ATHENA: Astrodynamics Toolbox for High-Fidelity Error and Navigation Analysis

Juan Manuel Romero Martin, Francesco Torre, Massimo Vetrisano, Massimiliano Vasile

Department of Mechanical & Aerospace Engineering
University of Strathclyde
Toolbox Architecture
What is ATHENA?

ATHENA is a toolbox for guidance, navigation and control of single and multiple coordinated platforms. It forms one of the applications of the Strathclyde Mechanical and Aerospace Research Toolbox (SMART)
Main Components
Main Toolbox Components

- The toolbox collects a set of:
 - High-fidelity **dynamic models** coupled with numerical integrators
 - Measurement models
 - State Estimation and Filtering Techniques
 - Path and Operation Planning Algorithms
 - Control Algorithms
Dynamic Models

- Dynamics in Cartesian parameters in an inertial reference frame:
 \[\ddot{\mathbf{r}} = -\frac{\mu}{r^3} \mathbf{r} + \mathbf{a}_d \]

- Full Earth, Moon, Mars gravity models in spherical harmonics
- Distributed mass model for asteroids
- Tetrahedron model from radar observations for single and binary asteroids
- N-body gravity effects
- Light pressure
- Atmospheric drag
Dynamic Models

- Dynamics in Hill’s reference frame for proximity motion:

\[
\delta \ddot{r}^h = -\dot{r}_a^h - 2\dot{\theta}^h \times \delta \dot{r}^h - \dot{\theta}^h \times \delta r^h - \dot{\theta}^h \times (\dot{\theta}^h \times \delta r^h) + \frac{\mu_{\text{Sun}}}{r_{Sc}^3} (\delta r^h + \dot{r}_a^h) + \nabla U_a + \frac{F_{Sc} (\delta r^h, r_a^h)}{m_{Sc}}
\]

- Same forces as in the inertial reference frame
- Coupled orbital and attitude dynamics of target and chaser
- Full 3D satellite shape
Measurement Models

The sensor model suite includes:

- Camera model
- Optical flow extraction and feature tracking
- LIDAR model
- Inter-satellite link model
- Solar Doppler effect
- Ground station range and range rate
State Estimation and Filtering

The main filtering techniques included in the toolbox are:

• Kalman Filter (KF)
• Extented Kalman Filter (EKF)
• Uncented Kalman Filter (UKF)
• Uncented H_∞ Filter (UHF)
• Extended H_∞ Filter (EHF)
• High-order semi-Analytic Extended Kalman Filter (HAEKF)

Filters have been extended to allow data-fusion sensor information
Path Planning

Implemented specially to provide Guidance for close proximity operations, autonomous rendezvous and docking (RVD)

Two Key Features:

- **High performance**
 - Path Planning based on *polynomial shaping*
 - Inverse optimization problem
 - Optimize to **minimize** ΔV

- **Safety**
 - Safety is provided by implementing **avoidance collision** with the target by defining **safety region**, Keep Out Coating
Operation Planning: AIDMAP

AIDMAP: Single objective incremental decision making algorithm for the solution of complex combinatorial optimization problems such as tasks planning and scheduling.

AIDMAP: decision making map using tree-like topology
- Nodes: Decision made
- Edges: Cost associated to decision

Decision Tree build
- Incrementally with time
- through Exploration and Growth by virtual agents

Possible heuristics to evaluate Decision Tree:
- Deterministic: Classical Branch-and-Cut Algorithm
- Probabilistic: New Bio-inspired Physarum Algorithm
Case Studies
Navigating to the Moon

Navigation and OD system for ESMO:

- Full ephemerides 4 body dynamics
- OD and Navigation based on ground station measurements and UKF
- TCM allocation and optimisation to target capture conditions at the Moon
- Analysis of High Order semi-Analytic Extended Kalman Filter
Collaborative Formation GNC

- **Collaborative and distributed navigation** of a formation in the proximity of an asteroid.
- Distributed sensor fusion
- Evaluation of different filters: EKF, UKF, UHF, EHF

<table>
<thead>
<tr>
<th>Case</th>
<th>SC-1</th>
<th>SC-2</th>
<th>SC-3</th>
<th>SC-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>C, L/R, I</td>
<td>C, L/R, I</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>C, L/R*, I</td>
<td>C, L/R*, I</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>*</td>
<td>C, L/R*, I</td>
<td>C, L/R*, I</td>
</tr>
</tbody>
</table>

C-camera, L/R LIDAR, l-inter-satellite, * worst condition
Collaborative Formation GNC

