force vs actual acceleration

PUSHING THE BOUNDARIES OF * S T A R D U S T SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

www.sta twitter.com

stardust2013e1

www.stardust2013.eu

ACO²SF an Autonomy Framework for Autonomous Collaborative On-Orbit Servicing (OOS)

• **Plan and Schedule** the execution of elementary pre-defined **actions** to fulfill complex OOS missions for a swarm of spacecraft: proximity operations, rendezvous, docking & undocking operations

Allocate the resources & generate optimal *execution plan:* plan and schedule actions for each of the servicing spacecraft

Execute the *execution plan* and monitor for unforeseen events

ACO²SF provides an Autonomy Framework for Autonomous Collaborative On-Orbit Servicing (OOS)

 capable of Plan and Schedule the execution of elementary predefined actions to fulfill complex OOS missions for a swarm of spacecraft:

ACO²SF responsible for:

- Allocate resources across the system
- Plan and schedule actions
- Execute the made decision
- Monitor the performance during the execution phase
- **Provide contingency reactions** to overcome any unforeseen event during the execution phase.

www.stardust2013.eu witter.com/stardust2013e

Optimal and **Safe Docking Path** for a **triaxial tumbling** non-cooperative target $(\omega_x = 0.01 \text{ rad/s}, \omega_y = 0.02 \text{ rad/s}, \omega_z = 0.01 \text{ rad/s})$

Multi-Spacecraft operations for a **triaxial tumbling** non-cooperative target $(\omega_x = 0.01 \text{ rad/s}, \omega_y = 0.02 \text{ rad/s}, \omega_z = 0.01 \text{ rad/s})$

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Future Developments

Future Developments

- Orbital Dynamics with Unknown Drag Component:
 - This estimation allows us to extrapolate the prediction over a time span that is 2 times the one over which the measurements are available
- New Measurement Models: GPS measurements, FLASH LIDAR Model + 3D Shape Reconstruction techniques
- New Docking Path Planning Techniques for unknown target shape

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

S T A R D U S T