Improve Asteroid ephemerides during rendezvous:

- **Case 1:** Spacecraft-to-Ground tracking data **WITH** Sun Doppler Shift Sensor

- **Case 2:** Spacecraft-to-Ground tracking data **WITOUT** Sun Doppler Shift Sensor

<table>
<thead>
<tr>
<th>Analysed Configuration and Final Estimated error with and without Doppler Shift</th>
<th>SC-1</th>
<th>SC-2</th>
<th>No Doppler</th>
<th>Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>270</td>
<td>31.38</td>
<td>100.90</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5.66</td>
<td>19.36</td>
</tr>
<tr>
<td>3</td>
<td>135</td>
<td>270</td>
<td>8.04</td>
<td>19.61</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>17.50</td>
<td>62.63</td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td>136</td>
<td>25.14</td>
<td>801.00</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3</td>
<td>26.25</td>
<td>82.69</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>135.5</td>
<td>115.25</td>
<td>374.90</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detumbling Asteroids and Space Debris

• Coupled 12DOF control of proximity motion and attitude motion of an asteroid using laser ablation.

• Rich Dynamics:
 • Irregular gravity of the asteroid
 • Light pressure
 • Recoil of the laser
 • Plume impingement

• UKF to fuse optical camera and LIDAR information
Detumbling Asteroids and Space Debris

- **Optical flow** and feature extraction to track the attitude motion of the asteroid.
- **Online estimation** of the acceleration induced by the laser.

Estimated acceleration from the laser and plume force vs actual acceleration

Actual Controlled position and velocity error
Autonomous Collaborative On-Orbit Servicing

ACO^2SF an Autonomy Framework for Autonomous Collaborative On-Orbit Servicing (OOS)

- **Plan and Schedule**: the execution of elementary pre-defined actions to fulfill complex OOS missions for a swarm of spacecraft: proximity operations, rendezvous, docking & undocking operations

Cascade Flow Procedure Architecture:

- **Decision Layer**: Allocate the resources & generate optimal execution plan: plan and schedule actions for each of the servicing spacecraft
- **Executive Layer**: Execute the execution plan and monitor for unforeseen events
Autonomous Collaborative On-Orbit Servicing

ACO^2SF provides an Autonomy Framework for Autonomous Collaborative On-Orbit Servicing (OOS)
- capable of Plan and Schedule the execution of elementary pre-defined actions to fulfill complex OOS missions for a swarm of spacecraft:

ACO^2SF responsible for:
- Allocate resources across the system
- **Plan** and **schedule actions**
- **Execute** the made **decision**
- Monitor the performance during the execution phase
- **Provide contingency reactions** to overcome any unforeseen event during the execution phase.
Autonomous Collaborative On-Orbit Servicing

Optimal and Safe Docking Path for a triaxial tumbling non-cooperative target ($\omega_x = 0.01$ rad/s, $\omega_y = 0.02$ rad/s, $\omega_z = 0.01$ rad/s)

Maneuver $\Delta V = 8$ m/s,
Maneuver Time = 96.6 min
Autonomous Collaborative On-Orbit Servicing

Multi-Spacecraft operations for a triaxial tumbling non-cooperative target
($\omega_x = 0.01\ \text{rad/s}, \ \omega_y = 0.02\ \text{rad/s}, \ \omega_z = 0.01\ \text{rad/s}$)

<table>
<thead>
<tr>
<th>Chaser</th>
<th>Docking Point</th>
<th>ΔV (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{st} Docking, Operation & Undocking Phase</td>
<td>C$_3$</td>
<td>DP$_3$</td>
</tr>
<tr>
<td></td>
<td>C$_1$</td>
<td>DP$_2$</td>
</tr>
<tr>
<td></td>
<td>C$_2$</td>
<td>DP$_1$</td>
</tr>
<tr>
<td>2^{nd} Docking, Operation & Undocking Phase</td>
<td>C$_2$</td>
<td>DP$_2$</td>
</tr>
<tr>
<td></td>
<td>C$_1$</td>
<td>DP$_3$</td>
</tr>
<tr>
<td></td>
<td>C$_2$</td>
<td>DP$_1$</td>
</tr>
<tr>
<td>Total ΔV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future Developments
Future Developments

- Orbital Dynamics with Unknown Drag Component:
 - This estimation allows us to extrapolate the prediction over a time span that is 2 times the one over which the measurements are available

- New Measurement Models: GPS measurements, FLASH LIDAR Model + 3D Shape Reconstruction techniques

- New Docking Path Planning Techniques for unknown target shape
PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

STARDUST